fix base score, and print message
This commit is contained in:
parent
04e04ec5a0
commit
f6c763a2a7
2
Makefile
2
Makefile
@ -3,7 +3,7 @@ export CXX = g++
|
||||
export LDFLAGS= -pthread -lm
|
||||
|
||||
ifeq ($(no_omp),1)
|
||||
export CFLAGS = -Wall -O3 -msse2 -Wno-unknown-pragmas
|
||||
export CFLAGS = -Wall -O3 -msse2 -Wno-unknown-pragmas -DDISABLE_OPENMP
|
||||
else
|
||||
export CFLAGS = -Wall -O3 -msse2 -Wno-unknown-pragmas -fopenmp
|
||||
endif
|
||||
|
||||
@ -233,7 +233,7 @@ class GBTree : public IGradBooster<FMatrix> {
|
||||
pred_counter[bid] = static_cast<unsigned>(trees.size());
|
||||
pred_buffer[bid] = psum;
|
||||
}
|
||||
return psum;
|
||||
return psum + mparam.base_score;
|
||||
}
|
||||
// initialize thread local space for prediction
|
||||
inline void InitThreadTemp(int nthread) {
|
||||
@ -296,6 +296,8 @@ class GBTree : public IGradBooster<FMatrix> {
|
||||
};
|
||||
/*! \brief model parameters */
|
||||
struct ModelParam {
|
||||
/*! \brief base prediction score of everything */
|
||||
float base_score;
|
||||
/*! \brief number of trees */
|
||||
int num_trees;
|
||||
/*! \brief number of root: default 0, means single tree */
|
||||
@ -314,6 +316,7 @@ class GBTree : public IGradBooster<FMatrix> {
|
||||
int reserved[32];
|
||||
/*! \brief constructor */
|
||||
ModelParam(void) {
|
||||
base_score = 0.0f;
|
||||
num_trees = 0;
|
||||
num_roots = num_feature = 0;
|
||||
num_pbuffer = 0;
|
||||
@ -326,6 +329,7 @@ class GBTree : public IGradBooster<FMatrix> {
|
||||
* \param val value of the parameter
|
||||
*/
|
||||
inline void SetParam(const char *name, const char *val) {
|
||||
if (!strcmp("base_score", name)) base_score = static_cast<float>(atof(val));
|
||||
if (!strcmp("num_pbuffer", name)) num_pbuffer = atol(val);
|
||||
if (!strcmp("num_output_group", name)) num_output_group = atol(val);
|
||||
if (!strcmp("bst:num_roots", name)) num_roots = atoi(val);
|
||||
|
||||
@ -85,15 +85,22 @@ class BoostLearner {
|
||||
if (!strcmp(name, "booster")) name_gbm_ = val;
|
||||
mparam.SetParam(name, val);
|
||||
}
|
||||
if (gbm_ != NULL) gbm_->SetParam(name, val);
|
||||
if (obj_ != NULL) obj_->SetParam(name, val);
|
||||
cfg_.push_back(std::make_pair(std::string(name), std::string(val)));
|
||||
}
|
||||
/*!
|
||||
* \brief initialize the model
|
||||
*/
|
||||
inline void InitModel(void) {
|
||||
// initialize model
|
||||
this->InitObjGBM();
|
||||
// adapt the base score
|
||||
// reset the base score
|
||||
mparam.base_score = obj_->ProbToMargin(mparam.base_score);
|
||||
char tmp[32];
|
||||
snprintf(tmp, sizeof(tmp), "%g", mparam.base_score);
|
||||
this->SetParam("base_score", tmp);
|
||||
// initialize GBM model
|
||||
gbm_->InitModel();
|
||||
}
|
||||
/*!
|
||||
|
||||
@ -124,7 +124,7 @@ class RegLossObj : public IObjFunction{
|
||||
loss.SecondOrderGradient(p, info.labels[j]) * w);
|
||||
}
|
||||
}
|
||||
virtual const char* DefaultEvalMetric(void) {
|
||||
virtual const char* DefaultEvalMetric(void) const {
|
||||
return loss.DefaultEvalMetric();
|
||||
}
|
||||
virtual void PredTransform(std::vector<float> *io_preds) {
|
||||
@ -135,6 +135,9 @@ class RegLossObj : public IObjFunction{
|
||||
preds[j] = loss.PredTransform(preds[j]);
|
||||
}
|
||||
}
|
||||
virtual float ProbToMargin(float base_score) const {
|
||||
return loss.ProbToMargin(base_score);
|
||||
}
|
||||
|
||||
protected:
|
||||
float scale_pos_weight;
|
||||
@ -192,7 +195,7 @@ class SoftmaxMultiClassObj : public IObjFunction {
|
||||
virtual void EvalTransform(std::vector<float> *io_preds) {
|
||||
this->Transform(io_preds, 0);
|
||||
}
|
||||
virtual const char* DefaultEvalMetric(void) {
|
||||
virtual const char* DefaultEvalMetric(void) const {
|
||||
return "merror";
|
||||
}
|
||||
|
||||
@ -320,7 +323,7 @@ class LambdaRankObj : public IObjFunction {
|
||||
}
|
||||
}
|
||||
}
|
||||
virtual const char* DefaultEvalMetric(void) {
|
||||
virtual const char* DefaultEvalMetric(void) const {
|
||||
return "map";
|
||||
}
|
||||
|
||||
|
||||
@ -32,7 +32,7 @@ class IObjFunction{
|
||||
int iter,
|
||||
std::vector<bst_gpair> *out_gpair) = 0;
|
||||
/*! \return the default evaluation metric for the objective */
|
||||
virtual const char* DefaultEvalMetric(void) = 0;
|
||||
virtual const char* DefaultEvalMetric(void) const = 0;
|
||||
// the following functions are optional, most of time default implementation is good enough
|
||||
/*!
|
||||
* \brief transform prediction values, this is only called when Prediction is called
|
||||
@ -53,7 +53,7 @@ class IObjFunction{
|
||||
* used by gradient boosting
|
||||
* \return transformed value
|
||||
*/
|
||||
virtual float ProbToMargin(float base_score) {
|
||||
virtual float ProbToMargin(float base_score) const {
|
||||
return base_score;
|
||||
}
|
||||
};
|
||||
|
||||
@ -19,6 +19,7 @@ class TreePruner: public IUpdater<FMatrix> {
|
||||
// set training parameter
|
||||
virtual void SetParam(const char *name, const char *val) {
|
||||
param.SetParam(name, val);
|
||||
if (!strcmp(name, "silent")) silent = atoi(val);
|
||||
}
|
||||
// update the tree, do pruning
|
||||
virtual void Update(const std::vector<bst_gpair> &gpair,
|
||||
@ -32,33 +33,41 @@ class TreePruner: public IUpdater<FMatrix> {
|
||||
|
||||
private:
|
||||
// try to prune off current leaf
|
||||
inline void TryPruneLeaf(RegTree &tree, int nid, int depth) {
|
||||
if (tree[nid].is_root()) return;
|
||||
inline int TryPruneLeaf(RegTree &tree, int nid, int depth, int npruned) {
|
||||
if (tree[nid].is_root()) return npruned;
|
||||
int pid = tree[nid].parent();
|
||||
RegTree::NodeStat &s = tree.stat(pid);
|
||||
++s.leaf_child_cnt;
|
||||
|
||||
if (s.leaf_child_cnt >= 2 && param.need_prune(s.loss_chg, depth - 1)) {
|
||||
// need to be pruned
|
||||
tree.ChangeToLeaf(pid, param.learning_rate * s.base_weight);
|
||||
// tail recursion
|
||||
this->TryPruneLeaf(tree, pid, depth - 1);
|
||||
}
|
||||
return this->TryPruneLeaf(tree, pid, depth - 1, npruned+2);
|
||||
} else {
|
||||
return npruned;
|
||||
}
|
||||
}
|
||||
/*! \brief do prunning of a tree */
|
||||
inline void DoPrune(RegTree &tree) {
|
||||
int npruned = 0;
|
||||
// initialize auxiliary statistics
|
||||
for (int nid = 0; nid < tree.param.num_nodes; ++nid) {
|
||||
tree.stat(nid).leaf_child_cnt = 0;
|
||||
}
|
||||
for (int nid = 0; nid < tree.param.num_nodes; ++nid) {
|
||||
if (tree[nid].is_leaf()) {
|
||||
this->TryPruneLeaf(tree, nid, tree.GetDepth(nid));
|
||||
npruned = this->TryPruneLeaf(tree, nid, tree.GetDepth(nid), npruned);
|
||||
}
|
||||
}
|
||||
if (silent == 0) {
|
||||
printf("tree prunning end, %d roots, %d extra nodes, %d pruned nodes ,max_depth=%d\n",
|
||||
tree.param.num_roots, tree.num_extra_nodes(), npruned, tree.MaxDepth());
|
||||
}
|
||||
}
|
||||
|
||||
private:
|
||||
// shutup
|
||||
int silent;
|
||||
// training parameter
|
||||
TrainParam param;
|
||||
};
|
||||
|
||||
@ -8,7 +8,9 @@
|
||||
#if defined(_OPENMP)
|
||||
#include <omp.h>
|
||||
#else
|
||||
#ifndef DISABLE_OPENMP
|
||||
#warning "OpenMP is not available, compile to single thread code"
|
||||
#endif
|
||||
inline int omp_get_thread_num() { return 0; }
|
||||
inline int omp_get_num_threads() { return 1; }
|
||||
inline void omp_set_num_threads(int nthread) {}
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user