diff --git a/R-package/R/getinfo.xgb.DMatrix.R b/R-package/R/getinfo.xgb.DMatrix.R index 5a8f4af3c..ed61ba654 100644 --- a/R-package/R/getinfo.xgb.DMatrix.R +++ b/R-package/R/getinfo.xgb.DMatrix.R @@ -5,9 +5,9 @@ setClass('xgb.DMatrix') #' Get information of an xgb.DMatrix object #' #' @examples -#' data(iris) -#' iris[,5] <- as.numeric(iris[,5]=='setosa') -#' dtrain <- xgb.DMatrix(as.matrix(iris[,1:4]), label=iris[,5]) +#' data(agaricus.train, package='xgboost') +#' train <- agaricus.train +#' dtrain <- xgb.DMatrix(train$data, label=train$label) #' labels <- getinfo(dtrain, 'label') #' setinfo(dtrain, 'label', 1-labels) #' labels2 <- getinfo(dtrain, 'label') diff --git a/R-package/R/predict.xgb.Booster.R b/R-package/R/predict.xgb.Booster.R index a41b26873..4758863ee 100644 --- a/R-package/R/predict.xgb.Booster.R +++ b/R-package/R/predict.xgb.Booster.R @@ -15,9 +15,13 @@ setClass("xgb.Booster") #' only valid for gbtree, but not for gblinear. set it to be value bigger #' than 0. It will use all trees by default. #' @examples -#' data(iris) -#' bst <- xgboost(as.matrix(iris[,1:4]),as.numeric(iris[,5]=='setosa'), nrounds = 2) -#' pred <- predict(bst, as.matrix(iris[,1:4])) +#' data(agaricus.train, package='xgboost') +#' data(agaricus.test, package='xgboost') +#' train <- agaricus.train +#' test <- agaricus.test +#' bst <- xgboost(data = train$data, label = train$label, max.depth = 2, +#' eta = 1, nround = 2,objective = "binary:logistic") +#' pred <- predict(bst, test$data) #' @export #' setMethod("predict", signature = "xgb.Booster", diff --git a/R-package/R/setinfo.xgb.DMatrix.R b/R-package/R/setinfo.xgb.DMatrix.R index 91df89c11..579d9fbcf 100644 --- a/R-package/R/setinfo.xgb.DMatrix.R +++ b/R-package/R/setinfo.xgb.DMatrix.R @@ -3,9 +3,9 @@ #' Set information of an xgb.DMatrix object #' #' @examples -#' data(iris) -#' iris[,5] <- as.numeric(iris[,5]=='setosa') -#' dtrain <- xgb.DMatrix(as.matrix(iris[,1:4]), label=iris[,5]) +#' data(agaricus.train, package='xgboost') +#' train <- agaricus.train +#' dtrain <- xgb.DMatrix(train$data, label=train$label) #' labels <- getinfo(dtrain, 'label') #' setinfo(dtrain, 'label', 1-labels) #' labels2 <- getinfo(dtrain, 'label') diff --git a/R-package/R/slice.xgb.DMatrix.R b/R-package/R/slice.xgb.DMatrix.R index 72f94893a..419170a66 100644 --- a/R-package/R/slice.xgb.DMatrix.R +++ b/R-package/R/slice.xgb.DMatrix.R @@ -7,9 +7,9 @@ setClass('xgb.DMatrix') #' orginal xgb.DMatrix object #' #' @examples -#' data(iris) -#' iris[,5] <- as.numeric(iris[,5]=='setosa') -#' dtrain <- xgb.DMatrix(as.matrix(iris[,1:4]), label=iris[,5]) +#' data(agaricus.train, package='xgboost') +#' train <- agaricus.train +#' dtrain <- xgb.DMatrix(train$data, label=train$label) #' dsub <- slice(dtrain, 1:3) #' @rdname slice #' @export diff --git a/R-package/R/xgb.DMatrix.R b/R-package/R/xgb.DMatrix.R index 3b320d73f..b7a5a9897 100644 --- a/R-package/R/xgb.DMatrix.R +++ b/R-package/R/xgb.DMatrix.R @@ -11,11 +11,11 @@ #' @param ... other information to pass to \code{info}. #' #' @examples -#' data(iris) -#' iris[,5] <- as.numeric(iris[,5]=='setosa') -#' dtrain <- xgb.DMatrix(as.matrix(iris[,1:4]), label=iris[,5]) -#' xgb.DMatrix.save(dtrain, 'iris.xgb.DMatrix') -#' dtrain <- xgb.DMatrix('iris.xgb.DMatrix') +#' data(agaricus.train, package='xgboost') +#' train <- agaricus.train +#' dtrain <- xgb.DMatrix(train$data, label=train$label) +#' xgb.DMatrix.save(dtrain, 'xgb.DMatrix.data') +#' dtrain <- xgb.DMatrix('xgb.DMatrix.data') #' @export #' xgb.DMatrix <- function(data, info = list(), missing = 0, ...) { diff --git a/R-package/R/xgb.DMatrix.save.R b/R-package/R/xgb.DMatrix.save.R index f409a183f..d58dc09de 100644 --- a/R-package/R/xgb.DMatrix.save.R +++ b/R-package/R/xgb.DMatrix.save.R @@ -6,11 +6,11 @@ #' @param fname the name of the binary file. #' #' @examples -#' data(iris) -#' iris[,5] <- as.numeric(iris[,5]=='setosa') -#' dtrain <- xgb.DMatrix(as.matrix(iris[,1:4]), label=iris[,5]) -#' xgb.DMatrix.save(dtrain, 'iris.xgb.DMatrix') -#' dtrain <- xgb.DMatrix('iris.xgb.DMatrix') +#' data(agaricus.train, package='xgboost') +#' train <- agaricus.train +#' dtrain <- xgb.DMatrix(train$data, label=train$label) +#' xgb.DMatrix.save(dtrain, 'xgb.DMatrix.data') +#' dtrain <- xgb.DMatrix('xgb.DMatrix.data') #' @export #' xgb.DMatrix.save <- function(DMatrix, fname) { diff --git a/R-package/R/xgb.cv.R b/R-package/R/xgb.cv.R index f06fd63cc..2ce039089 100644 --- a/R-package/R/xgb.cv.R +++ b/R-package/R/xgb.cv.R @@ -46,6 +46,11 @@ #' #' This function only accepts an \code{xgb.DMatrix} object as the input. #' +#' @examples +#' data(agaricus.train, package='xgboost') +#' dtrain <- xgb.DMatrix(agaricus.train$data, label = agaricus.train$label) +#' history <- xgb.cv(data = dtrain, nround=3, nfold = 5, metrics=list("rmse","auc"), +#' "max_depth"=3, "eta"=1, "objective"="binary:logistic") #' @export #' xgb.cv <- function(params=list(), data, nrounds, nfold, label = NULL, diff --git a/R-package/R/xgb.dump.R b/R-package/R/xgb.dump.R index 78fcf4d0b..9c14c92df 100644 --- a/R-package/R/xgb.dump.R +++ b/R-package/R/xgb.dump.R @@ -12,9 +12,13 @@ #' #' #' @examples -#' data(iris) -#' bst <- xgboost(as.matrix(iris[,1:4]),as.numeric(iris[,5]=='setosa'), nrounds = 2) -#' xgb.dump(bst, 'iris.xgb.model.dump') +#' data(agaricus.train, package='xgboost') +#' data(agaricus.test, package='xgboost') +#' train <- agaricus.train +#' test <- agaricus.test +#' bst <- xgboost(data = train$data, label = train$label, max.depth = 2, +#' eta = 1, nround = 2,objective = "binary:logistic") +#' xgb.dump(bst, 'xgb.model.dump') #' @export #' xgb.dump <- function(model, fname, fmap = "") { diff --git a/R-package/R/xgb.load.R b/R-package/R/xgb.load.R index 54afe65dd..af87e2b3c 100644 --- a/R-package/R/xgb.load.R +++ b/R-package/R/xgb.load.R @@ -5,11 +5,15 @@ #' @param modelfile the name of the binary file. #' #' @examples -#' data(iris) -#' bst <- xgboost(as.matrix(iris[,1:4]),as.numeric(iris[,5]=='setosa'), nrounds = 2) -#' xgb.save(bst, 'iris.xgb.model') -#' bst <- xgb.load('iris.xgb.model') -#' pred <- predict(bst, as.matrix(iris[,1:4])) +#' data(agaricus.train, package='xgboost') +#' data(agaricus.test, package='xgboost') +#' train <- agaricus.train +#' test <- agaricus.test +#' bst <- xgboost(data = train$data, label = train$label, max.depth = 2, +#' eta = 1, nround = 2,objective = "binary:logistic") +#' xgb.save(bst, 'xgb.model') +#' bst <- xgb.load('xgb.model') +#' pred <- predict(bst, test$data) #' @export #' xgb.load <- function(modelfile) { diff --git a/R-package/R/xgb.save.R b/R-package/R/xgb.save.R index c211429ad..2a250a9af 100644 --- a/R-package/R/xgb.save.R +++ b/R-package/R/xgb.save.R @@ -6,11 +6,15 @@ #' @param fname the name of the binary file. #' #' @examples -#' data(iris) -#' bst <- xgboost(as.matrix(iris[,1:4]),as.numeric(iris[,5]=='setosa'), nrounds = 2) -#' xgb.save(bst, 'iris.xgb.model') -#' bst <- xgb.load('iris.xgb.model') -#' pred <- predict(bst, as.matrix(iris[,1:4])) +#' data(agaricus.train, package='xgboost') +#' data(agaricus.test, package='xgboost') +#' train <- agaricus.train +#' test <- agaricus.test +#' bst <- xgboost(data = train$data, label = train$label, max.depth = 2, +#' eta = 1, nround = 2,objective = "binary:logistic") +#' xgb.save(bst, 'xgb.model') +#' bst <- xgb.load('xgb.model') +#' pred <- predict(bst, test$data) #' @export #' xgb.save <- function(model, fname) { diff --git a/R-package/R/xgb.train.R b/R-package/R/xgb.train.R index 135fa4485..dca798d53 100644 --- a/R-package/R/xgb.train.R +++ b/R-package/R/xgb.train.R @@ -46,9 +46,8 @@ #' #' #' @examples -#' data(iris) -#' iris[,5] <- as.numeric(iris[,5]=='setosa') -#' dtrain <- xgb.DMatrix(as.matrix(iris[,1:4]), label=iris[,5]) +#' data(agaricus.train, package='xgboost') +#' dtrain <- xgb.DMatrix(agaricus.train$data, label = agaricus.train$label) #' dtest <- dtrain #' watchlist <- list(eval = dtest, train = dtrain) #' param <- list(max_depth = 2, eta = 1, silent = 1) diff --git a/R-package/man/getinfo.Rd b/R-package/man/getinfo.Rd index e3ef3067d..23e3adc84 100644 --- a/R-package/man/getinfo.Rd +++ b/R-package/man/getinfo.Rd @@ -20,9 +20,9 @@ getinfo(object, ...) Get information of an xgb.DMatrix object } \examples{ -data(iris) -iris[,5] <- as.numeric(iris[,5]=='setosa') -dtrain <- xgb.DMatrix(as.matrix(iris[,1:4]), label=iris[,5]) +data(agaricus.train, package='xgboost') +train <- agaricus.train +dtrain <- xgb.DMatrix(train$data, label=train$label) labels <- getinfo(dtrain, 'label') setinfo(dtrain, 'label', 1-labels) labels2 <- getinfo(dtrain, 'label') diff --git a/R-package/man/predict-xgb.Booster-method.Rd b/R-package/man/predict-xgb.Booster-method.Rd index 9c19b8f33..36d6327b1 100644 --- a/R-package/man/predict-xgb.Booster-method.Rd +++ b/R-package/man/predict-xgb.Booster-method.Rd @@ -26,8 +26,12 @@ than 0. It will use all trees by default.} Predicted values based on xgboost model object. } \examples{ -data(iris) -bst <- xgboost(as.matrix(iris[,1:4]),as.numeric(iris[,5]=='setosa'), nrounds = 2) -pred <- predict(bst, as.matrix(iris[,1:4])) +data(agaricus.train, package='xgboost') +data(agaricus.test, package='xgboost') +train <- agaricus.train +test <- agaricus.test +bst <- xgboost(data = train$data, label = train$label, max.depth = 2, + eta = 1, nround = 2,objective = "binary:logistic") +pred <- predict(bst, test$data) } diff --git a/R-package/man/setinfo.Rd b/R-package/man/setinfo.Rd index a146d3611..7ea992110 100644 --- a/R-package/man/setinfo.Rd +++ b/R-package/man/setinfo.Rd @@ -22,9 +22,9 @@ setinfo(object, ...) Set information of an xgb.DMatrix object } \examples{ -data(iris) -iris[,5] <- as.numeric(iris[,5]=='setosa') -dtrain <- xgb.DMatrix(as.matrix(iris[,1:4]), label=iris[,5]) +data(agaricus.train, package='xgboost') +train <- agaricus.train +dtrain <- xgb.DMatrix(train$data, label=train$label) labels <- getinfo(dtrain, 'label') setinfo(dtrain, 'label', 1-labels) labels2 <- getinfo(dtrain, 'label') diff --git a/R-package/man/slice.Rd b/R-package/man/slice.Rd index a4d0a4568..a749aa8ff 100644 --- a/R-package/man/slice.Rd +++ b/R-package/man/slice.Rd @@ -22,9 +22,9 @@ Get a new DMatrix containing the specified rows of orginal xgb.DMatrix object } \examples{ -data(iris) -iris[,5] <- as.numeric(iris[,5]=='setosa') -dtrain <- xgb.DMatrix(as.matrix(iris[,1:4]), label=iris[,5]) +data(agaricus.train, package='xgboost') +train <- agaricus.train +dtrain <- xgb.DMatrix(train$data, label=train$label) dsub <- slice(dtrain, 1:3) } diff --git a/R-package/man/xgb.DMatrix.Rd b/R-package/man/xgb.DMatrix.Rd index ea7ff8ce6..227fb515f 100644 --- a/R-package/man/xgb.DMatrix.Rd +++ b/R-package/man/xgb.DMatrix.Rd @@ -19,10 +19,10 @@ indicating the data file.} Contruct xgb.DMatrix object from dense matrix, sparse matrix or local file. } \examples{ -data(iris) -iris[,5] <- as.numeric(iris[,5]=='setosa') -dtrain <- xgb.DMatrix(as.matrix(iris[,1:4]), label=iris[,5]) -xgb.DMatrix.save(dtrain, 'iris.xgb.DMatrix') -dtrain <- xgb.DMatrix('iris.xgb.DMatrix') +data(agaricus.train, package='xgboost') +train <- agaricus.train +dtrain <- xgb.DMatrix(train$data, label=train$label) +xgb.DMatrix.save(dtrain, 'xgb.DMatrix.data') +dtrain <- xgb.DMatrix('xgb.DMatrix.data') } diff --git a/R-package/man/xgb.DMatrix.save.Rd b/R-package/man/xgb.DMatrix.save.Rd index 139db8548..803de912b 100644 --- a/R-package/man/xgb.DMatrix.save.Rd +++ b/R-package/man/xgb.DMatrix.save.Rd @@ -14,10 +14,10 @@ xgb.DMatrix.save(DMatrix, fname) Save xgb.DMatrix object to binary file } \examples{ -data(iris) -iris[,5] <- as.numeric(iris[,5]=='setosa') -dtrain <- xgb.DMatrix(as.matrix(iris[,1:4]), label=iris[,5]) -xgb.DMatrix.save(dtrain, 'iris.xgb.DMatrix') -dtrain <- xgb.DMatrix('iris.xgb.DMatrix') +data(agaricus.train, package='xgboost') +train <- agaricus.train +dtrain <- xgb.DMatrix(train$data, label=train$label) +xgb.DMatrix.save(dtrain, 'xgb.DMatrix.data') +dtrain <- xgb.DMatrix('xgb.DMatrix.data') } diff --git a/R-package/man/xgb.cv.Rd b/R-package/man/xgb.cv.Rd index b7fa677f9..fdfce8102 100644 --- a/R-package/man/xgb.cv.Rd +++ b/R-package/man/xgb.cv.Rd @@ -63,4 +63,10 @@ Number of threads can also be manually specified via "nthread" parameter. This function only accepts an \code{xgb.DMatrix} object as the input. } +\examples{ +data(agaricus.train, package='xgboost') +dtrain <- xgb.DMatrix(agaricus.train$data, label = agaricus.train$label) +history <- xgb.cv(data = dtrain, nround=3, nfold = 5, metrics=list("rmse","auc"), + "max_depth"=3, "eta"=1, "objective"="binary:logistic") +} diff --git a/R-package/man/xgb.dump.Rd b/R-package/man/xgb.dump.Rd index a4ac12cd4..c45657e14 100644 --- a/R-package/man/xgb.dump.Rd +++ b/R-package/man/xgb.dump.Rd @@ -20,8 +20,12 @@ xgb.dump(model, fname, fmap = "") Save a xgboost model to text file. Could be parsed later. } \examples{ -data(iris) -bst <- xgboost(as.matrix(iris[,1:4]),as.numeric(iris[,5]=='setosa'), nrounds = 2) -xgb.dump(bst, 'iris.xgb.model.dump') +data(agaricus.train, package='xgboost') +data(agaricus.test, package='xgboost') +train <- agaricus.train +test <- agaricus.test +bst <- xgboost(data = train$data, label = train$label, max.depth = 2, + eta = 1, nround = 2,objective = "binary:logistic") +xgb.dump(bst, 'xgb.model.dump') } diff --git a/R-package/man/xgb.load.Rd b/R-package/man/xgb.load.Rd index a8969c07d..d2c5d94b6 100644 --- a/R-package/man/xgb.load.Rd +++ b/R-package/man/xgb.load.Rd @@ -12,10 +12,14 @@ xgb.load(modelfile) Load xgboost model from the binary model file } \examples{ -data(iris) -bst <- xgboost(as.matrix(iris[,1:4]),as.numeric(iris[,5]=='setosa'), nrounds = 2) -xgb.save(bst, 'iris.xgb.model') -bst <- xgb.load('iris.xgb.model') -pred <- predict(bst, as.matrix(iris[,1:4])) +data(agaricus.train, package='xgboost') +data(agaricus.test, package='xgboost') +train <- agaricus.train +test <- agaricus.test +bst <- xgboost(data = train$data, label = train$label, max.depth = 2, + eta = 1, nround = 2,objective = "binary:logistic") +xgb.save(bst, 'xgb.model') +bst <- xgb.load('xgb.model') +pred <- predict(bst, test$data) } diff --git a/R-package/man/xgb.save.Rd b/R-package/man/xgb.save.Rd index 0dca58287..0ccdf13da 100644 --- a/R-package/man/xgb.save.Rd +++ b/R-package/man/xgb.save.Rd @@ -14,10 +14,14 @@ xgb.save(model, fname) Save xgboost model from xgboost or xgb.train } \examples{ -data(iris) -bst <- xgboost(as.matrix(iris[,1:4]),as.numeric(iris[,5]=='setosa'), nrounds = 2) -xgb.save(bst, 'iris.xgb.model') -bst <- xgb.load('iris.xgb.model') -pred <- predict(bst, as.matrix(iris[,1:4])) +data(agaricus.train, package='xgboost') +data(agaricus.test, package='xgboost') +train <- agaricus.train +test <- agaricus.test +bst <- xgboost(data = train$data, label = train$label, max.depth = 2, + eta = 1, nround = 2,objective = "binary:logistic") +xgb.save(bst, 'xgb.model') +bst <- xgb.load('xgb.model') +pred <- predict(bst, test$data) } diff --git a/R-package/man/xgb.train.Rd b/R-package/man/xgb.train.Rd index f871dcf65..1caab799f 100644 --- a/R-package/man/xgb.train.Rd +++ b/R-package/man/xgb.train.Rd @@ -58,9 +58,8 @@ It supports advanced features such as watchlist, customized objective function, therefore it is more flexible than \code{\link{xgboost}}. } \examples{ -data(iris) -iris[,5] <- as.numeric(iris[,5]=='setosa') -dtrain <- xgb.DMatrix(as.matrix(iris[,1:4]), label=iris[,5]) +data(agaricus.train, package='xgboost') +dtrain <- xgb.DMatrix(agaricus.train$data, label = agaricus.train$label) dtest <- dtrain watchlist <- list(eval = dtest, train = dtrain) param <- list(max_depth = 2, eta = 1, silent = 1)