DOC: Add docstrings to user-facing classes.
This commit is contained in:
parent
abcc09286c
commit
efdbec4d4c
@ -803,7 +803,7 @@ class XGBModel(XGBModelBase):
|
||||
gamma : float
|
||||
Minimum loss reduction required to make a further partition on a leaf node of the tree.
|
||||
min_child_weight : int
|
||||
Minimum sum of instance weight(hessian) needed in a child.
|
||||
Minimum sum of instance weight(hessian) needed in a child.
|
||||
max_delta_step : int
|
||||
Maximum delta step we allow each tree's weight estimation to be.
|
||||
subsample : float
|
||||
@ -816,8 +816,8 @@ class XGBModel(XGBModelBase):
|
||||
seed : int
|
||||
Random number seed.
|
||||
"""
|
||||
def __init__(self, max_depth=3, learning_rate=0.1, n_estimators=100, silent=True, objective="reg:linear",
|
||||
nthread=-1, gamma=0, min_child_weight=1, max_delta_step=0, subsample=1, colsample_bytree=1,
|
||||
def __init__(self, max_depth=3, learning_rate=0.1, n_estimators=100, silent=True, objective="reg:linear",
|
||||
nthread=-1, gamma=0, min_child_weight=1, max_delta_step=0, subsample=1, colsample_bytree=1,
|
||||
base_score=0.5, seed=0):
|
||||
if not SKLEARN_INSTALLED:
|
||||
raise Exception('sklearn needs to be installed in order to use this module')
|
||||
@ -826,7 +826,7 @@ class XGBModel(XGBModelBase):
|
||||
self.n_estimators = n_estimators
|
||||
self.silent = silent
|
||||
self.objective = objective
|
||||
|
||||
|
||||
self.nthread = nthread
|
||||
self.gamma = gamma
|
||||
self.min_child_weight = min_child_weight
|
||||
@ -836,7 +836,7 @@ class XGBModel(XGBModelBase):
|
||||
|
||||
self.base_score = base_score
|
||||
self.seed = seed
|
||||
|
||||
|
||||
self._Booster = Booster()
|
||||
|
||||
def get_xgb_params(self):
|
||||
@ -859,10 +859,14 @@ class XGBModel(XGBModelBase):
|
||||
|
||||
|
||||
class XGBClassifier(XGBModel, XGBClassifier):
|
||||
def __init__(self, max_depth=3, learning_rate=0.1, n_estimators=100, silent=True, objective="binary:logistic",
|
||||
nthread=-1, gamma=0, min_child_weight=1, max_delta_step=0, subsample=1, colsample_bytree=1,
|
||||
__doc__ = """
|
||||
Implementation of the scikit-learn API for XGBoost classification
|
||||
""" + "\n".join(XGBModel.__doc__.split('\n')[2:])
|
||||
|
||||
def __init__(self, max_depth=3, learning_rate=0.1, n_estimators=100, silent=True, objective="binary:logistic",
|
||||
nthread=-1, gamma=0, min_child_weight=1, max_delta_step=0, subsample=1, colsample_bytree=1,
|
||||
base_score=0.5, seed=0):
|
||||
super(XGBClassifier, self).__init__(max_depth, learning_rate, n_estimators, silent, objective,
|
||||
super(XGBClassifier, self).__init__(max_depth, learning_rate, n_estimators, silent, objective,
|
||||
nthread, gamma, min_child_weight, max_delta_step, subsample, colsample_bytree,
|
||||
base_score, seed)
|
||||
|
||||
@ -910,4 +914,8 @@ class XGBClassifier(XGBModel, XGBClassifier):
|
||||
|
||||
|
||||
class XGBRegressor(XGBModel, XGBRegressor):
|
||||
__doc__ = """
|
||||
Implementation of the scikit-learn API for XGBoost regression
|
||||
""" + "\n".join(XGBModel.__doc__.split('\n')[2:])
|
||||
|
||||
pass
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user