replace iris in docs
This commit is contained in:
parent
ddf715953a
commit
fbecd163c5
@ -5,9 +5,9 @@ setClass('xgb.DMatrix')
|
|||||||
#' Get information of an xgb.DMatrix object
|
#' Get information of an xgb.DMatrix object
|
||||||
#'
|
#'
|
||||||
#' @examples
|
#' @examples
|
||||||
#' data(iris)
|
#' data(agaricus.train, package='xgboost')
|
||||||
#' iris[,5] <- as.numeric(iris[,5]=='setosa')
|
#' train <- agaricus.train
|
||||||
#' dtrain <- xgb.DMatrix(as.matrix(iris[,1:4]), label=iris[,5])
|
#' dtrain <- xgb.DMatrix(train$data, label=train$label)
|
||||||
#' labels <- getinfo(dtrain, 'label')
|
#' labels <- getinfo(dtrain, 'label')
|
||||||
#' setinfo(dtrain, 'label', 1-labels)
|
#' setinfo(dtrain, 'label', 1-labels)
|
||||||
#' labels2 <- getinfo(dtrain, 'label')
|
#' labels2 <- getinfo(dtrain, 'label')
|
||||||
|
|||||||
@ -15,9 +15,13 @@ setClass("xgb.Booster")
|
|||||||
#' only valid for gbtree, but not for gblinear. set it to be value bigger
|
#' only valid for gbtree, but not for gblinear. set it to be value bigger
|
||||||
#' than 0. It will use all trees by default.
|
#' than 0. It will use all trees by default.
|
||||||
#' @examples
|
#' @examples
|
||||||
#' data(iris)
|
#' data(agaricus.train, package='xgboost')
|
||||||
#' bst <- xgboost(as.matrix(iris[,1:4]),as.numeric(iris[,5]=='setosa'), nrounds = 2)
|
#' data(agaricus.test, package='xgboost')
|
||||||
#' pred <- predict(bst, as.matrix(iris[,1:4]))
|
#' train <- agaricus.train
|
||||||
|
#' test <- agaricus.test
|
||||||
|
#' bst <- xgboost(data = train$data, label = train$label, max.depth = 2,
|
||||||
|
#' eta = 1, nround = 2,objective = "binary:logistic")
|
||||||
|
#' pred <- predict(bst, test$data)
|
||||||
#' @export
|
#' @export
|
||||||
#'
|
#'
|
||||||
setMethod("predict", signature = "xgb.Booster",
|
setMethod("predict", signature = "xgb.Booster",
|
||||||
|
|||||||
@ -3,9 +3,9 @@
|
|||||||
#' Set information of an xgb.DMatrix object
|
#' Set information of an xgb.DMatrix object
|
||||||
#'
|
#'
|
||||||
#' @examples
|
#' @examples
|
||||||
#' data(iris)
|
#' data(agaricus.train, package='xgboost')
|
||||||
#' iris[,5] <- as.numeric(iris[,5]=='setosa')
|
#' train <- agaricus.train
|
||||||
#' dtrain <- xgb.DMatrix(as.matrix(iris[,1:4]), label=iris[,5])
|
#' dtrain <- xgb.DMatrix(train$data, label=train$label)
|
||||||
#' labels <- getinfo(dtrain, 'label')
|
#' labels <- getinfo(dtrain, 'label')
|
||||||
#' setinfo(dtrain, 'label', 1-labels)
|
#' setinfo(dtrain, 'label', 1-labels)
|
||||||
#' labels2 <- getinfo(dtrain, 'label')
|
#' labels2 <- getinfo(dtrain, 'label')
|
||||||
|
|||||||
@ -7,9 +7,9 @@ setClass('xgb.DMatrix')
|
|||||||
#' orginal xgb.DMatrix object
|
#' orginal xgb.DMatrix object
|
||||||
#'
|
#'
|
||||||
#' @examples
|
#' @examples
|
||||||
#' data(iris)
|
#' data(agaricus.train, package='xgboost')
|
||||||
#' iris[,5] <- as.numeric(iris[,5]=='setosa')
|
#' train <- agaricus.train
|
||||||
#' dtrain <- xgb.DMatrix(as.matrix(iris[,1:4]), label=iris[,5])
|
#' dtrain <- xgb.DMatrix(train$data, label=train$label)
|
||||||
#' dsub <- slice(dtrain, 1:3)
|
#' dsub <- slice(dtrain, 1:3)
|
||||||
#' @rdname slice
|
#' @rdname slice
|
||||||
#' @export
|
#' @export
|
||||||
|
|||||||
@ -11,11 +11,11 @@
|
|||||||
#' @param ... other information to pass to \code{info}.
|
#' @param ... other information to pass to \code{info}.
|
||||||
#'
|
#'
|
||||||
#' @examples
|
#' @examples
|
||||||
#' data(iris)
|
#' data(agaricus.train, package='xgboost')
|
||||||
#' iris[,5] <- as.numeric(iris[,5]=='setosa')
|
#' train <- agaricus.train
|
||||||
#' dtrain <- xgb.DMatrix(as.matrix(iris[,1:4]), label=iris[,5])
|
#' dtrain <- xgb.DMatrix(train$data, label=train$label)
|
||||||
#' xgb.DMatrix.save(dtrain, 'iris.xgb.DMatrix')
|
#' xgb.DMatrix.save(dtrain, 'xgb.DMatrix.data')
|
||||||
#' dtrain <- xgb.DMatrix('iris.xgb.DMatrix')
|
#' dtrain <- xgb.DMatrix('xgb.DMatrix.data')
|
||||||
#' @export
|
#' @export
|
||||||
#'
|
#'
|
||||||
xgb.DMatrix <- function(data, info = list(), missing = 0, ...) {
|
xgb.DMatrix <- function(data, info = list(), missing = 0, ...) {
|
||||||
|
|||||||
@ -6,11 +6,11 @@
|
|||||||
#' @param fname the name of the binary file.
|
#' @param fname the name of the binary file.
|
||||||
#'
|
#'
|
||||||
#' @examples
|
#' @examples
|
||||||
#' data(iris)
|
#' data(agaricus.train, package='xgboost')
|
||||||
#' iris[,5] <- as.numeric(iris[,5]=='setosa')
|
#' train <- agaricus.train
|
||||||
#' dtrain <- xgb.DMatrix(as.matrix(iris[,1:4]), label=iris[,5])
|
#' dtrain <- xgb.DMatrix(train$data, label=train$label)
|
||||||
#' xgb.DMatrix.save(dtrain, 'iris.xgb.DMatrix')
|
#' xgb.DMatrix.save(dtrain, 'xgb.DMatrix.data')
|
||||||
#' dtrain <- xgb.DMatrix('iris.xgb.DMatrix')
|
#' dtrain <- xgb.DMatrix('xgb.DMatrix.data')
|
||||||
#' @export
|
#' @export
|
||||||
#'
|
#'
|
||||||
xgb.DMatrix.save <- function(DMatrix, fname) {
|
xgb.DMatrix.save <- function(DMatrix, fname) {
|
||||||
|
|||||||
@ -46,6 +46,11 @@
|
|||||||
#'
|
#'
|
||||||
#' This function only accepts an \code{xgb.DMatrix} object as the input.
|
#' This function only accepts an \code{xgb.DMatrix} object as the input.
|
||||||
#'
|
#'
|
||||||
|
#' @examples
|
||||||
|
#' data(agaricus.train, package='xgboost')
|
||||||
|
#' dtrain <- xgb.DMatrix(agaricus.train$data, label = agaricus.train$label)
|
||||||
|
#' history <- xgb.cv(data = dtrain, nround=3, nfold = 5, metrics=list("rmse","auc"),
|
||||||
|
#' "max_depth"=3, "eta"=1, "objective"="binary:logistic")
|
||||||
#' @export
|
#' @export
|
||||||
#'
|
#'
|
||||||
xgb.cv <- function(params=list(), data, nrounds, nfold, label = NULL,
|
xgb.cv <- function(params=list(), data, nrounds, nfold, label = NULL,
|
||||||
|
|||||||
@ -12,9 +12,13 @@
|
|||||||
#'
|
#'
|
||||||
#'
|
#'
|
||||||
#' @examples
|
#' @examples
|
||||||
#' data(iris)
|
#' data(agaricus.train, package='xgboost')
|
||||||
#' bst <- xgboost(as.matrix(iris[,1:4]),as.numeric(iris[,5]=='setosa'), nrounds = 2)
|
#' data(agaricus.test, package='xgboost')
|
||||||
#' xgb.dump(bst, 'iris.xgb.model.dump')
|
#' train <- agaricus.train
|
||||||
|
#' test <- agaricus.test
|
||||||
|
#' bst <- xgboost(data = train$data, label = train$label, max.depth = 2,
|
||||||
|
#' eta = 1, nround = 2,objective = "binary:logistic")
|
||||||
|
#' xgb.dump(bst, 'xgb.model.dump')
|
||||||
#' @export
|
#' @export
|
||||||
#'
|
#'
|
||||||
xgb.dump <- function(model, fname, fmap = "") {
|
xgb.dump <- function(model, fname, fmap = "") {
|
||||||
|
|||||||
@ -5,11 +5,15 @@
|
|||||||
#' @param modelfile the name of the binary file.
|
#' @param modelfile the name of the binary file.
|
||||||
#'
|
#'
|
||||||
#' @examples
|
#' @examples
|
||||||
#' data(iris)
|
#' data(agaricus.train, package='xgboost')
|
||||||
#' bst <- xgboost(as.matrix(iris[,1:4]),as.numeric(iris[,5]=='setosa'), nrounds = 2)
|
#' data(agaricus.test, package='xgboost')
|
||||||
#' xgb.save(bst, 'iris.xgb.model')
|
#' train <- agaricus.train
|
||||||
#' bst <- xgb.load('iris.xgb.model')
|
#' test <- agaricus.test
|
||||||
#' pred <- predict(bst, as.matrix(iris[,1:4]))
|
#' bst <- xgboost(data = train$data, label = train$label, max.depth = 2,
|
||||||
|
#' eta = 1, nround = 2,objective = "binary:logistic")
|
||||||
|
#' xgb.save(bst, 'xgb.model')
|
||||||
|
#' bst <- xgb.load('xgb.model')
|
||||||
|
#' pred <- predict(bst, test$data)
|
||||||
#' @export
|
#' @export
|
||||||
#'
|
#'
|
||||||
xgb.load <- function(modelfile) {
|
xgb.load <- function(modelfile) {
|
||||||
|
|||||||
@ -6,11 +6,15 @@
|
|||||||
#' @param fname the name of the binary file.
|
#' @param fname the name of the binary file.
|
||||||
#'
|
#'
|
||||||
#' @examples
|
#' @examples
|
||||||
#' data(iris)
|
#' data(agaricus.train, package='xgboost')
|
||||||
#' bst <- xgboost(as.matrix(iris[,1:4]),as.numeric(iris[,5]=='setosa'), nrounds = 2)
|
#' data(agaricus.test, package='xgboost')
|
||||||
#' xgb.save(bst, 'iris.xgb.model')
|
#' train <- agaricus.train
|
||||||
#' bst <- xgb.load('iris.xgb.model')
|
#' test <- agaricus.test
|
||||||
#' pred <- predict(bst, as.matrix(iris[,1:4]))
|
#' bst <- xgboost(data = train$data, label = train$label, max.depth = 2,
|
||||||
|
#' eta = 1, nround = 2,objective = "binary:logistic")
|
||||||
|
#' xgb.save(bst, 'xgb.model')
|
||||||
|
#' bst <- xgb.load('xgb.model')
|
||||||
|
#' pred <- predict(bst, test$data)
|
||||||
#' @export
|
#' @export
|
||||||
#'
|
#'
|
||||||
xgb.save <- function(model, fname) {
|
xgb.save <- function(model, fname) {
|
||||||
|
|||||||
@ -46,9 +46,8 @@
|
|||||||
#'
|
#'
|
||||||
#'
|
#'
|
||||||
#' @examples
|
#' @examples
|
||||||
#' data(iris)
|
#' data(agaricus.train, package='xgboost')
|
||||||
#' iris[,5] <- as.numeric(iris[,5]=='setosa')
|
#' dtrain <- xgb.DMatrix(agaricus.train$data, label = agaricus.train$label)
|
||||||
#' dtrain <- xgb.DMatrix(as.matrix(iris[,1:4]), label=iris[,5])
|
|
||||||
#' dtest <- dtrain
|
#' dtest <- dtrain
|
||||||
#' watchlist <- list(eval = dtest, train = dtrain)
|
#' watchlist <- list(eval = dtest, train = dtrain)
|
||||||
#' param <- list(max_depth = 2, eta = 1, silent = 1)
|
#' param <- list(max_depth = 2, eta = 1, silent = 1)
|
||||||
|
|||||||
@ -20,9 +20,9 @@ getinfo(object, ...)
|
|||||||
Get information of an xgb.DMatrix object
|
Get information of an xgb.DMatrix object
|
||||||
}
|
}
|
||||||
\examples{
|
\examples{
|
||||||
data(iris)
|
data(agaricus.train, package='xgboost')
|
||||||
iris[,5] <- as.numeric(iris[,5]=='setosa')
|
train <- agaricus.train
|
||||||
dtrain <- xgb.DMatrix(as.matrix(iris[,1:4]), label=iris[,5])
|
dtrain <- xgb.DMatrix(train$data, label=train$label)
|
||||||
labels <- getinfo(dtrain, 'label')
|
labels <- getinfo(dtrain, 'label')
|
||||||
setinfo(dtrain, 'label', 1-labels)
|
setinfo(dtrain, 'label', 1-labels)
|
||||||
labels2 <- getinfo(dtrain, 'label')
|
labels2 <- getinfo(dtrain, 'label')
|
||||||
|
|||||||
@ -26,8 +26,12 @@ than 0. It will use all trees by default.}
|
|||||||
Predicted values based on xgboost model object.
|
Predicted values based on xgboost model object.
|
||||||
}
|
}
|
||||||
\examples{
|
\examples{
|
||||||
data(iris)
|
data(agaricus.train, package='xgboost')
|
||||||
bst <- xgboost(as.matrix(iris[,1:4]),as.numeric(iris[,5]=='setosa'), nrounds = 2)
|
data(agaricus.test, package='xgboost')
|
||||||
pred <- predict(bst, as.matrix(iris[,1:4]))
|
train <- agaricus.train
|
||||||
|
test <- agaricus.test
|
||||||
|
bst <- xgboost(data = train$data, label = train$label, max.depth = 2,
|
||||||
|
eta = 1, nround = 2,objective = "binary:logistic")
|
||||||
|
pred <- predict(bst, test$data)
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|||||||
@ -22,9 +22,9 @@ setinfo(object, ...)
|
|||||||
Set information of an xgb.DMatrix object
|
Set information of an xgb.DMatrix object
|
||||||
}
|
}
|
||||||
\examples{
|
\examples{
|
||||||
data(iris)
|
data(agaricus.train, package='xgboost')
|
||||||
iris[,5] <- as.numeric(iris[,5]=='setosa')
|
train <- agaricus.train
|
||||||
dtrain <- xgb.DMatrix(as.matrix(iris[,1:4]), label=iris[,5])
|
dtrain <- xgb.DMatrix(train$data, label=train$label)
|
||||||
labels <- getinfo(dtrain, 'label')
|
labels <- getinfo(dtrain, 'label')
|
||||||
setinfo(dtrain, 'label', 1-labels)
|
setinfo(dtrain, 'label', 1-labels)
|
||||||
labels2 <- getinfo(dtrain, 'label')
|
labels2 <- getinfo(dtrain, 'label')
|
||||||
|
|||||||
@ -22,9 +22,9 @@ Get a new DMatrix containing the specified rows of
|
|||||||
orginal xgb.DMatrix object
|
orginal xgb.DMatrix object
|
||||||
}
|
}
|
||||||
\examples{
|
\examples{
|
||||||
data(iris)
|
data(agaricus.train, package='xgboost')
|
||||||
iris[,5] <- as.numeric(iris[,5]=='setosa')
|
train <- agaricus.train
|
||||||
dtrain <- xgb.DMatrix(as.matrix(iris[,1:4]), label=iris[,5])
|
dtrain <- xgb.DMatrix(train$data, label=train$label)
|
||||||
dsub <- slice(dtrain, 1:3)
|
dsub <- slice(dtrain, 1:3)
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|||||||
@ -19,10 +19,10 @@ indicating the data file.}
|
|||||||
Contruct xgb.DMatrix object from dense matrix, sparse matrix or local file.
|
Contruct xgb.DMatrix object from dense matrix, sparse matrix or local file.
|
||||||
}
|
}
|
||||||
\examples{
|
\examples{
|
||||||
data(iris)
|
data(agaricus.train, package='xgboost')
|
||||||
iris[,5] <- as.numeric(iris[,5]=='setosa')
|
train <- agaricus.train
|
||||||
dtrain <- xgb.DMatrix(as.matrix(iris[,1:4]), label=iris[,5])
|
dtrain <- xgb.DMatrix(train$data, label=train$label)
|
||||||
xgb.DMatrix.save(dtrain, 'iris.xgb.DMatrix')
|
xgb.DMatrix.save(dtrain, 'xgb.DMatrix.data')
|
||||||
dtrain <- xgb.DMatrix('iris.xgb.DMatrix')
|
dtrain <- xgb.DMatrix('xgb.DMatrix.data')
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|||||||
@ -14,10 +14,10 @@ xgb.DMatrix.save(DMatrix, fname)
|
|||||||
Save xgb.DMatrix object to binary file
|
Save xgb.DMatrix object to binary file
|
||||||
}
|
}
|
||||||
\examples{
|
\examples{
|
||||||
data(iris)
|
data(agaricus.train, package='xgboost')
|
||||||
iris[,5] <- as.numeric(iris[,5]=='setosa')
|
train <- agaricus.train
|
||||||
dtrain <- xgb.DMatrix(as.matrix(iris[,1:4]), label=iris[,5])
|
dtrain <- xgb.DMatrix(train$data, label=train$label)
|
||||||
xgb.DMatrix.save(dtrain, 'iris.xgb.DMatrix')
|
xgb.DMatrix.save(dtrain, 'xgb.DMatrix.data')
|
||||||
dtrain <- xgb.DMatrix('iris.xgb.DMatrix')
|
dtrain <- xgb.DMatrix('xgb.DMatrix.data')
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|||||||
@ -63,4 +63,10 @@ Number of threads can also be manually specified via "nthread" parameter.
|
|||||||
|
|
||||||
This function only accepts an \code{xgb.DMatrix} object as the input.
|
This function only accepts an \code{xgb.DMatrix} object as the input.
|
||||||
}
|
}
|
||||||
|
\examples{
|
||||||
|
data(agaricus.train, package='xgboost')
|
||||||
|
dtrain <- xgb.DMatrix(agaricus.train$data, label = agaricus.train$label)
|
||||||
|
history <- xgb.cv(data = dtrain, nround=3, nfold = 5, metrics=list("rmse","auc"),
|
||||||
|
"max_depth"=3, "eta"=1, "objective"="binary:logistic")
|
||||||
|
}
|
||||||
|
|
||||||
|
|||||||
@ -20,8 +20,12 @@ xgb.dump(model, fname, fmap = "")
|
|||||||
Save a xgboost model to text file. Could be parsed later.
|
Save a xgboost model to text file. Could be parsed later.
|
||||||
}
|
}
|
||||||
\examples{
|
\examples{
|
||||||
data(iris)
|
data(agaricus.train, package='xgboost')
|
||||||
bst <- xgboost(as.matrix(iris[,1:4]),as.numeric(iris[,5]=='setosa'), nrounds = 2)
|
data(agaricus.test, package='xgboost')
|
||||||
xgb.dump(bst, 'iris.xgb.model.dump')
|
train <- agaricus.train
|
||||||
|
test <- agaricus.test
|
||||||
|
bst <- xgboost(data = train$data, label = train$label, max.depth = 2,
|
||||||
|
eta = 1, nround = 2,objective = "binary:logistic")
|
||||||
|
xgb.dump(bst, 'xgb.model.dump')
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|||||||
@ -12,10 +12,14 @@ xgb.load(modelfile)
|
|||||||
Load xgboost model from the binary model file
|
Load xgboost model from the binary model file
|
||||||
}
|
}
|
||||||
\examples{
|
\examples{
|
||||||
data(iris)
|
data(agaricus.train, package='xgboost')
|
||||||
bst <- xgboost(as.matrix(iris[,1:4]),as.numeric(iris[,5]=='setosa'), nrounds = 2)
|
data(agaricus.test, package='xgboost')
|
||||||
xgb.save(bst, 'iris.xgb.model')
|
train <- agaricus.train
|
||||||
bst <- xgb.load('iris.xgb.model')
|
test <- agaricus.test
|
||||||
pred <- predict(bst, as.matrix(iris[,1:4]))
|
bst <- xgboost(data = train$data, label = train$label, max.depth = 2,
|
||||||
|
eta = 1, nround = 2,objective = "binary:logistic")
|
||||||
|
xgb.save(bst, 'xgb.model')
|
||||||
|
bst <- xgb.load('xgb.model')
|
||||||
|
pred <- predict(bst, test$data)
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|||||||
@ -14,10 +14,14 @@ xgb.save(model, fname)
|
|||||||
Save xgboost model from xgboost or xgb.train
|
Save xgboost model from xgboost or xgb.train
|
||||||
}
|
}
|
||||||
\examples{
|
\examples{
|
||||||
data(iris)
|
data(agaricus.train, package='xgboost')
|
||||||
bst <- xgboost(as.matrix(iris[,1:4]),as.numeric(iris[,5]=='setosa'), nrounds = 2)
|
data(agaricus.test, package='xgboost')
|
||||||
xgb.save(bst, 'iris.xgb.model')
|
train <- agaricus.train
|
||||||
bst <- xgb.load('iris.xgb.model')
|
test <- agaricus.test
|
||||||
pred <- predict(bst, as.matrix(iris[,1:4]))
|
bst <- xgboost(data = train$data, label = train$label, max.depth = 2,
|
||||||
|
eta = 1, nround = 2,objective = "binary:logistic")
|
||||||
|
xgb.save(bst, 'xgb.model')
|
||||||
|
bst <- xgb.load('xgb.model')
|
||||||
|
pred <- predict(bst, test$data)
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|||||||
@ -58,9 +58,8 @@ It supports advanced features such as watchlist, customized objective function,
|
|||||||
therefore it is more flexible than \code{\link{xgboost}}.
|
therefore it is more flexible than \code{\link{xgboost}}.
|
||||||
}
|
}
|
||||||
\examples{
|
\examples{
|
||||||
data(iris)
|
data(agaricus.train, package='xgboost')
|
||||||
iris[,5] <- as.numeric(iris[,5]=='setosa')
|
dtrain <- xgb.DMatrix(agaricus.train$data, label = agaricus.train$label)
|
||||||
dtrain <- xgb.DMatrix(as.matrix(iris[,1:4]), label=iris[,5])
|
|
||||||
dtest <- dtrain
|
dtest <- dtrain
|
||||||
watchlist <- list(eval = dtest, train = dtrain)
|
watchlist <- list(eval = dtest, train = dtrain)
|
||||||
param <- list(max_depth = 2, eta = 1, silent = 1)
|
param <- list(max_depth = 2, eta = 1, silent = 1)
|
||||||
|
|||||||
Loading…
x
Reference in New Issue
Block a user