Change to properties

This commit is contained in:
sinhrks 2015-09-28 22:36:39 +09:00
parent db692a30e5
commit f6f3473d17
2 changed files with 98 additions and 92 deletions

View File

@ -146,8 +146,8 @@ class DMatrix(object):
You can construct DMatrix from numpy.arrays
"""
feature_names = None # for previous version's pickle
feature_types = None
_feature_names = None # for previous version's pickle
_feature_types = None
def __init__(self, data, label=None, missing=0.0,
weight=None, silent=False,
@ -200,8 +200,8 @@ class DMatrix(object):
if weight is not None:
self.set_weight(weight)
self.set_feature_names(feature_names)
self.set_feature_types(feature_types)
self.feature_names = feature_names
self.feature_types = feature_types
def _init_from_csr(self, csr):
"""
@ -381,66 +381,6 @@ class DMatrix(object):
c_array(ctypes.c_uint, group),
len(group)))
def set_feature_names(self, feature_names):
"""Set feature names (column labels).
Parameters
----------
feature_names : list or None
Labels for features. None will reset existing feature names
"""
if not feature_names is None:
# validate feature name
if not isinstance(feature_names, list):
feature_names = list(feature_names)
if len(feature_names) != len(set(feature_names)):
raise ValueError('feature_names must be unique')
if len(feature_names) != self.num_col():
msg = 'feature_names must have the same length as data'
raise ValueError(msg)
# prohibit to use symbols may affect to parse. e.g. ``[]=.``
if not all(isinstance(f, STRING_TYPES) and f.isalnum()
for f in feature_names):
raise ValueError('all feature_names must be alphanumerics')
else:
# reset feature_types also
self.set_feature_types(None)
self.feature_names = feature_names
def set_feature_types(self, feature_types):
"""Set feature types (column types).
This is for displaying the results and unrelated
to the learning process.
Parameters
----------
feature_types : list or None
Labels for features. None will reset existing feature names
"""
if not feature_types is None:
if self.feature_names is None:
msg = 'Unable to set feature types before setting names'
raise ValueError(msg)
if isinstance(feature_types, STRING_TYPES):
# single string will be applied to all columns
feature_types = [feature_types] * self.num_col()
if not isinstance(feature_types, list):
feature_types = list(feature_types)
if len(feature_types) != self.num_col():
msg = 'feature_types must have the same length as data'
raise ValueError(msg)
# prohibit to use symbols may affect to parse. e.g. ``[]=.``
valid = ('q', 'i', 'int', 'float')
if not all(isinstance(f, STRING_TYPES) and f in valid
for f in feature_types):
raise ValueError('all feature_names must be {i, q, int, float}')
self.feature_types = feature_types
def get_label(self):
"""Get the label of the DMatrix.
@ -468,24 +408,6 @@ class DMatrix(object):
"""
return self.get_float_info('base_margin')
def get_feature_names(self):
"""Get feature names (column labels).
Returns
-------
feature_names : list or None
"""
return self.feature_names
def get_feature_types(self):
"""Get feature types (column types).
Returns
-------
feature_types : list or None
"""
return self.feature_types
def num_row(self):
"""Get the number of rows in the DMatrix.
@ -531,6 +453,88 @@ class DMatrix(object):
ctypes.byref(res.handle)))
return res
@property
def feature_names(self):
"""Get feature names (column labels).
Returns
-------
feature_names : list or None
"""
return self._feature_names
@property
def feature_types(self):
"""Get feature types (column types).
Returns
-------
feature_types : list or None
"""
return self._feature_types
@feature_names.setter
def feature_names(self, feature_names):
"""Set feature names (column labels).
Parameters
----------
feature_names : list or None
Labels for features. None will reset existing feature names
"""
if not feature_names is None:
# validate feature name
if not isinstance(feature_names, list):
feature_names = list(feature_names)
if len(feature_names) != len(set(feature_names)):
raise ValueError('feature_names must be unique')
if len(feature_names) != self.num_col():
msg = 'feature_names must have the same length as data'
raise ValueError(msg)
# prohibit to use symbols may affect to parse. e.g. ``[]=.``
if not all(isinstance(f, STRING_TYPES) and f.isalnum()
for f in feature_names):
raise ValueError('all feature_names must be alphanumerics')
else:
# reset feature_types also
self.feature_types = None
self._feature_names = feature_names
@feature_types.setter
def feature_types(self, feature_types):
"""Set feature types (column types).
This is for displaying the results and unrelated
to the learning process.
Parameters
----------
feature_types : list or None
Labels for features. None will reset existing feature names
"""
if not feature_types is None:
if self.feature_names is None:
msg = 'Unable to set feature types before setting names'
raise ValueError(msg)
if isinstance(feature_types, STRING_TYPES):
# single string will be applied to all columns
feature_types = [feature_types] * self.num_col()
if not isinstance(feature_types, list):
feature_types = list(feature_types)
if len(feature_types) != self.num_col():
msg = 'feature_types must have the same length as data'
raise ValueError(msg)
# prohibit to use symbols may affect to parse. e.g. ``[]=.``
valid = ('q', 'i', 'int', 'float')
if not all(isinstance(f, STRING_TYPES) and f in valid
for f in feature_types):
raise ValueError('all feature_names must be {i, q, int, float}')
self._feature_types = feature_types
class Booster(object):
""""A Booster of of XGBoost.

View File

@ -48,21 +48,23 @@ class TestBasic(unittest.TestCase):
feature_names=['a', 'b', 'c', 'd', 'e=1'])
dm = xgb.DMatrix(data)
dm.set_feature_names(list('abcde'))
assert dm.get_feature_names() == list('abcde')
dm.feature_names = list('abcde')
assert dm.feature_names == list('abcde')
dm.set_feature_types('q')
assert dm.get_feature_types() == list('qqqqq')
dm.feature_types = 'q'
assert dm.feature_types == list('qqqqq')
dm.set_feature_types(list('qiqiq'))
assert dm.get_feature_types() == list('qiqiq')
dm.feature_types = list('qiqiq')
assert dm.feature_types == list('qiqiq')
self.assertRaises(ValueError, dm.set_feature_types, list('abcde'))
def incorrect_type_set():
dm.feature_types = list('abcde')
self.assertRaises(ValueError, incorrect_type_set)
# reset
dm.set_feature_names(None)
assert dm.get_feature_names() is None
assert dm.get_feature_types() is None
dm.feature_names = None
assert dm.feature_names is None
assert dm.feature_types is None
def test_feature_names(self):
data = np.random.randn(100, 5)