Enable running objectives with 0 GPU. (#3878)
* Enable running objectives with 0 GPU. * Enable 0 GPU for objectives. * Add doc for GPU objectives. * Fix some objectives defaulted to running on all GPUs.
This commit is contained in:
parent
97984f4890
commit
daf77ca7b7
@ -78,6 +78,49 @@ The GPU algorithms currently work with CLI, Python and R packages. See :doc:`/bu
|
|||||||
param['max_bin'] = 16
|
param['max_bin'] = 16
|
||||||
param['tree_method'] = 'gpu_hist'
|
param['tree_method'] = 'gpu_hist'
|
||||||
|
|
||||||
|
Objective functions
|
||||||
|
===================
|
||||||
|
Most of the objective functions implemented in XGBoost can be run on GPU. Following table shows current support status.
|
||||||
|
|
||||||
|
.. |tick| unicode:: U+2714
|
||||||
|
.. |cross| unicode:: U+2718
|
||||||
|
|
||||||
|
+-----------------+-------------+
|
||||||
|
| Objectives | GPU support |
|
||||||
|
+-----------------+-------------+
|
||||||
|
| reg:linear | |tick| |
|
||||||
|
+-----------------+-------------+
|
||||||
|
| reg:logistic | |tick| |
|
||||||
|
+-----------------+-------------+
|
||||||
|
| binary:logistic | |tick| |
|
||||||
|
+-----------------+-------------+
|
||||||
|
| binary:logitraw | |tick| |
|
||||||
|
+-----------------+-------------+
|
||||||
|
| binary:hinge | |tick| |
|
||||||
|
+-----------------+-------------+
|
||||||
|
| count:poisson | |tick| |
|
||||||
|
+-----------------+-------------+
|
||||||
|
| reg:gamma | |tick| |
|
||||||
|
+-----------------+-------------+
|
||||||
|
| reg:tweedie | |tick| |
|
||||||
|
+-----------------+-------------+
|
||||||
|
| multi:softmax | |tick| |
|
||||||
|
+-----------------+-------------+
|
||||||
|
| multi:softprob | |tick| |
|
||||||
|
+-----------------+-------------+
|
||||||
|
| survival:cox | |cross| |
|
||||||
|
+-----------------+-------------+
|
||||||
|
| rank:pairwise | |cross| |
|
||||||
|
+-----------------+-------------+
|
||||||
|
| rank:ndcg | |cross| |
|
||||||
|
+-----------------+-------------+
|
||||||
|
| rank:map | |cross| |
|
||||||
|
+-----------------+-------------+
|
||||||
|
|
||||||
|
For multi-gpu support, objective functions also honor the ``n_gpus`` parameter,
|
||||||
|
which, by default is set to 1. To disable running objectives on GPU, just set
|
||||||
|
``n_gpus`` to 0.
|
||||||
|
|
||||||
Benchmarks
|
Benchmarks
|
||||||
==========
|
==========
|
||||||
You can run benchmarks on synthetic data for binary classification:
|
You can run benchmarks on synthetic data for binary classification:
|
||||||
@ -118,4 +161,3 @@ Authors
|
|||||||
* ... and the rest of the H2O.ai and NVIDIA team.
|
* ... and the rest of the H2O.ai and NVIDIA team.
|
||||||
|
|
||||||
Please report bugs to the user forum https://discuss.xgboost.ai/.
|
Please report bugs to the user forum https://discuss.xgboost.ai/.
|
||||||
|
|
||||||
|
|||||||
@ -283,9 +283,6 @@ Specify the learning task and the corresponding learning objective. The objectiv
|
|||||||
- ``binary:logistic``: logistic regression for binary classification, output probability
|
- ``binary:logistic``: logistic regression for binary classification, output probability
|
||||||
- ``binary:logitraw``: logistic regression for binary classification, output score before logistic transformation
|
- ``binary:logitraw``: logistic regression for binary classification, output score before logistic transformation
|
||||||
- ``binary:hinge``: hinge loss for binary classification. This makes predictions of 0 or 1, rather than producing probabilities.
|
- ``binary:hinge``: hinge loss for binary classification. This makes predictions of 0 or 1, rather than producing probabilities.
|
||||||
- ``gpu:reg:linear``, ``gpu:reg:logistic``, ``gpu:binary:logistic``, ``gpu:binary:logitraw``: versions
|
|
||||||
of the corresponding objective functions evaluated on the GPU; note that like the GPU histogram algorithm,
|
|
||||||
they can only be used when the entire training session uses the same dataset
|
|
||||||
- ``count:poisson`` --poisson regression for count data, output mean of poisson distribution
|
- ``count:poisson`` --poisson regression for count data, output mean of poisson distribution
|
||||||
|
|
||||||
- ``max_delta_step`` is set to 0.7 by default in poisson regression (used to safeguard optimization)
|
- ``max_delta_step`` is set to 0.7 by default in poisson regression (used to safeguard optimization)
|
||||||
|
|||||||
@ -165,7 +165,7 @@ class GPUSet {
|
|||||||
CHECK_GE(n_gpus, -1) << "n_gpus must be >= -1.";
|
CHECK_GE(n_gpus, -1) << "n_gpus must be >= -1.";
|
||||||
|
|
||||||
GpuIdType const n_devices_visible = AllVisible().Size();
|
GpuIdType const n_devices_visible = AllVisible().Size();
|
||||||
if (n_devices_visible == 0) { return Empty(); }
|
if (n_devices_visible == 0 || n_gpus == 0) { return Empty(); }
|
||||||
|
|
||||||
GpuIdType const n_available_devices = n_devices_visible - gpu_id;
|
GpuIdType const n_available_devices = n_devices_visible - gpu_id;
|
||||||
|
|
||||||
|
|||||||
@ -22,7 +22,7 @@ struct HingeObjParam : public dmlc::Parameter<HingeObjParam> {
|
|||||||
int n_gpus;
|
int n_gpus;
|
||||||
int gpu_id;
|
int gpu_id;
|
||||||
DMLC_DECLARE_PARAMETER(HingeObjParam) {
|
DMLC_DECLARE_PARAMETER(HingeObjParam) {
|
||||||
DMLC_DECLARE_FIELD(n_gpus).set_default(1).set_lower_bound(-1)
|
DMLC_DECLARE_FIELD(n_gpus).set_default(1).set_lower_bound(GPUSet::kAll)
|
||||||
.describe("Number of GPUs to use for multi-gpu algorithms.");
|
.describe("Number of GPUs to use for multi-gpu algorithms.");
|
||||||
DMLC_DECLARE_FIELD(gpu_id)
|
DMLC_DECLARE_FIELD(gpu_id)
|
||||||
.set_lower_bound(0)
|
.set_lower_bound(0)
|
||||||
|
|||||||
@ -31,7 +31,7 @@ struct SoftmaxMultiClassParam : public dmlc::Parameter<SoftmaxMultiClassParam> {
|
|||||||
DMLC_DECLARE_PARAMETER(SoftmaxMultiClassParam) {
|
DMLC_DECLARE_PARAMETER(SoftmaxMultiClassParam) {
|
||||||
DMLC_DECLARE_FIELD(num_class).set_lower_bound(1)
|
DMLC_DECLARE_FIELD(num_class).set_lower_bound(1)
|
||||||
.describe("Number of output class in the multi-class classification.");
|
.describe("Number of output class in the multi-class classification.");
|
||||||
DMLC_DECLARE_FIELD(n_gpus).set_default(1).set_lower_bound(-1)
|
DMLC_DECLARE_FIELD(n_gpus).set_default(1).set_lower_bound(GPUSet::kAll)
|
||||||
.describe("Number of GPUs to use for multi-gpu algorithms.");
|
.describe("Number of GPUs to use for multi-gpu algorithms.");
|
||||||
DMLC_DECLARE_FIELD(gpu_id)
|
DMLC_DECLARE_FIELD(gpu_id)
|
||||||
.set_lower_bound(0)
|
.set_lower_bound(0)
|
||||||
@ -49,7 +49,6 @@ class SoftmaxMultiClassObj : public ObjFunction {
|
|||||||
}
|
}
|
||||||
void Configure(const std::vector<std::pair<std::string, std::string> >& args) override {
|
void Configure(const std::vector<std::pair<std::string, std::string> >& args) override {
|
||||||
param_.InitAllowUnknown(args);
|
param_.InitAllowUnknown(args);
|
||||||
CHECK(param_.n_gpus != 0) << "Must have at least one device"; // Default is -1
|
|
||||||
devices_ = GPUSet::All(param_.gpu_id, param_.n_gpus);
|
devices_ = GPUSet::All(param_.gpu_id, param_.n_gpus);
|
||||||
label_correct_.Resize(devices_.IsEmpty() ? 1 : devices_.Size());
|
label_correct_.Resize(devices_.IsEmpty() ? 1 : devices_.Size());
|
||||||
}
|
}
|
||||||
|
|||||||
@ -34,7 +34,7 @@ struct RegLossParam : public dmlc::Parameter<RegLossParam> {
|
|||||||
DMLC_DECLARE_PARAMETER(RegLossParam) {
|
DMLC_DECLARE_PARAMETER(RegLossParam) {
|
||||||
DMLC_DECLARE_FIELD(scale_pos_weight).set_default(1.0f).set_lower_bound(0.0f)
|
DMLC_DECLARE_FIELD(scale_pos_weight).set_default(1.0f).set_lower_bound(0.0f)
|
||||||
.describe("Scale the weight of positive examples by this factor");
|
.describe("Scale the weight of positive examples by this factor");
|
||||||
DMLC_DECLARE_FIELD(n_gpus).set_default(1).set_lower_bound(-1)
|
DMLC_DECLARE_FIELD(n_gpus).set_default(1).set_lower_bound(GPUSet::kAll)
|
||||||
.describe("Number of GPUs to use for multi-gpu algorithms.");
|
.describe("Number of GPUs to use for multi-gpu algorithms.");
|
||||||
DMLC_DECLARE_FIELD(gpu_id)
|
DMLC_DECLARE_FIELD(gpu_id)
|
||||||
.set_lower_bound(0)
|
.set_lower_bound(0)
|
||||||
@ -53,7 +53,6 @@ class RegLossObj : public ObjFunction {
|
|||||||
|
|
||||||
void Configure(const std::vector<std::pair<std::string, std::string> >& args) override {
|
void Configure(const std::vector<std::pair<std::string, std::string> >& args) override {
|
||||||
param_.InitAllowUnknown(args);
|
param_.InitAllowUnknown(args);
|
||||||
CHECK(param_.n_gpus != 0) << "Must have at least one device"; // Default is -1
|
|
||||||
devices_ = GPUSet::All(param_.gpu_id, param_.n_gpus);
|
devices_ = GPUSet::All(param_.gpu_id, param_.n_gpus);
|
||||||
label_correct_.Resize(devices_.IsEmpty() ? 1 : devices_.Size());
|
label_correct_.Resize(devices_.IsEmpty() ? 1 : devices_.Size());
|
||||||
}
|
}
|
||||||
@ -182,7 +181,7 @@ struct PoissonRegressionParam : public dmlc::Parameter<PoissonRegressionParam> {
|
|||||||
DMLC_DECLARE_FIELD(max_delta_step).set_lower_bound(0.0f).set_default(0.7f)
|
DMLC_DECLARE_FIELD(max_delta_step).set_lower_bound(0.0f).set_default(0.7f)
|
||||||
.describe("Maximum delta step we allow each weight estimation to be." \
|
.describe("Maximum delta step we allow each weight estimation to be." \
|
||||||
" This parameter is required for possion regression.");
|
" This parameter is required for possion regression.");
|
||||||
DMLC_DECLARE_FIELD(n_gpus).set_default(-1).set_lower_bound(-1)
|
DMLC_DECLARE_FIELD(n_gpus).set_default(1).set_lower_bound(GPUSet::kAll)
|
||||||
.describe("Number of GPUs to use for multi-gpu algorithms.");
|
.describe("Number of GPUs to use for multi-gpu algorithms.");
|
||||||
DMLC_DECLARE_FIELD(gpu_id)
|
DMLC_DECLARE_FIELD(gpu_id)
|
||||||
.set_lower_bound(0)
|
.set_lower_bound(0)
|
||||||
@ -197,7 +196,6 @@ class PoissonRegression : public ObjFunction {
|
|||||||
// declare functions
|
// declare functions
|
||||||
void Configure(const std::vector<std::pair<std::string, std::string> >& args) override {
|
void Configure(const std::vector<std::pair<std::string, std::string> >& args) override {
|
||||||
param_.InitAllowUnknown(args);
|
param_.InitAllowUnknown(args);
|
||||||
CHECK(param_.n_gpus != 0) << "Must have at least one device"; // Default is -1
|
|
||||||
devices_ = GPUSet::All(param_.gpu_id, param_.n_gpus);
|
devices_ = GPUSet::All(param_.gpu_id, param_.n_gpus);
|
||||||
label_correct_.Resize(devices_.IsEmpty() ? 1 : devices_.Size());
|
label_correct_.Resize(devices_.IsEmpty() ? 1 : devices_.Size());
|
||||||
}
|
}
|
||||||
@ -364,7 +362,7 @@ struct GammaRegressionParam : public dmlc::Parameter<GammaRegressionParam> {
|
|||||||
int n_gpus;
|
int n_gpus;
|
||||||
int gpu_id;
|
int gpu_id;
|
||||||
DMLC_DECLARE_PARAMETER(GammaRegressionParam) {
|
DMLC_DECLARE_PARAMETER(GammaRegressionParam) {
|
||||||
DMLC_DECLARE_FIELD(n_gpus).set_default(-1).set_lower_bound(-1)
|
DMLC_DECLARE_FIELD(n_gpus).set_default(1).set_lower_bound(GPUSet::kAll)
|
||||||
.describe("Number of GPUs to use for multi-gpu algorithms.");
|
.describe("Number of GPUs to use for multi-gpu algorithms.");
|
||||||
DMLC_DECLARE_FIELD(gpu_id)
|
DMLC_DECLARE_FIELD(gpu_id)
|
||||||
.set_lower_bound(0)
|
.set_lower_bound(0)
|
||||||
@ -379,7 +377,6 @@ class GammaRegression : public ObjFunction {
|
|||||||
// declare functions
|
// declare functions
|
||||||
void Configure(const std::vector<std::pair<std::string, std::string> >& args) override {
|
void Configure(const std::vector<std::pair<std::string, std::string> >& args) override {
|
||||||
param_.InitAllowUnknown(args);
|
param_.InitAllowUnknown(args);
|
||||||
CHECK(param_.n_gpus != 0) << "Must have at least one device"; // Default is -1
|
|
||||||
devices_ = GPUSet::All(param_.gpu_id, param_.n_gpus);
|
devices_ = GPUSet::All(param_.gpu_id, param_.n_gpus);
|
||||||
label_correct_.Resize(devices_.IsEmpty() ? 1 : devices_.Size());
|
label_correct_.Resize(devices_.IsEmpty() ? 1 : devices_.Size());
|
||||||
}
|
}
|
||||||
@ -461,7 +458,7 @@ struct TweedieRegressionParam : public dmlc::Parameter<TweedieRegressionParam> {
|
|||||||
DMLC_DECLARE_PARAMETER(TweedieRegressionParam) {
|
DMLC_DECLARE_PARAMETER(TweedieRegressionParam) {
|
||||||
DMLC_DECLARE_FIELD(tweedie_variance_power).set_range(1.0f, 2.0f).set_default(1.5f)
|
DMLC_DECLARE_FIELD(tweedie_variance_power).set_range(1.0f, 2.0f).set_default(1.5f)
|
||||||
.describe("Tweedie variance power. Must be between in range [1, 2).");
|
.describe("Tweedie variance power. Must be between in range [1, 2).");
|
||||||
DMLC_DECLARE_FIELD(n_gpus).set_default(-1).set_lower_bound(-1)
|
DMLC_DECLARE_FIELD(n_gpus).set_default(1).set_lower_bound(GPUSet::kAll)
|
||||||
.describe("Number of GPUs to use for multi-gpu algorithms.");
|
.describe("Number of GPUs to use for multi-gpu algorithms.");
|
||||||
DMLC_DECLARE_FIELD(gpu_id)
|
DMLC_DECLARE_FIELD(gpu_id)
|
||||||
.set_lower_bound(0)
|
.set_lower_bound(0)
|
||||||
@ -476,7 +473,6 @@ class TweedieRegression : public ObjFunction {
|
|||||||
// declare functions
|
// declare functions
|
||||||
void Configure(const std::vector<std::pair<std::string, std::string> >& args) override {
|
void Configure(const std::vector<std::pair<std::string, std::string> >& args) override {
|
||||||
param_.InitAllowUnknown(args);
|
param_.InitAllowUnknown(args);
|
||||||
CHECK(param_.n_gpus != 0) << "Must have at least one device"; // Default is -1
|
|
||||||
devices_ = GPUSet::All(param_.gpu_id, param_.n_gpus);
|
devices_ = GPUSet::All(param_.gpu_id, param_.n_gpus);
|
||||||
label_correct_.Resize(devices_.IsEmpty() ? 1 : devices_.Size());
|
label_correct_.Resize(devices_.IsEmpty() ? 1 : devices_.Size());
|
||||||
}
|
}
|
||||||
|
|||||||
Loading…
x
Reference in New Issue
Block a user