* Enable running objectives with 0 GPU. * Enable 0 GPU for objectives. * Add doc for GPU objectives. * Fix some objectives defaulted to running on all GPUs.
184 lines
6.8 KiB
Plaintext
184 lines
6.8 KiB
Plaintext
/*!
|
|
* Copyright 2015-2018 by Contributors
|
|
* \file multi_class.cc
|
|
* \brief Definition of multi-class classification objectives.
|
|
* \author Tianqi Chen
|
|
*/
|
|
#include <dmlc/omp.h>
|
|
#include <dmlc/parameter.h>
|
|
#include <xgboost/data.h>
|
|
#include <xgboost/logging.h>
|
|
#include <xgboost/objective.h>
|
|
#include <vector>
|
|
#include <algorithm>
|
|
#include <limits>
|
|
#include <utility>
|
|
#include "../common/math.h"
|
|
#include "../common/transform.h"
|
|
|
|
namespace xgboost {
|
|
namespace obj {
|
|
|
|
#if defined(XGBOOST_USE_CUDA)
|
|
DMLC_REGISTRY_FILE_TAG(multiclass_obj_gpu);
|
|
#endif
|
|
|
|
struct SoftmaxMultiClassParam : public dmlc::Parameter<SoftmaxMultiClassParam> {
|
|
int num_class;
|
|
int n_gpus;
|
|
int gpu_id;
|
|
// declare parameters
|
|
DMLC_DECLARE_PARAMETER(SoftmaxMultiClassParam) {
|
|
DMLC_DECLARE_FIELD(num_class).set_lower_bound(1)
|
|
.describe("Number of output class in the multi-class classification.");
|
|
DMLC_DECLARE_FIELD(n_gpus).set_default(1).set_lower_bound(GPUSet::kAll)
|
|
.describe("Number of GPUs to use for multi-gpu algorithms.");
|
|
DMLC_DECLARE_FIELD(gpu_id)
|
|
.set_lower_bound(0)
|
|
.set_default(0)
|
|
.describe("gpu to use for objective function evaluation");
|
|
}
|
|
};
|
|
// TODO(trivialfis): Currently the resharding in softmax is less than ideal
|
|
// due to repeated copying data between CPU and GPUs. Maybe we just use single
|
|
// GPU?
|
|
class SoftmaxMultiClassObj : public ObjFunction {
|
|
public:
|
|
explicit SoftmaxMultiClassObj(bool output_prob)
|
|
: output_prob_(output_prob) {
|
|
}
|
|
void Configure(const std::vector<std::pair<std::string, std::string> >& args) override {
|
|
param_.InitAllowUnknown(args);
|
|
devices_ = GPUSet::All(param_.gpu_id, param_.n_gpus);
|
|
label_correct_.Resize(devices_.IsEmpty() ? 1 : devices_.Size());
|
|
}
|
|
void GetGradient(const HostDeviceVector<bst_float>& preds,
|
|
const MetaInfo& info,
|
|
int iter,
|
|
HostDeviceVector<GradientPair>* out_gpair) override {
|
|
CHECK_NE(info.labels_.Size(), 0U) << "label set cannot be empty";
|
|
CHECK(preds.Size() == (static_cast<size_t>(param_.num_class) * info.labels_.Size()))
|
|
<< "SoftmaxMultiClassObj: label size and pred size does not match";
|
|
|
|
const int nclass = param_.num_class;
|
|
const auto ndata = static_cast<int64_t>(preds.Size() / nclass);
|
|
|
|
out_gpair->Reshard(GPUDistribution::Granular(devices_, nclass));
|
|
info.labels_.Reshard(GPUDistribution::Block(devices_));
|
|
info.weights_.Reshard(GPUDistribution::Block(devices_));
|
|
preds.Reshard(GPUDistribution::Granular(devices_, nclass));
|
|
label_correct_.Reshard(GPUDistribution::Block(devices_));
|
|
|
|
out_gpair->Resize(preds.Size());
|
|
label_correct_.Fill(1);
|
|
|
|
const bool is_null_weight = info.weights_.Size() == 0;
|
|
common::Transform<>::Init(
|
|
[=] XGBOOST_DEVICE(size_t idx,
|
|
common::Span<GradientPair> gpair,
|
|
common::Span<bst_float const> labels,
|
|
common::Span<bst_float const> preds,
|
|
common::Span<bst_float const> weights,
|
|
common::Span<int> _label_correct) {
|
|
common::Span<bst_float const> point = preds.subspan(idx * nclass, nclass);
|
|
|
|
// Part of Softmax function
|
|
bst_float wmax = std::numeric_limits<bst_float>::min();
|
|
for (auto const i : point) { wmax = fmaxf(i, wmax); }
|
|
double wsum = 0.0f;
|
|
for (auto const i : point) { wsum += expf(i - wmax); }
|
|
auto label = labels[idx];
|
|
if (label < 0 || label >= nclass) {
|
|
_label_correct[0] = 0;
|
|
label = 0;
|
|
}
|
|
bst_float wt = is_null_weight ? 1.0f : weights[idx];
|
|
for (int k = 0; k < nclass; ++k) {
|
|
// Computation duplicated to avoid creating a cache.
|
|
bst_float p = expf(point[k] - wmax) / static_cast<float>(wsum);
|
|
const float eps = 1e-16f;
|
|
const bst_float h = fmax(2.0f * p * (1.0f - p) * wt, eps);
|
|
p = label == k ? p - 1.0f : p;
|
|
gpair[idx * nclass + k] = GradientPair(p * wt, h);
|
|
}
|
|
}, common::Range{0, ndata}, devices_, false)
|
|
.Eval(out_gpair, &info.labels_, &preds, &info.weights_, &label_correct_);
|
|
|
|
std::vector<int>& label_correct_h = label_correct_.HostVector();
|
|
for (auto const flag : label_correct_h) {
|
|
if (flag != 1) {
|
|
LOG(FATAL) << "SoftmaxMultiClassObj: label must be in [0, num_class).";
|
|
}
|
|
}
|
|
}
|
|
void PredTransform(HostDeviceVector<bst_float>* io_preds) override {
|
|
this->Transform(io_preds, output_prob_);
|
|
}
|
|
void EvalTransform(HostDeviceVector<bst_float>* io_preds) override {
|
|
this->Transform(io_preds, true);
|
|
}
|
|
const char* DefaultEvalMetric() const override {
|
|
return "merror";
|
|
}
|
|
|
|
inline void Transform(HostDeviceVector<bst_float> *io_preds, bool prob) {
|
|
const int nclass = param_.num_class;
|
|
const auto ndata = static_cast<int64_t>(io_preds->Size() / nclass);
|
|
max_preds_.Resize(ndata);
|
|
|
|
if (prob) {
|
|
common::Transform<>::Init(
|
|
[=] XGBOOST_DEVICE(size_t _idx, common::Span<bst_float> _preds) {
|
|
common::Span<bst_float> point =
|
|
_preds.subspan(_idx * nclass, nclass);
|
|
common::Softmax(point.begin(), point.end());
|
|
},
|
|
common::Range{0, ndata}, GPUDistribution::Granular(devices_, nclass))
|
|
.Eval(io_preds);
|
|
} else {
|
|
io_preds->Reshard(GPUDistribution::Granular(devices_, nclass));
|
|
max_preds_.Reshard(GPUDistribution::Block(devices_));
|
|
common::Transform<>::Init(
|
|
[=] XGBOOST_DEVICE(size_t _idx,
|
|
common::Span<const bst_float> _preds,
|
|
common::Span<bst_float> _max_preds) {
|
|
common::Span<const bst_float> point =
|
|
_preds.subspan(_idx * nclass, nclass);
|
|
_max_preds[_idx] =
|
|
common::FindMaxIndex(point.cbegin(),
|
|
point.cend()) - point.cbegin();
|
|
},
|
|
common::Range{0, ndata}, devices_, false)
|
|
.Eval(io_preds, &max_preds_);
|
|
}
|
|
if (!prob) {
|
|
io_preds->Resize(max_preds_.Size());
|
|
io_preds->Copy(max_preds_);
|
|
}
|
|
}
|
|
|
|
private:
|
|
// output probability
|
|
bool output_prob_;
|
|
// parameter
|
|
SoftmaxMultiClassParam param_;
|
|
GPUSet devices_;
|
|
// Cache for max_preds
|
|
HostDeviceVector<bst_float> max_preds_;
|
|
HostDeviceVector<int> label_correct_;
|
|
};
|
|
|
|
// register the objective functions
|
|
DMLC_REGISTER_PARAMETER(SoftmaxMultiClassParam);
|
|
|
|
XGBOOST_REGISTER_OBJECTIVE(SoftmaxMultiClass, "multi:softmax")
|
|
.describe("Softmax for multi-class classification, output class index.")
|
|
.set_body([]() { return new SoftmaxMultiClassObj(false); });
|
|
|
|
XGBOOST_REGISTER_OBJECTIVE(SoftprobMultiClass, "multi:softprob")
|
|
.describe("Softmax for multi-class classification, output probability distribution.")
|
|
.set_body([]() { return new SoftmaxMultiClassObj(true); });
|
|
|
|
} // namespace obj
|
|
} // namespace xgboost
|