* Split building histogram into separated class.
* Extract `InitCompressedRow` definition.
* Basic tests for gpu-hist.
* Document the code more verbosely.
* Removed `HistCutUnit`.
* Removed some duplicated copies in `GPUHistMaker`.
* Implement LCG and use it in tests.
* Implement Transform class.
* Add tests for softmax.
* Use Transform in regression, softmax and hinge objectives, except for Cox.
* Mark old gpu objective functions deprecated.
* static_assert for softmax.
* Split up multi-gpu tests.
* DMatrix refactor 2
* Remove buffered rowset usage where possible
* Transition to c++11 style iterators for row access
* Transition column iterators to C++ 11
* Add multi-GPU unit test environment
* Better assertion message
* Temporarily disable failing test
* Distinguish between multi-GPU and single-GPU CPP tests
* Consolidate Python tests. Use attributes to distinguish multi-GPU Python tests from single-CPU counterparts
* Fix#3730: scikit-learn 0.20 compatibility fix
sklearn.cross_validation has been removed from scikit-learn 0.20,
so replace it with sklearn.model_selection
* Display test names for Python tests for clarity
* add interaction constraints
* enable both interaction and monotonic constraints at the same time
* fix lint
* add R test, fix lint, update demo
* Use dmlc::JSONReader to express interaction constraints as nested lists; Use sparse arrays for bookkeeping
* Add Python test for interaction constraints
* make R interaction constraints parameter based on feature index instead of column names, fix R coding style
* Fix lint
* Add BlueTea88 to CONTRIBUTORS.md
* Short circuit when no constraint is specified; address review comments
* Add tutorial for feature interaction constraints
* allow interaction constraints to be passed as string, remove redundant column_names argument
* Fix typo
* Address review comments
* Add comments to Python test
- previously, vec_ in DeviceShard wasn't updated on copy; as a result,
the shards continued to refer to the old HostDeviceVectorImpl object,
which resulted in a dangling pointer once that object was deallocated
* Fix#3648: XGBClassifier.predict() should return margin scores when output_margin=True
* Fix tests to reflect correct implementation of XGBClassifier.predict(output_margin=True)
* Fix flaky test test_with_sklearn.test_sklearn_api_gblinear
* Replaced std::vector with HostDeviceVector in MetaInfo and SparsePage.
- added distributions to HostDeviceVector
- using HostDeviceVector for labels, weights and base margings in MetaInfo
- using HostDeviceVector for offset and data in SparsePage
- other necessary refactoring
* Added const version of HostDeviceVector API calls.
- const versions added to calls that can trigger data transfers, e.g. DevicePointer()
- updated the code that uses HostDeviceVector
- objective functions now accept const HostDeviceVector<bst_float>& for predictions
* Updated src/linear/updater_gpu_coordinate.cu.
* Added read-only state for HostDeviceVector sync.
- this means no copies are performed if both host and devices access
the HostDeviceVector read-only
* Fixed linter and test errors.
- updated the lz4 plugin
- added ConstDeviceSpan to HostDeviceVector
- using device % dh::NVisibleDevices() for the physical device number,
e.g. in calls to cudaSetDevice()
* Fixed explicit template instantiation errors for HostDeviceVector.
- replaced HostDeviceVector<unsigned int> with HostDeviceVector<int>
* Fixed HostDeviceVector tests that require multiple GPUs.
- added a mock set device handler; when set, it is called instead of cudaSetDevice()
* added xgbranker
* fixed predict method and ranking test
* reformatted code in accordance with pep8
* fixed lint error
* fixed docstring and added checks on objective
* added ranking demo for python
* fixed suffix in rank.py
* Add basic Span class based on ISO++20.
* Use Span<Entry const> instead of Inst in SparsePage.
* Add DeviceSpan in HostDeviceVector, use it in regression obj.
* Revert "Fix #3485, #3540: Don't use dropout for predicting test sets (#3556)"
This reverts commit 44811f233071c5805d70c287abd22b155b732727.
* Document behavior of predict() for DART booster
* Add notice to parameter.rst
* Fix#3402: wrong fid crashes distributed algorithm
The bug was introduced by the recent DMatrix refactor (#3301). It was partially
fixed by #3408 but the example in #3402 was still failing. The example in #3402
will succeed after this fix is applied.
* Explicitly specify "this" to prevent compile error
* Add regression test
* Add distributed test to Travis matrix
* Install kubernetes Python package as dependency of dmlc tracker
* Add Python dependencies
* Add compile step
* Reduce size of regression test case
* Further reduce size of test
* Added finding quantiles on GPU.
- this includes datasets where weights are assigned to data rows
- as the quantiles found by the new algorithm are not the same
as those found by the old one, test thresholds in
tests/python-gpu/test_gpu_updaters.py have been adjusted.
* Adjustments and improved testing for finding quantiles on the GPU.
- added C++ tests for the DeviceSketch() function
- reduced one of the thresholds in test_gpu_updaters.py
- adjusted the cuts found by the find_cuts_k kernel
Add `'total_gain'` and `'total_cover'` as possible `importance_type`
arguments to `Booster.get_score` in the Python package.
`get_score` already accepts a `'gain'` argument, which returns each
feature's average gain over all of its splits. `'total_gain'` does the
same, but returns a total rather than an average. This seems more
intuitively meaningful, and also matches the behavior of the R package's
`xgb.importance` function.
I also added an analogous `'total_cover'` command for consistency.
This should resolve#3484.
* Fail GPU CI after test failure
* Fix GPU linear tests
* Reduced number of GPU tests to speed up CI
* Remove static allocations of device memory
* Resolve illegal memory access for updater_fast_hist.cc
* Fix broken r tests dependency
* Update python install documentation for GPU
* Upgrading to NCCL2
* Part - II of NCCL2 upgradation
- Doc updates to build with nccl2
- Dockerfile.gpu update for a correct CI build with nccl2
- Updated FindNccl package to have env-var NCCL_ROOT to take precedence
* Upgrading to v9.2 for CI workflow, since it has the nccl2 binaries available
* Added NCCL2 license + copy the nccl binaries into /usr location for the FindNccl module to find
* Set LD_LIBRARY_PATH variable to pick nccl2 binary at runtime
* Need the nccl2 library download instructions inside Dockerfile.release as well
* Use NCCL2 as a static library
* add qid for https://github.com/dmlc/xgboost/issues/2748
* change names
* change spaces
* change qid to bst_uint type
* change qid type to size_t
* change qid first to SIZE_MAX
* change qid type from size_t to uint64_t
* update dmlc-core
* fix qids name error
* fix group_ptr_ error
* Style fix
* Add qid handling logic to SparsePage
* New MetaInfo format + backward compatibility fix
Old MetaInfo format (1.0) doesn't contain qid field. We still want to be able
to read from MetaInfo files saved in old format. Also, define a new format
(2.0) that contains the qid field. This way, we can distinguish files that
contain qid and those that do not.
* Update MetaInfo test
* Simply group assignment logic
* Explicitly set qid=nullptr in NativeDataIter
NativeDataIter's callback does not support qid field. Users of NativeDataIter
will need to call setGroup() function separately to set group information.
* Save qids_ in SaveBinary()
* Upgrade dmlc-core submodule
* Add a test for reading qid
* Add contributor
* Check the size of qids_
* Document qid format
* allow arbitrary cross validation fold indices
- use training indices passed to `folds` parameter in `training.cv`
- update doc string
* add tests for arbitrary fold indices
CI tests were failing because wget prompts "the user" for a response
whenever the google test archive is already on the disk.
Fix: Use `-nc` option to skip download when the archive already
exists
* Use sparse page as singular CSR matrix representation
* Simplify dmatrix methods
* Reduce statefullness of batch iterators
* BREAKING CHANGE: Remove prob_buffer_row parameter. Users are instead recommended to sample their dataset as a preprocessing step before using XGBoost.
* GPU binning and compression.
- binning and index compression are done inside the DeviceShard constructor
- in case of a DMatrix with multiple row batches, it is first converted into a single row batch
* Add option to use weights when evaluating metrics in validation sets
* Add test for validation-set weights functionality
* simplify case with no weights for test sets
* fix lint issues