finish mushroom example
This commit is contained in:
parent
0cf2dd39ea
commit
f512f08437
3
.gitignore
vendored
3
.gitignore
vendored
@ -46,3 +46,6 @@ Debug
|
||||
*csv
|
||||
*.cpage.col
|
||||
*.cpage
|
||||
xgboost
|
||||
xgboost-mpi
|
||||
train*
|
||||
|
||||
4
Makefile
4
Makefile
@ -30,9 +30,9 @@ io.o: src/io/io.cpp src/io/*.hpp src/utils/*.h src/learner/dmatrix.h src/*.h
|
||||
sync_mpi.o: src/sync/sync_mpi.cpp
|
||||
sync_empty.o: src/sync/sync_empty.cpp
|
||||
main.o: src/xgboost_main.cpp src/utils/*.h src/*.h src/learner/*.hpp src/learner/*.h
|
||||
xgboost: updater.o gbm.o io.o main.o sync_empty.o
|
||||
xgboost-mpi: updater.o gbm.o io.o main.o sync_mpi.o
|
||||
wrapper/libxgboostwrapper.so: wrapper/xgboost_wrapper.cpp src/utils/*.h src/*.h src/learner/*.hpp src/learner/*.h $(OBJ)
|
||||
xgboost: updater.o gbm.o io.o main.o sync_empty.o
|
||||
wrapper/libxgboostwrapper.so: wrapper/xgboost_wrapper.cpp src/utils/*.h src/*.h src/learner/*.hpp src/learner/*.h updater.o gbm.o io.o sync_empty.o
|
||||
|
||||
$(BIN) :
|
||||
$(CXX) $(CFLAGS) $(LDFLAGS) -o $@ $(filter %.cpp %.o %.c, $^)
|
||||
|
||||
3
demo/mpi/README.md
Normal file
3
demo/mpi/README.md
Normal file
@ -0,0 +1,3 @@
|
||||
This folder contains toy example script to run xgboost-mpi.
|
||||
|
||||
This is an experimental distributed version of xgboost
|
||||
36
demo/mpi/mpi.conf
Normal file
36
demo/mpi/mpi.conf
Normal file
@ -0,0 +1,36 @@
|
||||
# General Parameters, see comment for each definition
|
||||
# choose the booster, can be gbtree or gblinear
|
||||
booster = gbtree
|
||||
# choose logistic regression loss function for binary classification
|
||||
objective = binary:logistic
|
||||
|
||||
# Tree Booster Parameters
|
||||
# step size shrinkage
|
||||
eta = 1.0
|
||||
# minimum loss reduction required to make a further partition
|
||||
gamma = 1.0
|
||||
# minimum sum of instance weight(hessian) needed in a child
|
||||
min_child_weight = 1
|
||||
# maximum depth of a tree
|
||||
max_depth = 3
|
||||
|
||||
# Task Parameters
|
||||
# the number of round to do boosting
|
||||
num_round = 2
|
||||
# 0 means do not save any model except the final round model
|
||||
save_period = 0
|
||||
use_buffer = 0
|
||||
|
||||
|
||||
# The path of training data %d is the wildcard for the rank of the data
|
||||
# The idea is each process take a feature matrix with subset of columns
|
||||
#
|
||||
data = "train.col%d"
|
||||
|
||||
# The path of validation data, used to monitor training process, here [test] sets name of the validation set
|
||||
eval[test] = "../data/agaricus.txt.test"
|
||||
# evaluate on training data as well each round
|
||||
eval_train = 1
|
||||
|
||||
# The path of test data, need to use full data of test, try not use it, or keep an subsampled version
|
||||
test:data = "agaricus.txt.test"
|
||||
19
demo/mpi/runexp-mpi.sh
Executable file
19
demo/mpi/runexp-mpi.sh
Executable file
@ -0,0 +1,19 @@
|
||||
#!/bin/bash
|
||||
if [[ $# -ne 1 ]]
|
||||
then
|
||||
echo "Usage: nprocess"
|
||||
exit -1
|
||||
fi
|
||||
|
||||
rm -rf train.col*
|
||||
k=$1
|
||||
|
||||
# split the lib svm file into k subfiles
|
||||
python splitsvm.py ../data/agaricus.txt.train train $k
|
||||
|
||||
# run xgboost mpi
|
||||
mpirun -n $k ../../xgboost-mpi mpi.conf
|
||||
|
||||
# the model can be directly loaded by single machine xgboost solver, as usuall
|
||||
../../xgboost mpi.conf task=dump model_in=0002.model fmap=../data/featmap.txt name_dump=dump.nice.$k.txt
|
||||
cat dump.nice.$k.txt
|
||||
32
demo/mpi/splitsvm.py
Normal file
32
demo/mpi/splitsvm.py
Normal file
@ -0,0 +1,32 @@
|
||||
#!/usr/bin/python
|
||||
import sys
|
||||
import random
|
||||
|
||||
# split libsvm file into different subcolumns
|
||||
if len(sys.argv) < 4:
|
||||
print ('Usage:<fin> <fo> k')
|
||||
exit(0)
|
||||
|
||||
random.seed(10)
|
||||
fmap = {}
|
||||
|
||||
k = int(sys.argv[3])
|
||||
fi = open( sys.argv[1], 'r' )
|
||||
fos = []
|
||||
|
||||
for i in range(k):
|
||||
fos.append(open( sys.argv[2]+'.col%d' % i, 'w' ))
|
||||
|
||||
for l in open(sys.argv[1]):
|
||||
arr = l.split()
|
||||
for f in fos:
|
||||
f.write(arr[0])
|
||||
for it in arr[1:]:
|
||||
fid = int(it.split(':')[0])
|
||||
if fid not in fmap:
|
||||
fmap[fid] = random.randint(0, k-1)
|
||||
fos[fmap[fid]].write(' '+it)
|
||||
for f in fos:
|
||||
f.write('\n')
|
||||
for f in fos:
|
||||
f.close()
|
||||
@ -10,6 +10,7 @@
|
||||
#include <utility>
|
||||
#include <string>
|
||||
#include <limits>
|
||||
#include "../sync/sync.h"
|
||||
#include "./objective.h"
|
||||
#include "./evaluation.h"
|
||||
#include "../gbm/gbm.h"
|
||||
@ -61,6 +62,7 @@ class BoostLearner {
|
||||
buffer_size += mats[i]->info.num_row();
|
||||
num_feature = std::max(num_feature, static_cast<unsigned>(mats[i]->info.num_col()));
|
||||
}
|
||||
sync::AllReduce(&num_feature, 1, sync::kMax);
|
||||
char str_temp[25];
|
||||
if (num_feature > mparam.num_feature) {
|
||||
utils::SPrintf(str_temp, sizeof(str_temp), "%u", num_feature);
|
||||
|
||||
@ -15,11 +15,16 @@ namespace sync {
|
||||
/*! \brief reduce operator supported */
|
||||
enum ReduceOp {
|
||||
kSum,
|
||||
kMax,
|
||||
kBitwiseOR
|
||||
};
|
||||
|
||||
/*! \brief get rank of current process */
|
||||
int GetRank(void);
|
||||
/*!
|
||||
* \brief this is used to check if sync module is a true distributed implementation, or simply a dummpy
|
||||
*/
|
||||
bool IsDistributed(void);
|
||||
/*! \brief intiialize the synchronization module */
|
||||
void Init(int argc, char *argv[]);
|
||||
/*! \brief finalize syncrhonization module */
|
||||
|
||||
@ -6,18 +6,28 @@ namespace sync {
|
||||
int GetRank(void) {
|
||||
return 0;
|
||||
}
|
||||
|
||||
void Init(int argc, char *argv[]) {
|
||||
}
|
||||
|
||||
void Finalize(void) {
|
||||
}
|
||||
|
||||
bool IsDistributed(void) {
|
||||
return false;
|
||||
}
|
||||
|
||||
template<>
|
||||
void AllReduce<uint32_t>(uint32_t *sendrecvbuf, int count, ReduceOp op) {
|
||||
}
|
||||
|
||||
template<>
|
||||
void AllReduce<float>(float *sendrecvbuf, int count, ReduceOp op) {
|
||||
}
|
||||
|
||||
void Bcast(std::string *sendrecv_data, int root) {
|
||||
}
|
||||
|
||||
ReduceHandle::ReduceHandle(void) : handle(NULL) {}
|
||||
ReduceHandle::~ReduceHandle(void) {}
|
||||
void ReduceHandle::Init(ReduceFunction redfunc, bool commute) {}
|
||||
|
||||
@ -12,6 +12,10 @@ void Init(int argc, char *argv[]) {
|
||||
MPI::Init(argc, argv);
|
||||
}
|
||||
|
||||
bool IsDistributed(void) {
|
||||
return true;
|
||||
}
|
||||
|
||||
void Finalize(void) {
|
||||
MPI::Finalize();
|
||||
}
|
||||
@ -20,6 +24,7 @@ void AllReduce_(void *sendrecvbuf, int count, const MPI::Datatype &dtype, Reduce
|
||||
switch(op) {
|
||||
case kBitwiseOR: MPI::COMM_WORLD.Allreduce(MPI_IN_PLACE, sendrecvbuf, count, dtype, MPI::BOR); return;
|
||||
case kSum: MPI::COMM_WORLD.Allreduce(MPI_IN_PLACE, sendrecvbuf, count, dtype, MPI::SUM); return;
|
||||
case kMax: MPI::COMM_WORLD.Allreduce(MPI_IN_PLACE, sendrecvbuf, count, dtype, MPI::MAX); return;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
@ -93,9 +93,15 @@ class DistColMaker : public ColMaker<TStats> {
|
||||
while (fsplits.size() != 0 && fsplits.back() >= p_fmat->NumCol()) {
|
||||
fsplits.pop_back();
|
||||
}
|
||||
// setup BitMap
|
||||
bitmap.Resize(this->position.size());
|
||||
bitmap.Clear();
|
||||
// bitmap is only word concurrent, set to bool first
|
||||
{
|
||||
bst_omp_uint ndata = static_cast<bst_omp_uint>(this->position.size());
|
||||
boolmap.resize(ndata);
|
||||
#pragma omp parallel for schedule(static)
|
||||
for (bst_omp_uint j = 0; j < ndata; ++j) {
|
||||
boolmap[j] = 0;
|
||||
}
|
||||
}
|
||||
utils::IIterator<ColBatch> *iter = p_fmat->ColIterator(fsplits);
|
||||
while (iter->Next()) {
|
||||
const ColBatch &batch = iter->Value();
|
||||
@ -110,15 +116,16 @@ class DistColMaker : public ColMaker<TStats> {
|
||||
const int nid = this->DecodePosition(ridx);
|
||||
if (!tree[nid].is_leaf() && tree[nid].split_index() == fid) {
|
||||
if (fvalue < tree[nid].split_cond()) {
|
||||
if (!tree[nid].default_left()) bitmap.SetTrue(ridx);
|
||||
if (!tree[nid].default_left()) boolmap[ridx] = 1;
|
||||
} else {
|
||||
if (tree[nid].default_left()) bitmap.SetTrue(ridx);
|
||||
if (tree[nid].default_left()) boolmap[ridx] = 1;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
bitmap.InitFromBool(boolmap);
|
||||
// communicate bitmap
|
||||
sync::AllReduce(BeginPtr(bitmap.data), bitmap.data.size(), sync::kBitwiseOR);
|
||||
const std::vector<bst_uint> &rowset = p_fmat->buffered_rowset();
|
||||
@ -159,6 +166,7 @@ class DistColMaker : public ColMaker<TStats> {
|
||||
|
||||
private:
|
||||
utils::BitMap bitmap;
|
||||
std::vector<int> boolmap;
|
||||
sync::Reducer<SplitEntry> reducer;
|
||||
};
|
||||
// we directly introduce pruner here
|
||||
|
||||
@ -7,6 +7,7 @@
|
||||
*/
|
||||
#include <vector>
|
||||
#include "./utils.h"
|
||||
#include "./omp.h"
|
||||
|
||||
namespace xgboost {
|
||||
namespace utils {
|
||||
@ -35,6 +36,25 @@ struct BitMap {
|
||||
inline void SetTrue(size_t i) {
|
||||
data[i >> 5] |= (1 << (i & 31U));
|
||||
}
|
||||
/*! \brief initialize the value of bit map from vector of bool*/
|
||||
inline void InitFromBool(const std::vector<int> &vec) {
|
||||
this->Resize(vec.size());
|
||||
// parallel over the full cases
|
||||
bst_omp_uint nsize = static_cast<bst_omp_uint>(vec.size() / 32);
|
||||
#pragma omp parallel for schedule(static)
|
||||
for (bst_omp_uint i = 0; i < nsize; ++i) {
|
||||
uint32_t res = 0;
|
||||
for (int k = 0; k < 32; ++k) {
|
||||
int bit = vec[(i << 5) | k];
|
||||
res |= (bit << k);
|
||||
}
|
||||
data[i] = res;
|
||||
}
|
||||
if (nsize != vec.size()) data.back() = 0;
|
||||
for (size_t i = nsize; i < vec.size(); ++i) {
|
||||
if (vec[i]) this->SetTrue(i);
|
||||
}
|
||||
}
|
||||
/*! \brief clear the bitmap, set all places to false */
|
||||
inline void Clear(void) {
|
||||
std::fill(data.begin(), data.end(), 0U);
|
||||
|
||||
@ -14,7 +14,7 @@ namespace xgboost {
|
||||
/*!
|
||||
* \brief wrapping the training process
|
||||
*/
|
||||
class BoostLearnTask{
|
||||
class BoostLearnTask {
|
||||
public:
|
||||
inline int Run(int argc, char *argv[]) {
|
||||
if (argc < 2) {
|
||||
@ -31,6 +31,9 @@ class BoostLearnTask{
|
||||
this->SetParam(name, val);
|
||||
}
|
||||
}
|
||||
if (sync::IsDistributed()) {
|
||||
this->SetParam("updater", "distcol");
|
||||
}
|
||||
if (sync::GetRank() != 0) {
|
||||
this->SetParam("silent", "2");
|
||||
}
|
||||
@ -93,6 +96,7 @@ class BoostLearnTask{
|
||||
name_pred = "pred.txt";
|
||||
name_dump = "dump.txt";
|
||||
model_dir_path = "./";
|
||||
load_part = 0;
|
||||
data = NULL;
|
||||
}
|
||||
~BoostLearnTask(void){
|
||||
@ -103,13 +107,20 @@ class BoostLearnTask{
|
||||
}
|
||||
private:
|
||||
inline void InitData(void) {
|
||||
if (strchr(train_path.c_str(), '%') != NULL) {
|
||||
char s_tmp[256];
|
||||
utils::SPrintf(s_tmp, sizeof(s_tmp), train_path.c_str(), sync::GetRank());
|
||||
train_path = s_tmp;
|
||||
load_part = 1;
|
||||
}
|
||||
|
||||
if (name_fmap != "NULL") fmap.LoadText(name_fmap.c_str());
|
||||
if (task == "dump") return;
|
||||
if (task == "pred") {
|
||||
data = io::LoadDataMatrix(test_path.c_str(), silent != 0, use_buffer != 0);
|
||||
} else {
|
||||
// training
|
||||
data = io::LoadDataMatrix(train_path.c_str(), silent != 0, use_buffer != 0);
|
||||
data = io::LoadDataMatrix(train_path.c_str(), silent != 0 && load_part == 0, use_buffer != 0);
|
||||
utils::Assert(eval_data_names.size() == eval_data_paths.size(), "BUG");
|
||||
for (size_t i = 0; i < eval_data_names.size(); ++i) {
|
||||
deval.push_back(io::LoadDataMatrix(eval_data_paths[i].c_str(), silent != 0, use_buffer != 0));
|
||||
@ -182,6 +193,7 @@ class BoostLearnTask{
|
||||
fclose(fo);
|
||||
}
|
||||
inline void SaveModel(const char *fname) const {
|
||||
if (sync::GetRank() != 0) return;
|
||||
utils::FileStream fo(utils::FopenCheck(fname, "wb"));
|
||||
learner.SaveModel(fo);
|
||||
fo.Close();
|
||||
@ -205,6 +217,8 @@ class BoostLearnTask{
|
||||
private:
|
||||
/*! \brief whether silent */
|
||||
int silent;
|
||||
/*! \brief special load */
|
||||
int load_part;
|
||||
/*! \brief whether use auto binary buffer */
|
||||
int use_buffer;
|
||||
/*! \brief whether evaluate training statistics */
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user