Merge pull request #496 from sinhrks/str_cln

Cleanup str roundtrip using ctypes
This commit is contained in:
Tianqi Chen 2015-09-16 16:01:42 -07:00
commit cf2ec238a4
2 changed files with 163 additions and 109 deletions

View File

@ -21,16 +21,66 @@ class XGBoostError(Exception):
"""Error throwed by xgboost trainer."""
pass
PY3 = (sys.version_info[0] == 3)
if sys.version_info[0] == 3:
if PY3:
# pylint: disable=invalid-name, redefined-builtin
STRING_TYPES = str,
unicode = str
else:
# pylint: disable=invalid-name
STRING_TYPES = basestring,
def from_pystr_to_cstr(data):
"""Convert a list of Python str to C pointer
Parameters
----------
data : list
list of str
"""
if isinstance(data, list):
pointers = (ctypes.c_char_p * len(data))()
if PY3:
data = [bytes(d, 'utf-8') for d in data]
else:
data = [d.encode('utf-8') if isinstance(d, unicode) else d
for d in data]
pointers[:] = data
return pointers
else:
# copy from above when we actually use it
raise NotImplementedError
def from_cstr_to_pystr(data, length):
"""Revert C pointer to Python str
Parameters
----------
data : ctypes pointer
pointer to data
length : ctypes pointer
pointer to length of data
"""
if PY3:
res = []
for i in range(length.value):
try:
res.append(str(data[i].decode('ascii')))
except UnicodeDecodeError:
res.append(str(data[i].decode('utf-8')))
else:
res = []
for i in range(length.value):
try:
res.append(str(data[i].decode('ascii')))
except UnicodeDecodeError:
res.append(unicode(data[i].decode('utf-8')))
return res
def find_lib_path():
"""Load find the path to xgboost dynamic library files.
@ -787,21 +837,12 @@ class Booster(object):
sarr = ctypes.POINTER(ctypes.c_char_p)()
if self.feature_names is not None and fmap == '':
flen = int(len(self.feature_names))
fname = (ctypes.c_char_p * flen)()
ftype = (ctypes.c_char_p * flen)()
fname = from_pystr_to_cstr(self.feature_names)
# supports quantitative type only
# {'q': quantitative, 'i': indicator}
if sys.version_info[0] == 3:
features = [bytes(f, 'utf-8') for f in self.feature_names]
types = [bytes('q', 'utf-8')] * flen
else:
features = [f.encode('utf-8') if isinstance(f, unicode) else f
for f in self.feature_names]
types = ['q'] * flen
fname[:] = features
ftype[:] = types
ftype = from_pystr_to_cstr(['q'] * flen)
_check_call(_LIB.XGBoosterDumpModelWithFeatures(self.handle,
flen,
fname,
@ -815,13 +856,7 @@ class Booster(object):
int(with_stats),
ctypes.byref(length),
ctypes.byref(sarr)))
res = []
for i in range(length.value):
try:
res.append(str(sarr[i].decode('ascii')))
except UnicodeDecodeError:
res.append(unicode(sarr[i].decode('utf-8')))
res = from_cstr_to_pystr(sarr, length)
return res
def get_fscore(self, fmap=''):

View File

@ -6,106 +6,125 @@ import unittest
dpath = 'demo/data/'
class TestBasic(unittest.TestCase):
def test_basic(self):
dtrain = xgb.DMatrix(dpath + 'agaricus.txt.train')
dtest = xgb.DMatrix(dpath + 'agaricus.txt.test')
param = {'max_depth':2, 'eta':1, 'silent':1, 'objective':'binary:logistic' }
# specify validations set to watch performance
watchlist = [(dtest,'eval'), (dtrain,'train')]
num_round = 2
bst = xgb.train(param, dtrain, num_round, watchlist)
# this is prediction
preds = bst.predict(dtest)
labels = dtest.get_label()
err = sum(1 for i in range(len(preds)) if int(preds[i]>0.5)!=labels[i]) / float(len(preds))
# error must be smaller than 10%
assert err < 0.1
# save dmatrix into binary buffer
dtest.save_binary('dtest.buffer')
# save model
bst.save_model('xgb.model')
# load model and data in
bst2 = xgb.Booster(model_file='xgb.model')
dtest2 = xgb.DMatrix('dtest.buffer')
preds2 = bst2.predict(dtest2)
# assert they are the same
assert np.sum(np.abs(preds2-preds)) == 0
def test_dmatrix_init(self):
data = np.random.randn(5, 5)
# different length
self.assertRaises(ValueError, xgb.DMatrix, data,
feature_names=list('abcdef'))
# contains duplicates
self.assertRaises(ValueError, xgb.DMatrix, data,
feature_names=['a', 'b', 'c', 'd', 'd'])
# contains symbol
self.assertRaises(ValueError, xgb.DMatrix, data,
feature_names=['a', 'b', 'c', 'd', 'e=1'])
def test_feature_names(self):
data = np.random.randn(100, 5)
target = np.array([0, 1] * 50)
cases = [['Feature1', 'Feature2', 'Feature3', 'Feature4', 'Feature5'],
[u'要因1', u'要因2', u'要因3', u'要因4', u'要因5']]
for features in cases:
dm = xgb.DMatrix(data, label=target,
feature_names=features)
assert dm.feature_names == features
assert dm.num_row() == 100
assert dm.num_col() == 5
params={'objective': 'multi:softprob',
'eval_metric': 'mlogloss',
'eta': 0.3,
'num_class': 3}
bst = xgb.train(params, dm, num_boost_round=10)
scores = bst.get_fscore()
assert list(sorted(k for k in scores)) == features
dummy = np.random.randn(5, 5)
dm = xgb.DMatrix(dummy, feature_names=features)
bst.predict(dm)
# different feature name must raises error
dm = xgb.DMatrix(dummy, feature_names=list('abcde'))
self.assertRaises(ValueError, bst.predict, dm)
def test_load_file_invalid(self):
self.assertRaises(ValueError, xgb.Booster,
model_file='incorrect_path')
def test_plotting(self):
bst2 = xgb.Booster(model_file='xgb.model')
# plotting
def test_basic():
dtrain = xgb.DMatrix(dpath + 'agaricus.txt.train')
dtest = xgb.DMatrix(dpath + 'agaricus.txt.test')
param = {'max_depth':2, 'eta':1, 'silent':1, 'objective':'binary:logistic' }
# specify validations set to watch performance
watchlist = [(dtest,'eval'), (dtrain,'train')]
num_round = 2
bst = xgb.train(param, dtrain, num_round, watchlist)
# this is prediction
preds = bst.predict(dtest)
labels = dtest.get_label()
err = sum(1 for i in range(len(preds)) if int(preds[i]>0.5)!=labels[i]) / float(len(preds))
# error must be smaller than 10%
assert err < 0.1
import matplotlib
matplotlib.use('Agg')
# save dmatrix into binary buffer
dtest.save_binary('dtest.buffer')
# save model
bst.save_model('xgb.model')
# load model and data in
bst2 = xgb.Booster(model_file='xgb.model')
dtest2 = xgb.DMatrix('dtest.buffer')
preds2 = bst2.predict(dtest2)
# assert they are the same
assert np.sum(np.abs(preds2-preds)) == 0
from matplotlib.axes import Axes
from graphviz import Digraph
def test_feature_names():
data = np.random.randn(100, 5)
target = np.array([0, 1] * 50)
ax = xgb.plot_importance(bst2)
assert isinstance(ax, Axes)
assert ax.get_title() == 'Feature importance'
assert ax.get_xlabel() == 'F score'
assert ax.get_ylabel() == 'Features'
assert len(ax.patches) == 4
cases = [['Feature1', 'Feature2', 'Feature3', 'Feature4', 'Feature5'],
[u'要因1', u'要因2', u'要因3', u'要因4', u'要因5']]
for features in cases:
dm = xgb.DMatrix(data, label=target,
feature_names=features)
assert dm.feature_names == features
assert dm.num_row() == 100
assert dm.num_col() == 5
params={'objective': 'multi:softprob',
'eval_metric': 'mlogloss',
'eta': 0.3,
'num_class': 3}
bst = xgb.train(params, dm, num_boost_round=10)
scores = bst.get_fscore()
assert list(sorted(k for k in scores)) == features
ax = xgb.plot_importance(bst2, color='r',
title='t', xlabel='x', ylabel='y')
assert isinstance(ax, Axes)
assert ax.get_title() == 't'
assert ax.get_xlabel() == 'x'
assert ax.get_ylabel() == 'y'
assert len(ax.patches) == 4
for p in ax.patches:
assert p.get_facecolor() == (1.0, 0, 0, 1.0) # red
def test_plotting():
bst2 = xgb.Booster(model_file='xgb.model')
# plotting
ax = xgb.plot_importance(bst2, color=['r', 'r', 'b', 'b'],
title=None, xlabel=None, ylabel=None)
assert isinstance(ax, Axes)
assert ax.get_title() == ''
assert ax.get_xlabel() == ''
assert ax.get_ylabel() == ''
assert len(ax.patches) == 4
assert ax.patches[0].get_facecolor() == (1.0, 0, 0, 1.0) # red
assert ax.patches[1].get_facecolor() == (1.0, 0, 0, 1.0) # red
assert ax.patches[2].get_facecolor() == (0, 0, 1.0, 1.0) # blue
assert ax.patches[3].get_facecolor() == (0, 0, 1.0, 1.0) # blue
import matplotlib
matplotlib.use('Agg')
g = xgb.to_graphviz(bst2, num_trees=0)
assert isinstance(g, Digraph)
ax = xgb.plot_tree(bst2, num_trees=0)
assert isinstance(ax, Axes)
from matplotlib.axes import Axes
from graphviz import Digraph
ax = xgb.plot_importance(bst2)
assert isinstance(ax, Axes)
assert ax.get_title() == 'Feature importance'
assert ax.get_xlabel() == 'F score'
assert ax.get_ylabel() == 'Features'
assert len(ax.patches) == 4
ax = xgb.plot_importance(bst2, color='r',
title='t', xlabel='x', ylabel='y')
assert isinstance(ax, Axes)
assert ax.get_title() == 't'
assert ax.get_xlabel() == 'x'
assert ax.get_ylabel() == 'y'
assert len(ax.patches) == 4
for p in ax.patches:
assert p.get_facecolor() == (1.0, 0, 0, 1.0) # red
ax = xgb.plot_importance(bst2, color=['r', 'r', 'b', 'b'],
title=None, xlabel=None, ylabel=None)
assert isinstance(ax, Axes)
assert ax.get_title() == ''
assert ax.get_xlabel() == ''
assert ax.get_ylabel() == ''
assert len(ax.patches) == 4
assert ax.patches[0].get_facecolor() == (1.0, 0, 0, 1.0) # red
assert ax.patches[1].get_facecolor() == (1.0, 0, 0, 1.0) # red
assert ax.patches[2].get_facecolor() == (0, 0, 1.0, 1.0) # blue
assert ax.patches[3].get_facecolor() == (0, 0, 1.0, 1.0) # blue
g = xgb.to_graphviz(bst2, num_trees=0)
assert isinstance(g, Digraph)
ax = xgb.plot_tree(bst2, num_trees=0)
assert isinstance(ax, Axes)