Fixed a few typos in README

This commit is contained in:
Will Stanton 2015-07-22 09:19:22 -06:00
parent 80b6ec4478
commit d120167725

View File

@ -6,11 +6,11 @@ DMLC/XGBoost
An optimized general purpose gradient boosting library. The library is parallelized, and also provides an optimized distributed version.
It implements machine learning algorithms under the [Gradient Boosting](https://en.wikipedia.org/wiki/Gradient_boosting) framework, including [Generalized Linear Model](https://en.wikipedia.org/wiki/Generalized_linear_model) (GLM) and [Gradient Boosted Decision Trees](https://en.wikipedia.org/wiki/Gradient_boosting#Gradient_tree_boosting) (GBDT). XGBoost can also be [distributed](#features) and scale to Terascale data
Checkout our [Comitters and Contributors](CONTRIBUTORS.md) who keep make xgboost better.
Checkout our [Committers and Contributors](CONTRIBUTORS.md) who help make xgboost better.
Documentations: [Documentation of dmlc/xgboost](doc/README.md)
Documentation: [Documentation of dmlc/xgboost](doc/README.md)
Issues Tracker: [https://github.com/dmlc/xgboost/issues](https://github.com/dmlc/xgboost/issues?q=is%3Aissue+label%3Aquestion)
Issue Tracker: [https://github.com/dmlc/xgboost/issues](https://github.com/dmlc/xgboost/issues?q=is%3Aissue+label%3Aquestion)
Please join [XGBoost User Group](https://groups.google.com/forum/#!forum/xgboost-user/) to ask questions and share your experience on xgboost.
- Use issue tracker for bug reports, feature requests etc.
@ -30,13 +30,13 @@ What's New
- Checkout the winning solution at [Highlight links](doc/README.md#highlight-links)
* XGBoost-0.4 release, see [CHANGES.md](CHANGES.md#xgboost-04)
* XGBoost helps three champion teams to win [WWW2015 Microsoft Malware Classification Challenge (BIG 2015)](http://www.kaggle.com/c/malware-classification/forums/t/13490/say-no-to-overfitting-approaches-sharing)
- Checkout the winning solution at [Highlight links](doc/README.md#highlight-links)
- Check out the winning solution at [Highlight links](doc/README.md#highlight-links)
* [External Memory Version](doc/external_memory.md)
Contributing to XGBoost
=========
XGBoost has been developed and used by a group of active community. Everyone is more than welcomed to is a great way to make the project better and more accessible to more users.
* Checkout [Feature Wish List](https://github.com/dmlc/xgboost/labels/Wish-List) to see what can be improved, or open an issue if you want something.
XGBoost has been developed and used by a group of active community members. Everyone is more than welcome to contribute. It is a way to make the project better and more accessible to more users.
* Check out [Feature Wish List](https://github.com/dmlc/xgboost/labels/Wish-List) to see what can be improved, or open an issue if you want something.
* Contribute to the [documents and examples](https://github.com/dmlc/xgboost/blob/master/doc/) to share your experience with other users.
* Please add your name to [CONTRIBUTORS.md](CONTRIBUTORS.md) after your patch has been merged.
@ -66,5 +66,5 @@ Version
XGBoost in Graphlab Create
==========================
* XGBoost is adopted as part of boosted tree toolkit in Graphlab Create (GLC). Graphlab Create is a powerful python toolkit that allows you to data manipulation, graph processing, hyper-parameter search, and visualization of TeraBytes scale data in one framework. Try the Graphlab Create in http://graphlab.com/products/create/quick-start-guide.html
* Nice blogpost by Jay Gu using GLC boosted tree to solve kaggle bike sharing challenge: http://blog.graphlab.com/using-gradient-boosted-trees-to-predict-bike-sharing-demand
* XGBoost is adopted as part of boosted tree toolkit in Graphlab Create (GLC). Graphlab Create is a powerful python toolkit that allows you to do data manipulation, graph processing, hyper-parameter search, and visualization of TeraBytes scale data in one framework. Try the Graphlab Create in http://graphlab.com/products/create/quick-start-guide.html
* Nice blogpost by Jay Gu about using GLC boosted tree to solve kaggle bike sharing challenge: http://blog.graphlab.com/using-gradient-boosted-trees-to-predict-bike-sharing-demand