xgboost/src/objective/multiclass_obj.cu
Jiaming Yuan daf77ca7b7
Enable running objectives with 0 GPU. (#3878)
* Enable running objectives with 0 GPU.

* Enable 0 GPU for objectives.
* Add doc for GPU objectives.
* Fix some objectives defaulted to running on all GPUs.
2018-11-13 20:19:59 +13:00

184 lines
6.8 KiB
Plaintext

/*!
* Copyright 2015-2018 by Contributors
* \file multi_class.cc
* \brief Definition of multi-class classification objectives.
* \author Tianqi Chen
*/
#include <dmlc/omp.h>
#include <dmlc/parameter.h>
#include <xgboost/data.h>
#include <xgboost/logging.h>
#include <xgboost/objective.h>
#include <vector>
#include <algorithm>
#include <limits>
#include <utility>
#include "../common/math.h"
#include "../common/transform.h"
namespace xgboost {
namespace obj {
#if defined(XGBOOST_USE_CUDA)
DMLC_REGISTRY_FILE_TAG(multiclass_obj_gpu);
#endif
struct SoftmaxMultiClassParam : public dmlc::Parameter<SoftmaxMultiClassParam> {
int num_class;
int n_gpus;
int gpu_id;
// declare parameters
DMLC_DECLARE_PARAMETER(SoftmaxMultiClassParam) {
DMLC_DECLARE_FIELD(num_class).set_lower_bound(1)
.describe("Number of output class in the multi-class classification.");
DMLC_DECLARE_FIELD(n_gpus).set_default(1).set_lower_bound(GPUSet::kAll)
.describe("Number of GPUs to use for multi-gpu algorithms.");
DMLC_DECLARE_FIELD(gpu_id)
.set_lower_bound(0)
.set_default(0)
.describe("gpu to use for objective function evaluation");
}
};
// TODO(trivialfis): Currently the resharding in softmax is less than ideal
// due to repeated copying data between CPU and GPUs. Maybe we just use single
// GPU?
class SoftmaxMultiClassObj : public ObjFunction {
public:
explicit SoftmaxMultiClassObj(bool output_prob)
: output_prob_(output_prob) {
}
void Configure(const std::vector<std::pair<std::string, std::string> >& args) override {
param_.InitAllowUnknown(args);
devices_ = GPUSet::All(param_.gpu_id, param_.n_gpus);
label_correct_.Resize(devices_.IsEmpty() ? 1 : devices_.Size());
}
void GetGradient(const HostDeviceVector<bst_float>& preds,
const MetaInfo& info,
int iter,
HostDeviceVector<GradientPair>* out_gpair) override {
CHECK_NE(info.labels_.Size(), 0U) << "label set cannot be empty";
CHECK(preds.Size() == (static_cast<size_t>(param_.num_class) * info.labels_.Size()))
<< "SoftmaxMultiClassObj: label size and pred size does not match";
const int nclass = param_.num_class;
const auto ndata = static_cast<int64_t>(preds.Size() / nclass);
out_gpair->Reshard(GPUDistribution::Granular(devices_, nclass));
info.labels_.Reshard(GPUDistribution::Block(devices_));
info.weights_.Reshard(GPUDistribution::Block(devices_));
preds.Reshard(GPUDistribution::Granular(devices_, nclass));
label_correct_.Reshard(GPUDistribution::Block(devices_));
out_gpair->Resize(preds.Size());
label_correct_.Fill(1);
const bool is_null_weight = info.weights_.Size() == 0;
common::Transform<>::Init(
[=] XGBOOST_DEVICE(size_t idx,
common::Span<GradientPair> gpair,
common::Span<bst_float const> labels,
common::Span<bst_float const> preds,
common::Span<bst_float const> weights,
common::Span<int> _label_correct) {
common::Span<bst_float const> point = preds.subspan(idx * nclass, nclass);
// Part of Softmax function
bst_float wmax = std::numeric_limits<bst_float>::min();
for (auto const i : point) { wmax = fmaxf(i, wmax); }
double wsum = 0.0f;
for (auto const i : point) { wsum += expf(i - wmax); }
auto label = labels[idx];
if (label < 0 || label >= nclass) {
_label_correct[0] = 0;
label = 0;
}
bst_float wt = is_null_weight ? 1.0f : weights[idx];
for (int k = 0; k < nclass; ++k) {
// Computation duplicated to avoid creating a cache.
bst_float p = expf(point[k] - wmax) / static_cast<float>(wsum);
const float eps = 1e-16f;
const bst_float h = fmax(2.0f * p * (1.0f - p) * wt, eps);
p = label == k ? p - 1.0f : p;
gpair[idx * nclass + k] = GradientPair(p * wt, h);
}
}, common::Range{0, ndata}, devices_, false)
.Eval(out_gpair, &info.labels_, &preds, &info.weights_, &label_correct_);
std::vector<int>& label_correct_h = label_correct_.HostVector();
for (auto const flag : label_correct_h) {
if (flag != 1) {
LOG(FATAL) << "SoftmaxMultiClassObj: label must be in [0, num_class).";
}
}
}
void PredTransform(HostDeviceVector<bst_float>* io_preds) override {
this->Transform(io_preds, output_prob_);
}
void EvalTransform(HostDeviceVector<bst_float>* io_preds) override {
this->Transform(io_preds, true);
}
const char* DefaultEvalMetric() const override {
return "merror";
}
inline void Transform(HostDeviceVector<bst_float> *io_preds, bool prob) {
const int nclass = param_.num_class;
const auto ndata = static_cast<int64_t>(io_preds->Size() / nclass);
max_preds_.Resize(ndata);
if (prob) {
common::Transform<>::Init(
[=] XGBOOST_DEVICE(size_t _idx, common::Span<bst_float> _preds) {
common::Span<bst_float> point =
_preds.subspan(_idx * nclass, nclass);
common::Softmax(point.begin(), point.end());
},
common::Range{0, ndata}, GPUDistribution::Granular(devices_, nclass))
.Eval(io_preds);
} else {
io_preds->Reshard(GPUDistribution::Granular(devices_, nclass));
max_preds_.Reshard(GPUDistribution::Block(devices_));
common::Transform<>::Init(
[=] XGBOOST_DEVICE(size_t _idx,
common::Span<const bst_float> _preds,
common::Span<bst_float> _max_preds) {
common::Span<const bst_float> point =
_preds.subspan(_idx * nclass, nclass);
_max_preds[_idx] =
common::FindMaxIndex(point.cbegin(),
point.cend()) - point.cbegin();
},
common::Range{0, ndata}, devices_, false)
.Eval(io_preds, &max_preds_);
}
if (!prob) {
io_preds->Resize(max_preds_.Size());
io_preds->Copy(max_preds_);
}
}
private:
// output probability
bool output_prob_;
// parameter
SoftmaxMultiClassParam param_;
GPUSet devices_;
// Cache for max_preds
HostDeviceVector<bst_float> max_preds_;
HostDeviceVector<int> label_correct_;
};
// register the objective functions
DMLC_REGISTER_PARAMETER(SoftmaxMultiClassParam);
XGBOOST_REGISTER_OBJECTIVE(SoftmaxMultiClass, "multi:softmax")
.describe("Softmax for multi-class classification, output class index.")
.set_body([]() { return new SoftmaxMultiClassObj(false); });
XGBOOST_REGISTER_OBJECTIVE(SoftprobMultiClass, "multi:softprob")
.describe("Softmax for multi-class classification, output probability distribution.")
.set_body([]() { return new SoftmaxMultiClassObj(true); });
} // namespace obj
} // namespace xgboost