replace iris in docs
This commit is contained in:
parent
ddf715953a
commit
fbecd163c5
@ -5,9 +5,9 @@ setClass('xgb.DMatrix')
|
||||
#' Get information of an xgb.DMatrix object
|
||||
#'
|
||||
#' @examples
|
||||
#' data(iris)
|
||||
#' iris[,5] <- as.numeric(iris[,5]=='setosa')
|
||||
#' dtrain <- xgb.DMatrix(as.matrix(iris[,1:4]), label=iris[,5])
|
||||
#' data(agaricus.train, package='xgboost')
|
||||
#' train <- agaricus.train
|
||||
#' dtrain <- xgb.DMatrix(train$data, label=train$label)
|
||||
#' labels <- getinfo(dtrain, 'label')
|
||||
#' setinfo(dtrain, 'label', 1-labels)
|
||||
#' labels2 <- getinfo(dtrain, 'label')
|
||||
|
||||
@ -15,9 +15,13 @@ setClass("xgb.Booster")
|
||||
#' only valid for gbtree, but not for gblinear. set it to be value bigger
|
||||
#' than 0. It will use all trees by default.
|
||||
#' @examples
|
||||
#' data(iris)
|
||||
#' bst <- xgboost(as.matrix(iris[,1:4]),as.numeric(iris[,5]=='setosa'), nrounds = 2)
|
||||
#' pred <- predict(bst, as.matrix(iris[,1:4]))
|
||||
#' data(agaricus.train, package='xgboost')
|
||||
#' data(agaricus.test, package='xgboost')
|
||||
#' train <- agaricus.train
|
||||
#' test <- agaricus.test
|
||||
#' bst <- xgboost(data = train$data, label = train$label, max.depth = 2,
|
||||
#' eta = 1, nround = 2,objective = "binary:logistic")
|
||||
#' pred <- predict(bst, test$data)
|
||||
#' @export
|
||||
#'
|
||||
setMethod("predict", signature = "xgb.Booster",
|
||||
|
||||
@ -3,9 +3,9 @@
|
||||
#' Set information of an xgb.DMatrix object
|
||||
#'
|
||||
#' @examples
|
||||
#' data(iris)
|
||||
#' iris[,5] <- as.numeric(iris[,5]=='setosa')
|
||||
#' dtrain <- xgb.DMatrix(as.matrix(iris[,1:4]), label=iris[,5])
|
||||
#' data(agaricus.train, package='xgboost')
|
||||
#' train <- agaricus.train
|
||||
#' dtrain <- xgb.DMatrix(train$data, label=train$label)
|
||||
#' labels <- getinfo(dtrain, 'label')
|
||||
#' setinfo(dtrain, 'label', 1-labels)
|
||||
#' labels2 <- getinfo(dtrain, 'label')
|
||||
|
||||
@ -7,9 +7,9 @@ setClass('xgb.DMatrix')
|
||||
#' orginal xgb.DMatrix object
|
||||
#'
|
||||
#' @examples
|
||||
#' data(iris)
|
||||
#' iris[,5] <- as.numeric(iris[,5]=='setosa')
|
||||
#' dtrain <- xgb.DMatrix(as.matrix(iris[,1:4]), label=iris[,5])
|
||||
#' data(agaricus.train, package='xgboost')
|
||||
#' train <- agaricus.train
|
||||
#' dtrain <- xgb.DMatrix(train$data, label=train$label)
|
||||
#' dsub <- slice(dtrain, 1:3)
|
||||
#' @rdname slice
|
||||
#' @export
|
||||
|
||||
@ -11,11 +11,11 @@
|
||||
#' @param ... other information to pass to \code{info}.
|
||||
#'
|
||||
#' @examples
|
||||
#' data(iris)
|
||||
#' iris[,5] <- as.numeric(iris[,5]=='setosa')
|
||||
#' dtrain <- xgb.DMatrix(as.matrix(iris[,1:4]), label=iris[,5])
|
||||
#' xgb.DMatrix.save(dtrain, 'iris.xgb.DMatrix')
|
||||
#' dtrain <- xgb.DMatrix('iris.xgb.DMatrix')
|
||||
#' data(agaricus.train, package='xgboost')
|
||||
#' train <- agaricus.train
|
||||
#' dtrain <- xgb.DMatrix(train$data, label=train$label)
|
||||
#' xgb.DMatrix.save(dtrain, 'xgb.DMatrix.data')
|
||||
#' dtrain <- xgb.DMatrix('xgb.DMatrix.data')
|
||||
#' @export
|
||||
#'
|
||||
xgb.DMatrix <- function(data, info = list(), missing = 0, ...) {
|
||||
|
||||
@ -6,11 +6,11 @@
|
||||
#' @param fname the name of the binary file.
|
||||
#'
|
||||
#' @examples
|
||||
#' data(iris)
|
||||
#' iris[,5] <- as.numeric(iris[,5]=='setosa')
|
||||
#' dtrain <- xgb.DMatrix(as.matrix(iris[,1:4]), label=iris[,5])
|
||||
#' xgb.DMatrix.save(dtrain, 'iris.xgb.DMatrix')
|
||||
#' dtrain <- xgb.DMatrix('iris.xgb.DMatrix')
|
||||
#' data(agaricus.train, package='xgboost')
|
||||
#' train <- agaricus.train
|
||||
#' dtrain <- xgb.DMatrix(train$data, label=train$label)
|
||||
#' xgb.DMatrix.save(dtrain, 'xgb.DMatrix.data')
|
||||
#' dtrain <- xgb.DMatrix('xgb.DMatrix.data')
|
||||
#' @export
|
||||
#'
|
||||
xgb.DMatrix.save <- function(DMatrix, fname) {
|
||||
|
||||
@ -46,6 +46,11 @@
|
||||
#'
|
||||
#' This function only accepts an \code{xgb.DMatrix} object as the input.
|
||||
#'
|
||||
#' @examples
|
||||
#' data(agaricus.train, package='xgboost')
|
||||
#' dtrain <- xgb.DMatrix(agaricus.train$data, label = agaricus.train$label)
|
||||
#' history <- xgb.cv(data = dtrain, nround=3, nfold = 5, metrics=list("rmse","auc"),
|
||||
#' "max_depth"=3, "eta"=1, "objective"="binary:logistic")
|
||||
#' @export
|
||||
#'
|
||||
xgb.cv <- function(params=list(), data, nrounds, nfold, label = NULL,
|
||||
|
||||
@ -12,9 +12,13 @@
|
||||
#'
|
||||
#'
|
||||
#' @examples
|
||||
#' data(iris)
|
||||
#' bst <- xgboost(as.matrix(iris[,1:4]),as.numeric(iris[,5]=='setosa'), nrounds = 2)
|
||||
#' xgb.dump(bst, 'iris.xgb.model.dump')
|
||||
#' data(agaricus.train, package='xgboost')
|
||||
#' data(agaricus.test, package='xgboost')
|
||||
#' train <- agaricus.train
|
||||
#' test <- agaricus.test
|
||||
#' bst <- xgboost(data = train$data, label = train$label, max.depth = 2,
|
||||
#' eta = 1, nround = 2,objective = "binary:logistic")
|
||||
#' xgb.dump(bst, 'xgb.model.dump')
|
||||
#' @export
|
||||
#'
|
||||
xgb.dump <- function(model, fname, fmap = "") {
|
||||
|
||||
@ -5,11 +5,15 @@
|
||||
#' @param modelfile the name of the binary file.
|
||||
#'
|
||||
#' @examples
|
||||
#' data(iris)
|
||||
#' bst <- xgboost(as.matrix(iris[,1:4]),as.numeric(iris[,5]=='setosa'), nrounds = 2)
|
||||
#' xgb.save(bst, 'iris.xgb.model')
|
||||
#' bst <- xgb.load('iris.xgb.model')
|
||||
#' pred <- predict(bst, as.matrix(iris[,1:4]))
|
||||
#' data(agaricus.train, package='xgboost')
|
||||
#' data(agaricus.test, package='xgboost')
|
||||
#' train <- agaricus.train
|
||||
#' test <- agaricus.test
|
||||
#' bst <- xgboost(data = train$data, label = train$label, max.depth = 2,
|
||||
#' eta = 1, nround = 2,objective = "binary:logistic")
|
||||
#' xgb.save(bst, 'xgb.model')
|
||||
#' bst <- xgb.load('xgb.model')
|
||||
#' pred <- predict(bst, test$data)
|
||||
#' @export
|
||||
#'
|
||||
xgb.load <- function(modelfile) {
|
||||
|
||||
@ -6,11 +6,15 @@
|
||||
#' @param fname the name of the binary file.
|
||||
#'
|
||||
#' @examples
|
||||
#' data(iris)
|
||||
#' bst <- xgboost(as.matrix(iris[,1:4]),as.numeric(iris[,5]=='setosa'), nrounds = 2)
|
||||
#' xgb.save(bst, 'iris.xgb.model')
|
||||
#' bst <- xgb.load('iris.xgb.model')
|
||||
#' pred <- predict(bst, as.matrix(iris[,1:4]))
|
||||
#' data(agaricus.train, package='xgboost')
|
||||
#' data(agaricus.test, package='xgboost')
|
||||
#' train <- agaricus.train
|
||||
#' test <- agaricus.test
|
||||
#' bst <- xgboost(data = train$data, label = train$label, max.depth = 2,
|
||||
#' eta = 1, nround = 2,objective = "binary:logistic")
|
||||
#' xgb.save(bst, 'xgb.model')
|
||||
#' bst <- xgb.load('xgb.model')
|
||||
#' pred <- predict(bst, test$data)
|
||||
#' @export
|
||||
#'
|
||||
xgb.save <- function(model, fname) {
|
||||
|
||||
@ -46,9 +46,8 @@
|
||||
#'
|
||||
#'
|
||||
#' @examples
|
||||
#' data(iris)
|
||||
#' iris[,5] <- as.numeric(iris[,5]=='setosa')
|
||||
#' dtrain <- xgb.DMatrix(as.matrix(iris[,1:4]), label=iris[,5])
|
||||
#' data(agaricus.train, package='xgboost')
|
||||
#' dtrain <- xgb.DMatrix(agaricus.train$data, label = agaricus.train$label)
|
||||
#' dtest <- dtrain
|
||||
#' watchlist <- list(eval = dtest, train = dtrain)
|
||||
#' param <- list(max_depth = 2, eta = 1, silent = 1)
|
||||
|
||||
@ -20,9 +20,9 @@ getinfo(object, ...)
|
||||
Get information of an xgb.DMatrix object
|
||||
}
|
||||
\examples{
|
||||
data(iris)
|
||||
iris[,5] <- as.numeric(iris[,5]=='setosa')
|
||||
dtrain <- xgb.DMatrix(as.matrix(iris[,1:4]), label=iris[,5])
|
||||
data(agaricus.train, package='xgboost')
|
||||
train <- agaricus.train
|
||||
dtrain <- xgb.DMatrix(train$data, label=train$label)
|
||||
labels <- getinfo(dtrain, 'label')
|
||||
setinfo(dtrain, 'label', 1-labels)
|
||||
labels2 <- getinfo(dtrain, 'label')
|
||||
|
||||
@ -26,8 +26,12 @@ than 0. It will use all trees by default.}
|
||||
Predicted values based on xgboost model object.
|
||||
}
|
||||
\examples{
|
||||
data(iris)
|
||||
bst <- xgboost(as.matrix(iris[,1:4]),as.numeric(iris[,5]=='setosa'), nrounds = 2)
|
||||
pred <- predict(bst, as.matrix(iris[,1:4]))
|
||||
data(agaricus.train, package='xgboost')
|
||||
data(agaricus.test, package='xgboost')
|
||||
train <- agaricus.train
|
||||
test <- agaricus.test
|
||||
bst <- xgboost(data = train$data, label = train$label, max.depth = 2,
|
||||
eta = 1, nround = 2,objective = "binary:logistic")
|
||||
pred <- predict(bst, test$data)
|
||||
}
|
||||
|
||||
|
||||
@ -22,9 +22,9 @@ setinfo(object, ...)
|
||||
Set information of an xgb.DMatrix object
|
||||
}
|
||||
\examples{
|
||||
data(iris)
|
||||
iris[,5] <- as.numeric(iris[,5]=='setosa')
|
||||
dtrain <- xgb.DMatrix(as.matrix(iris[,1:4]), label=iris[,5])
|
||||
data(agaricus.train, package='xgboost')
|
||||
train <- agaricus.train
|
||||
dtrain <- xgb.DMatrix(train$data, label=train$label)
|
||||
labels <- getinfo(dtrain, 'label')
|
||||
setinfo(dtrain, 'label', 1-labels)
|
||||
labels2 <- getinfo(dtrain, 'label')
|
||||
|
||||
@ -22,9 +22,9 @@ Get a new DMatrix containing the specified rows of
|
||||
orginal xgb.DMatrix object
|
||||
}
|
||||
\examples{
|
||||
data(iris)
|
||||
iris[,5] <- as.numeric(iris[,5]=='setosa')
|
||||
dtrain <- xgb.DMatrix(as.matrix(iris[,1:4]), label=iris[,5])
|
||||
data(agaricus.train, package='xgboost')
|
||||
train <- agaricus.train
|
||||
dtrain <- xgb.DMatrix(train$data, label=train$label)
|
||||
dsub <- slice(dtrain, 1:3)
|
||||
}
|
||||
|
||||
|
||||
@ -19,10 +19,10 @@ indicating the data file.}
|
||||
Contruct xgb.DMatrix object from dense matrix, sparse matrix or local file.
|
||||
}
|
||||
\examples{
|
||||
data(iris)
|
||||
iris[,5] <- as.numeric(iris[,5]=='setosa')
|
||||
dtrain <- xgb.DMatrix(as.matrix(iris[,1:4]), label=iris[,5])
|
||||
xgb.DMatrix.save(dtrain, 'iris.xgb.DMatrix')
|
||||
dtrain <- xgb.DMatrix('iris.xgb.DMatrix')
|
||||
data(agaricus.train, package='xgboost')
|
||||
train <- agaricus.train
|
||||
dtrain <- xgb.DMatrix(train$data, label=train$label)
|
||||
xgb.DMatrix.save(dtrain, 'xgb.DMatrix.data')
|
||||
dtrain <- xgb.DMatrix('xgb.DMatrix.data')
|
||||
}
|
||||
|
||||
|
||||
@ -14,10 +14,10 @@ xgb.DMatrix.save(DMatrix, fname)
|
||||
Save xgb.DMatrix object to binary file
|
||||
}
|
||||
\examples{
|
||||
data(iris)
|
||||
iris[,5] <- as.numeric(iris[,5]=='setosa')
|
||||
dtrain <- xgb.DMatrix(as.matrix(iris[,1:4]), label=iris[,5])
|
||||
xgb.DMatrix.save(dtrain, 'iris.xgb.DMatrix')
|
||||
dtrain <- xgb.DMatrix('iris.xgb.DMatrix')
|
||||
data(agaricus.train, package='xgboost')
|
||||
train <- agaricus.train
|
||||
dtrain <- xgb.DMatrix(train$data, label=train$label)
|
||||
xgb.DMatrix.save(dtrain, 'xgb.DMatrix.data')
|
||||
dtrain <- xgb.DMatrix('xgb.DMatrix.data')
|
||||
}
|
||||
|
||||
|
||||
@ -63,4 +63,10 @@ Number of threads can also be manually specified via "nthread" parameter.
|
||||
|
||||
This function only accepts an \code{xgb.DMatrix} object as the input.
|
||||
}
|
||||
\examples{
|
||||
data(agaricus.train, package='xgboost')
|
||||
dtrain <- xgb.DMatrix(agaricus.train$data, label = agaricus.train$label)
|
||||
history <- xgb.cv(data = dtrain, nround=3, nfold = 5, metrics=list("rmse","auc"),
|
||||
"max_depth"=3, "eta"=1, "objective"="binary:logistic")
|
||||
}
|
||||
|
||||
|
||||
@ -20,8 +20,12 @@ xgb.dump(model, fname, fmap = "")
|
||||
Save a xgboost model to text file. Could be parsed later.
|
||||
}
|
||||
\examples{
|
||||
data(iris)
|
||||
bst <- xgboost(as.matrix(iris[,1:4]),as.numeric(iris[,5]=='setosa'), nrounds = 2)
|
||||
xgb.dump(bst, 'iris.xgb.model.dump')
|
||||
data(agaricus.train, package='xgboost')
|
||||
data(agaricus.test, package='xgboost')
|
||||
train <- agaricus.train
|
||||
test <- agaricus.test
|
||||
bst <- xgboost(data = train$data, label = train$label, max.depth = 2,
|
||||
eta = 1, nround = 2,objective = "binary:logistic")
|
||||
xgb.dump(bst, 'xgb.model.dump')
|
||||
}
|
||||
|
||||
|
||||
@ -12,10 +12,14 @@ xgb.load(modelfile)
|
||||
Load xgboost model from the binary model file
|
||||
}
|
||||
\examples{
|
||||
data(iris)
|
||||
bst <- xgboost(as.matrix(iris[,1:4]),as.numeric(iris[,5]=='setosa'), nrounds = 2)
|
||||
xgb.save(bst, 'iris.xgb.model')
|
||||
bst <- xgb.load('iris.xgb.model')
|
||||
pred <- predict(bst, as.matrix(iris[,1:4]))
|
||||
data(agaricus.train, package='xgboost')
|
||||
data(agaricus.test, package='xgboost')
|
||||
train <- agaricus.train
|
||||
test <- agaricus.test
|
||||
bst <- xgboost(data = train$data, label = train$label, max.depth = 2,
|
||||
eta = 1, nround = 2,objective = "binary:logistic")
|
||||
xgb.save(bst, 'xgb.model')
|
||||
bst <- xgb.load('xgb.model')
|
||||
pred <- predict(bst, test$data)
|
||||
}
|
||||
|
||||
|
||||
@ -14,10 +14,14 @@ xgb.save(model, fname)
|
||||
Save xgboost model from xgboost or xgb.train
|
||||
}
|
||||
\examples{
|
||||
data(iris)
|
||||
bst <- xgboost(as.matrix(iris[,1:4]),as.numeric(iris[,5]=='setosa'), nrounds = 2)
|
||||
xgb.save(bst, 'iris.xgb.model')
|
||||
bst <- xgb.load('iris.xgb.model')
|
||||
pred <- predict(bst, as.matrix(iris[,1:4]))
|
||||
data(agaricus.train, package='xgboost')
|
||||
data(agaricus.test, package='xgboost')
|
||||
train <- agaricus.train
|
||||
test <- agaricus.test
|
||||
bst <- xgboost(data = train$data, label = train$label, max.depth = 2,
|
||||
eta = 1, nround = 2,objective = "binary:logistic")
|
||||
xgb.save(bst, 'xgb.model')
|
||||
bst <- xgb.load('xgb.model')
|
||||
pred <- predict(bst, test$data)
|
||||
}
|
||||
|
||||
|
||||
@ -58,9 +58,8 @@ It supports advanced features such as watchlist, customized objective function,
|
||||
therefore it is more flexible than \code{\link{xgboost}}.
|
||||
}
|
||||
\examples{
|
||||
data(iris)
|
||||
iris[,5] <- as.numeric(iris[,5]=='setosa')
|
||||
dtrain <- xgb.DMatrix(as.matrix(iris[,1:4]), label=iris[,5])
|
||||
data(agaricus.train, package='xgboost')
|
||||
dtrain <- xgb.DMatrix(agaricus.train$data, label = agaricus.train$label)
|
||||
dtest <- dtrain
|
||||
watchlist <- list(eval = dtest, train = dtrain)
|
||||
param <- list(max_depth = 2, eta = 1, silent = 1)
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user