Vignette text
This commit is contained in:
parent
a749cf3133
commit
d88cf20c23
@ -211,7 +211,7 @@ The two other new columns are `RealCover` and `RealCover %`. In the first column
|
||||
|
||||
Therefore, according to our findings, getting a placebo doesn't seem to help but being younger than 61 years may help (seems logic).
|
||||
|
||||
> You may wonder how to interpret the `< 1.00001 ` on the first line. Basically, in a sparse `Matrix`, there is no `0`, therefore, looking for one hot-encoded categorical observations validating the rule `< 1.00001` is like just looking for `1` for this feature.
|
||||
> You may wonder how to interpret the `< 1.00001` on the first line. Basically, in a sparse `Matrix`, there is no `0`, therefore, looking for one hot-encoded categorical observations validating the rule `< 1.00001` is like just looking for `1` for this feature.
|
||||
|
||||
Plotting the feature importance
|
||||
-------------------------------
|
||||
@ -224,8 +224,7 @@ xgb.plot.importance(importance_matrix = importanceRaw)
|
||||
|
||||
Feature have automatically been divided in 2 clusters: the interesting features... and the others.
|
||||
|
||||
> Depending of the dataset and the learning parameters you may have more than two clusters.
|
||||
> Default value is to limit them to 10, but you can increase this limit. Look at the function documentation for more information.
|
||||
> Depending of the dataset and the learning parameters you may have more than two clusters. Default value is to limit them to `10`, but you can increase this limit. Look at the function documentation for more information.
|
||||
|
||||
According to the plot above, the most important features in this dataset to predict if the treatment will work are :
|
||||
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user