Merge pull request #712 from Far0n/py_cv

python cv bugfixing (eval metrics)
This commit is contained in:
Yuan (Terry) Tang 2015-12-29 07:30:26 -06:00
commit d747649892
2 changed files with 84 additions and 23 deletions

View File

@ -361,7 +361,7 @@ def cv(params, dtrain, num_boost_round=10, nfold=3, metrics=(),
Number of boosting iterations.
nfold : int
Number of folds in CV.
metrics : list of strings
metrics : string or list of strings
Evaluation metrics to be watched in CV.
obj : function
Custom objective function.
@ -394,9 +394,28 @@ def cv(params, dtrain, num_boost_round=10, nfold=3, metrics=(),
-------
evaluation history : list(string)
"""
if isinstance(metrics, str):
metrics = [metrics]
if isinstance(params, list):
_metrics = [x[1] for x in params if x[0] == 'eval_metric']
params = dict(params)
if 'eval_metric' in params:
params['eval_metric'] = _metrics
else:
params= dict((k, v) for k, v in params.items())
if len(metrics) == 0 and 'eval_metric' in params:
if isinstance(params['eval_metric'], list):
metrics = params['eval_metric']
else:
metrics = [params['eval_metric']]
params.pop("eval_metric", None)
if early_stopping_rounds is not None:
if len(metrics) > 1:
raise ValueError('Check your params.'\
raise ValueError('Check your params. '\
'Early stopping works with single eval metric only.')
sys.stderr.write("Will train until cv error hasn't decreased in {} rounds.\n".format(\
@ -434,7 +453,7 @@ def cv(params, dtrain, num_boost_round=10, nfold=3, metrics=(),
best_score_i = i
elif i - best_score_i >= early_stopping_rounds:
results = results[:best_score_i+1]
sys.stderr.write("Stopping. Best iteration: {} (mean: {}, std: {})\n".
sys.stderr.write("Stopping. Best iteration:\n[{}] cv-mean:{}\tcv-std:{}\n".
format(best_score_i, results[-1][0], results[-1][1]))
break
if as_pandas:

View File

@ -4,25 +4,26 @@ import xgboost as xgb
import unittest
import matplotlib
matplotlib.use('Agg')
dpath = 'demo/data/'
rng = np.random.RandomState(1994)
class TestBasic(unittest.TestCase):
class TestBasic(unittest.TestCase):
def test_basic(self):
dtrain = xgb.DMatrix(dpath + 'agaricus.txt.train')
dtest = xgb.DMatrix(dpath + 'agaricus.txt.test')
param = {'max_depth':2, 'eta':1, 'silent':1, 'objective':'binary:logistic' }
param = {'max_depth': 2, 'eta': 1, 'silent': 1, 'objective': 'binary:logistic'}
# specify validations set to watch performance
watchlist = [(dtest,'eval'), (dtrain,'train')]
watchlist = [(dtest, 'eval'), (dtrain, 'train')]
num_round = 2
bst = xgb.train(param, dtrain, num_round, watchlist)
# this is prediction
preds = bst.predict(dtest)
labels = dtest.get_label()
err = sum(1 for i in range(len(preds)) if int(preds[i]>0.5)!=labels[i]) / float(len(preds))
err = sum(1 for i in range(len(preds)) if int(preds[i] > 0.5) != labels[i]) / float(len(preds))
# error must be smaller than 10%
assert err < 0.1
@ -35,7 +36,7 @@ class TestBasic(unittest.TestCase):
dtest2 = xgb.DMatrix('dtest.buffer')
preds2 = bst2.predict(dtest2)
# assert they are the same
assert np.sum(np.abs(preds2-preds)) == 0
assert np.sum(np.abs(preds2 - preds)) == 0
def test_dmatrix_init(self):
data = np.random.randn(5, 5)
@ -62,6 +63,7 @@ class TestBasic(unittest.TestCase):
def incorrect_type_set():
dm.feature_types = list('abcde')
self.assertRaises(ValueError, incorrect_type_set)
# reset
@ -83,10 +85,10 @@ class TestBasic(unittest.TestCase):
assert dm.num_row() == 100
assert dm.num_col() == 5
params={'objective': 'multi:softprob',
'eval_metric': 'mlogloss',
'eta': 0.3,
'num_class': 3}
params = {'objective': 'multi:softprob',
'eval_metric': 'mlogloss',
'eta': 0.3,
'num_class': 3}
bst = xgb.train(params, dm, num_boost_round=10)
scores = bst.get_fscore()
@ -143,9 +145,9 @@ class TestBasic(unittest.TestCase):
# 1 2 0 1 0
# 2 3 0 0 1
result, _, _ = xgb.core._maybe_pandas_data(dummies, None, None)
exp = np.array([[ 1., 1., 0., 0.],
[ 2., 0., 1., 0.],
[ 3., 0., 0., 1.]])
exp = np.array([[1., 1., 0., 0.],
[2., 0., 1., 0.],
[3., 0., 0., 1.]])
np.testing.assert_array_equal(result, exp)
dm = xgb.DMatrix(dummies)
@ -180,7 +182,6 @@ class TestBasic(unittest.TestCase):
assert dm.num_row() == 3
assert dm.num_col() == 2
def test_load_file_invalid(self):
self.assertRaises(ValueError, xgb.Booster,
@ -213,7 +214,7 @@ class TestBasic(unittest.TestCase):
def test_cv(self):
dm = xgb.DMatrix(dpath + 'agaricus.txt.train')
params = {'max_depth':2, 'eta':1, 'silent':1, 'objective':'binary:logistic' }
params = {'max_depth': 2, 'eta': 1, 'silent': 1, 'objective': 'binary:logistic'}
import pandas as pd
cv = xgb.cv(params, dm, num_boost_round=10, nfold=10)
@ -241,6 +242,47 @@ class TestBasic(unittest.TestCase):
assert isinstance(cv, np.ndarray)
assert cv.shape == (10, 4)
params = {'max_depth': 2, 'eta': 1, 'silent': 1, 'objective': 'binary:logistic', 'eval_metric': 'auc'}
cv = xgb.cv(params, dm, num_boost_round=10, nfold=10, as_pandas=True)
assert 'eval_metric' in params
assert 'auc' in cv.columns[0]
params = {'max_depth': 2, 'eta': 1, 'silent': 1, 'objective': 'binary:logistic', 'eval_metric': ['auc']}
cv = xgb.cv(params, dm, num_boost_round=10, nfold=10, as_pandas=True)
assert 'eval_metric' in params
assert 'auc' in cv.columns[0]
params = {'max_depth': 2, 'eta': 1, 'silent': 1, 'objective': 'binary:logistic', 'eval_metric': ['auc']}
cv = xgb.cv(params, dm, num_boost_round=10, nfold=10, as_pandas=True, early_stopping_rounds=1)
assert 'eval_metric' in params
assert 'auc' in cv.columns[0]
assert cv.shape[0] < 10
params = {'max_depth': 2, 'eta': 1, 'silent': 1, 'objective': 'binary:logistic'}
cv = xgb.cv(params, dm, num_boost_round=10, nfold=10, as_pandas=True, metrics='auc')
assert 'auc' in cv.columns[0]
params = {'max_depth': 2, 'eta': 1, 'silent': 1, 'objective': 'binary:logistic'}
cv = xgb.cv(params, dm, num_boost_round=10, nfold=10, as_pandas=True, metrics=['auc'])
assert 'auc' in cv.columns[0]
params = {'max_depth': 2, 'eta': 1, 'silent': 1, 'objective': 'binary:logistic', 'eval_metric': ['auc']}
cv = xgb.cv(params, dm, num_boost_round=10, nfold=10, as_pandas=True, metrics='error')
assert 'eval_metric' in params
assert 'auc' not in cv.columns[0]
assert 'error' in cv.columns[0]
cv = xgb.cv(params, dm, num_boost_round=10, nfold=10, as_pandas=True, metrics=['error'])
assert 'eval_metric' in params
assert 'auc' not in cv.columns[0]
assert 'error' in cv.columns[0]
params = list(params.items())
cv = xgb.cv(params, dm, num_boost_round=10, nfold=10, as_pandas=True, metrics=['error'])
assert isinstance(params, list)
assert 'auc' not in cv.columns[0]
assert 'error' in cv.columns[0]
def test_plotting(self):
bst2 = xgb.Booster(model_file='xgb.model')
# plotting
@ -263,7 +305,7 @@ class TestBasic(unittest.TestCase):
assert ax.get_ylabel() == 'y'
assert len(ax.patches) == 4
for p in ax.patches:
assert p.get_facecolor() == (1.0, 0, 0, 1.0) # red
assert p.get_facecolor() == (1.0, 0, 0, 1.0) # red
ax = xgb.plot_importance(bst2, color=['r', 'r', 'b', 'b'],
title=None, xlabel=None, ylabel=None)
@ -272,10 +314,10 @@ class TestBasic(unittest.TestCase):
assert ax.get_xlabel() == ''
assert ax.get_ylabel() == ''
assert len(ax.patches) == 4
assert ax.patches[0].get_facecolor() == (1.0, 0, 0, 1.0) # red
assert ax.patches[1].get_facecolor() == (1.0, 0, 0, 1.0) # red
assert ax.patches[2].get_facecolor() == (0, 0, 1.0, 1.0) # blue
assert ax.patches[3].get_facecolor() == (0, 0, 1.0, 1.0) # blue
assert ax.patches[0].get_facecolor() == (1.0, 0, 0, 1.0) # red
assert ax.patches[1].get_facecolor() == (1.0, 0, 0, 1.0) # red
assert ax.patches[2].get_facecolor() == (0, 0, 1.0, 1.0) # blue
assert ax.patches[3].get_facecolor() == (0, 0, 1.0, 1.0) # blue
g = xgb.to_graphviz(bst2, num_trees=0)
assert isinstance(g, Digraph)
@ -285,7 +327,7 @@ class TestBasic(unittest.TestCase):
def test_importance_plot_lim(self):
np.random.seed(1)
dm = xgb.DMatrix(np.random.randn(100, 100), label=[0, 1]*50)
dm = xgb.DMatrix(np.random.randn(100, 100), label=[0, 1] * 50)
bst = xgb.train({}, dm)
assert len(bst.get_fscore()) == 71
ax = xgb.plot_importance(bst)