reorder parameters

This commit is contained in:
HangLi 2015-04-23 16:25:31 -07:00
parent 29e76c7ac0
commit fcb833373b

View File

@ -753,8 +753,6 @@ class XGBModel(BaseEstimator):
----------
max_depth : int
Maximum tree depth for base learners.
min_child_weight : int
minimum sum of instance weight(hessian) needed in a child.
learning_rate : float
Boosting learning rate (xgb's "eta")
n_estimators : int
@ -763,33 +761,38 @@ class XGBModel(BaseEstimator):
Whether to print messages while running boosting.
objective : string
Specify the learning task and the corresponding learning objective.
nthread : int
Number of parallel threads used to run xgboost.
min_child_weight : int
minimum sum of instance weight(hessian) needed in a child.
subsample : float
Subsample ratio of the training instance.
colsample_bytree : float
Subsample ratio of columns when constructing each tree.
eval_metric : string
Evaluation metrics for validation data.
nthread : int
Number of parallel threads used to run xgboost.
seed : int
Random number seed.
"""
def __init__(self, max_depth=3, min_child_weight=1, learning_rate=0.1, n_estimators=100,
silent=True, objective="reg:linear", subsample=1, colsample_bytree=1, eval_metric='error',
nthread=-1, seed=0):
def __init__(self, max_depth=3, learning_rate=0.1, n_estimators=100, silent=True, objective="reg:linear",
nthread=-1, min_child_weight=1, subsample=1, colsample_bytree=1,
eval_metric='error', seed=0):
if not SKLEARN_INSTALLED:
raise Exception('sklearn needs to be installed in order to use this module')
self.max_depth = max_depth
self.min_child_weight = min_child_weight
self.learning_rate = learning_rate
self.silent = silent
self.n_estimators = n_estimators
self.silent = silent
self.objective = objective
self.nthread = nthread
self.min_child_weight = min_child_weight
self.subsample = subsample
self.colsample_bytree = colsample_bytree
self.eval_metric = eval_metric
self.nthread = nthread
self.seed = seed
self._Booster = Booster()
def get_xgb_params(self):
@ -812,12 +815,12 @@ class XGBModel(BaseEstimator):
class XGBClassifier(XGBModel, ClassifierMixin):
def __init__(self, max_depth=3, min_child_weight=1, learning_rate=0.1, n_estimators=100,
silent=True, objective="binary:logistic", subsample=1, colsample_bytree=1, eval_metric='error',
nthread=-1, seed=0):
super(XGBClassifier, self).__init__(max_depth, min_child_weight, learning_rate, n_estimators,
silent, objective, subsample, colsample_bytree,eval_metric,
nthread, seed)
def __init__(self, max_depth=3, learning_rate=0.1, n_estimators=100, silent=True, objective="binary:logistic",
nthread=-1, min_child_weight=1, subsample=1, colsample_bytree=1,
eval_metric='error', seed=0):
super(XGBClassifier, self).__init__(max_depth, learning_rate, n_estimators, silent, objective,
nthread, min_child_weight, subsample, colsample_bytree,
eval_metric, seed)
def fit(self, X, y, sample_weight=None):
y_values = list(np.unique(y))