Merge pull request #560 from sinhrks/plot_importance

Python: adjusts plot_importance ylim
This commit is contained in:
Tianqi Chen 2015-10-24 22:08:40 -07:00
commit d60ee84137
2 changed files with 26 additions and 5 deletions

View File

@ -12,7 +12,7 @@ from .sklearn import XGBModel
from io import BytesIO
def plot_importance(booster, ax=None, height=0.2,
xlim=None, title='Feature importance',
xlim=None, ylim=None, title='Feature importance',
xlabel='F score', ylabel='Features',
grid=True, **kwargs):
@ -28,6 +28,8 @@ def plot_importance(booster, ax=None, height=0.2,
Bar height, passed to ax.barh()
xlim : tuple, default None
Tuple passed to axes.xlim()
ylim : tuple, default None
Tuple passed to axes.ylim()
title : str, default "Feature importance"
Axes title. To disable, pass None.
xlabel : str, default "F score"
@ -76,12 +78,19 @@ def plot_importance(booster, ax=None, height=0.2,
ax.set_yticklabels(labels)
if xlim is not None:
if not isinstance(xlim, tuple) or len(xlim, 2):
if not isinstance(xlim, tuple) or len(xlim) != 2:
raise ValueError('xlim must be a tuple of 2 elements')
else:
xlim = (0, max(values) * 1.1)
ax.set_xlim(xlim)
if ylim is not None:
if not isinstance(ylim, tuple) or len(ylim) != 2:
raise ValueError('ylim must be a tuple of 2 elements')
else:
ylim = (-1, len(importance))
ax.set_ylim(ylim)
if title is not None:
ax.set_title(title)
if xlabel is not None:

View File

@ -3,6 +3,8 @@ import numpy as np
import xgboost as xgb
import unittest
import matplotlib
matplotlib.use('Agg')
dpath = 'demo/data/'
rng = np.random.RandomState(1994)
@ -198,9 +200,6 @@ class TestBasic(unittest.TestCase):
bst2 = xgb.Booster(model_file='xgb.model')
# plotting
import matplotlib
matplotlib.use('Agg')
from matplotlib.axes import Axes
from graphviz import Digraph
@ -239,6 +238,19 @@ class TestBasic(unittest.TestCase):
ax = xgb.plot_tree(bst2, num_trees=0)
assert isinstance(ax, Axes)
def test_importance_plot_lim(self):
np.random.seed(1)
dm = xgb.DMatrix(np.random.randn(100, 100), label=[0, 1]*50)
bst = xgb.train({}, dm)
assert len(bst.get_fscore()) == 71
ax = xgb.plot_importance(bst)
assert ax.get_xlim() == (0., 11.)
assert ax.get_ylim() == (-1., 71.)
ax = xgb.plot_importance(bst, xlim=(0, 5), ylim=(10, 71))
assert ax.get_xlim() == (0., 5.)
assert ax.get_ylim() == (10., 71.)
def test_sklearn_api(self):
from sklearn import datasets
from sklearn.cross_validation import train_test_split