Merge branch 'master' of ssh://github.com/tqchen/xgboost
This commit is contained in:
commit
f9f982a7aa
39
demo/kaggle-higgs/higgs-cv.py
Executable file
39
demo/kaggle-higgs/higgs-cv.py
Executable file
@ -0,0 +1,39 @@
|
||||
#!/usr/bin/python
|
||||
import sys
|
||||
import numpy as np
|
||||
sys.path.append('../../wrapper')
|
||||
import xgboost as xgb
|
||||
|
||||
### load data in do training
|
||||
train = np.loadtxt('./data/training.csv', delimiter=',', skiprows=1, converters={32: lambda x:int(x=='s'.encode('utf-8')) } )
|
||||
label = train[:,32]
|
||||
data = train[:,1:31]
|
||||
weight = train[:,31]
|
||||
dtrain = xgb.DMatrix( data, label=label, missing = -999.0, weight=weight )
|
||||
param = {'max_depth':6, 'eta':0.1, 'silent':1, 'objective':'binary:logitraw', 'nthread':4}
|
||||
num_round = 120
|
||||
|
||||
print ('running cross validation, with preprocessing function')
|
||||
# define the preprocessing function
|
||||
# used to return the preprocessed training, test data, and parameter
|
||||
# we can use this to do weight rescale, etc.
|
||||
# as a example, we try to set scale_pos_weight
|
||||
def fpreproc(dtrain, dtest, param):
|
||||
label = dtrain.get_label()
|
||||
ratio = float(np.sum(label == 0)) / np.sum(label==1)
|
||||
param['scale_pos_weight'] = ratio
|
||||
wtrain = dtrain.get_weight()
|
||||
wtest = dtest.get_weight()
|
||||
sum_weight = sum(wtrain) + sum(wtest)
|
||||
wtrain *= sum_weight / sum(wtrain)
|
||||
wtest *= sum_weight / sum(wtest)
|
||||
dtrain.set_weight(wtrain)
|
||||
dtest.set_weight(wtest)
|
||||
return (dtrain, dtest, param)
|
||||
|
||||
# do cross validation, for each fold
|
||||
# the dtrain, dtest, param will be passed into fpreproc
|
||||
# then the return value of fpreproc will be used to generate
|
||||
# results of that fold
|
||||
xgb.cv(param, dtrain, num_round, nfold=5,
|
||||
metrics={'ams@0.15', 'auc'}, seed = 0, fpreproc = fpreproc)
|
||||
Loading…
x
Reference in New Issue
Block a user