Merge pull request #959 from tqchen/master
Fix continue training in CLI
This commit is contained in:
commit
d02bd41623
@ -26,6 +26,15 @@ inline std::vector<std::string> Split(const std::string& s, char delim) {
|
||||
}
|
||||
return ret;
|
||||
}
|
||||
|
||||
// simple routine to convert any data to string
|
||||
template<typename T>
|
||||
inline std::string ToString(const T& data) {
|
||||
std::ostringstream os;
|
||||
os << data;
|
||||
return os.str();
|
||||
}
|
||||
|
||||
} // namespace common
|
||||
} // namespace xgboost
|
||||
#endif // XGBOOST_COMMON_COMMON_H_
|
||||
|
||||
@ -126,6 +126,9 @@ class GBTree : public GradientBooster {
|
||||
CHECK_EQ(fi->Read(dmlc::BeginPtr(tree_info), sizeof(int) * mparam.num_trees),
|
||||
sizeof(int) * mparam.num_trees);
|
||||
}
|
||||
this->cfg.clear();
|
||||
this->cfg.push_back(std::make_pair(std::string("num_feature"),
|
||||
common::ToString(mparam.num_feature)));
|
||||
// clear the predict buffer.
|
||||
this->ResetPredBuffer(num_pbuffer);
|
||||
}
|
||||
|
||||
@ -14,6 +14,7 @@
|
||||
#include <limits>
|
||||
#include <iomanip>
|
||||
#include "./common/io.h"
|
||||
#include "./common/common.h"
|
||||
#include "./common/random.h"
|
||||
|
||||
namespace xgboost {
|
||||
@ -27,13 +28,6 @@ Learner::Dump2Text(const FeatureMap& fmap, int option) const {
|
||||
return gbm_->Dump2Text(fmap, option);
|
||||
}
|
||||
|
||||
// simple routine to convert any data to string
|
||||
template<typename T>
|
||||
inline std::string ToString(const T& data) {
|
||||
std::ostringstream os;
|
||||
os << data;
|
||||
return os.str();
|
||||
}
|
||||
|
||||
/*! \brief training parameter for regression */
|
||||
struct LearnerModelParam
|
||||
@ -192,7 +186,7 @@ class LearnerImpl : public Learner {
|
||||
common::GlobalRandom().seed(tparam.seed);
|
||||
|
||||
// set number of features correctly.
|
||||
cfg_["num_feature"] = ToString(mparam.num_feature);
|
||||
cfg_["num_feature"] = common::ToString(mparam.num_feature);
|
||||
if (gbm_.get() != nullptr) {
|
||||
gbm_->Configure(cfg_.begin(), cfg_.end());
|
||||
}
|
||||
@ -252,13 +246,13 @@ class LearnerImpl : public Learner {
|
||||
attributes_ = std::map<std::string, std::string>(
|
||||
attr.begin(), attr.end());
|
||||
}
|
||||
|
||||
if (metrics_.size() == 0) {
|
||||
metrics_.emplace_back(Metric::Create(obj_->DefaultEvalMetric()));
|
||||
}
|
||||
this->base_score_ = mparam.base_score;
|
||||
gbm_->ResetPredBuffer(pred_buffer_size_);
|
||||
cfg_["num_class"] = ToString(mparam.num_class);
|
||||
cfg_["num_class"] = common::ToString(mparam.num_class);
|
||||
cfg_["num_feature"] = common::ToString(mparam.num_feature);
|
||||
obj_->Configure(cfg_.begin(), cfg_.end());
|
||||
}
|
||||
|
||||
@ -395,7 +389,7 @@ class LearnerImpl : public Learner {
|
||||
}
|
||||
|
||||
// setup
|
||||
cfg_["num_feature"] = ToString(mparam.num_feature);
|
||||
cfg_["num_feature"] = common::ToString(mparam.num_feature);
|
||||
CHECK(obj_.get() == nullptr && gbm_.get() == nullptr);
|
||||
obj_.reset(ObjFunction::Create(name_obj_));
|
||||
gbm_.reset(GradientBooster::Create(name_gbm_));
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user