Update gpu_hist algorithm (#2901)
This commit is contained in:
parent
24f527a1c0
commit
c55f14668e
@ -17,7 +17,7 @@ Specify the 'tree_method' parameter as one of the following algorithms.
|
||||
+==============+=================================================================================================================================================================================================================+
|
||||
| gpu_exact | The standard XGBoost tree construction algorithm. Performs exact search for splits. Slower and uses considerably more memory than 'gpu_hist' |
|
||||
+--------------+-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
|
||||
| gpu_hist | Equivalent to the XGBoost fast histogram algorithm. Much faster and uses considerably less memory. NOTE: Cannot be used with labels larger in magnitude than 2^16 due to it's histogram aggregation algorithm. |
|
||||
| gpu_hist | Equivalent to the XGBoost fast histogram algorithm. Much faster and uses considerably less memory. NOTE: Will run very slowly on GPUs older than Pascal architecture. |
|
||||
+--------------+-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
|
||||
```
|
||||
|
||||
@ -44,17 +44,18 @@ Specify the 'tree_method' parameter as one of the following algorithms.
|
||||
+--------------------+------------+-----------+
|
||||
| predictor | |tick| | |tick| |
|
||||
+--------------------+------------+-----------+
|
||||
| grow_policy | |cross| | |tick| |
|
||||
+--------------------+------------+-----------+
|
||||
|
||||
|
|
||||
```
|
||||
|
||||
GPU accelerated prediction is enabled by default for the above mentioned 'tree_method' parameters but can be switched to CPU prediction by setting 'predictor':'cpu_predictor'. This could be useful if you want to conserve GPU memory. Likewise when using CPU algorithms, GPU accelerated prediction can be enabled by setting 'predictor':'gpu_predictor'.
|
||||
|
||||
The device ordinal can be selected using the 'gpu_id' parameter, which defaults to 0.
|
||||
|
||||
Multiple GPUs can be used with the grow_gpu_hist parameter using the n_gpus parameter. which defaults to 1. If this is set to -1 all available GPUs will be used. If gpu_id is specified as non-zero, the gpu device order is mod(gpu_id + i) % n_visible_devices for i=0 to n_gpus-1. As with GPU vs. CPU, multi-GPU will not always be faster than a single GPU due to PCI bus bandwidth that can limit performance. For example, when n_features * n_bins * 2^depth divided by time of each round/iteration becomes comparable to the real PCI 16x bus bandwidth of order 4GB/s to 10GB/s, then AllReduce will dominant code speed and multiple GPUs become ineffective at increasing performance. Also, CPU overhead between GPU calls can limit usefulness of multiple GPUs.
|
||||
Multiple GPUs can be used with the grow_gpu_hist parameter using the n_gpus parameter. which defaults to 1. If this is set to -1 all available GPUs will be used. If gpu_id is specified as non-zero, the gpu device order is mod(gpu_id + i) % n_visible_devices for i=0 to n_gpus-1. As with GPU vs. CPU, multi-GPU will not always be faster than a single GPU due to PCI bus bandwidth that can limit performance.
|
||||
|
||||
This plugin currently works with the CLI version and python version.
|
||||
This plugin currently works with the CLI, python and R - see installation guide for details.
|
||||
|
||||
Python example:
|
||||
```python
|
||||
@ -83,7 +84,6 @@ Training time time on 1,000,000 rows x 50 columns with 500 boosting iterations a
|
||||
| exact | 1082.20 |
|
||||
+--------------+----------+
|
||||
|
||||
|
|
||||
```
|
||||
|
||||
[See here](http://dmlc.ml/2016/12/14/GPU-accelerated-xgboost.html) for additional performance benchmarks of the 'gpu_exact' tree_method.
|
||||
@ -91,6 +91,8 @@ Training time time on 1,000,000 rows x 50 columns with 500 boosting iterations a
|
||||
## References
|
||||
[Mitchell R, Frank E. (2017) Accelerating the XGBoost algorithm using GPU computing. PeerJ Computer Science 3:e127 https://doi.org/10.7717/peerj-cs.127](https://peerj.com/articles/cs-127/)
|
||||
|
||||
[Nvidia Parallel Forall: Gradient Boosting, Decision Trees and XGBoost with CUDA](https://devblogs.nvidia.com/parallelforall/gradient-boosting-decision-trees-xgboost-cuda/)
|
||||
|
||||
## Author
|
||||
Rory Mitchell
|
||||
Jonathan C. McKinney
|
||||
|
||||
@ -111,7 +111,6 @@ struct LearnerTrainParam : public dmlc::Parameter<LearnerTrainParam> {
|
||||
.add_enum("hist", 3)
|
||||
.add_enum("gpu_exact", 4)
|
||||
.add_enum("gpu_hist", 5)
|
||||
.add_enum("gpu_hist_experimental", 6)
|
||||
.describe("Choice of tree construction method.");
|
||||
DMLC_DECLARE_FIELD(test_flag).set_default("").describe(
|
||||
"Internal test flag");
|
||||
@ -188,14 +187,6 @@ class LearnerImpl : public Learner {
|
||||
if (cfg_.count("predictor") == 0) {
|
||||
cfg_["predictor"] = "gpu_predictor";
|
||||
}
|
||||
} else if (tparam.tree_method == 6) {
|
||||
this->AssertGPUSupport();
|
||||
if (cfg_.count("updater") == 0) {
|
||||
cfg_["updater"] = "grow_gpu_hist_experimental,prune";
|
||||
}
|
||||
if (cfg_.count("predictor") == 0) {
|
||||
cfg_["predictor"] = "gpu_predictor";
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
@ -468,7 +459,7 @@ class LearnerImpl : public Learner {
|
||||
// if not, initialize the column access.
|
||||
inline void LazyInitDMatrix(DMatrix* p_train) {
|
||||
if (tparam.tree_method == 3 || tparam.tree_method == 4 ||
|
||||
tparam.tree_method == 5 || tparam.tree_method == 6) {
|
||||
tparam.tree_method == 5) {
|
||||
return;
|
||||
}
|
||||
|
||||
|
||||
@ -35,7 +35,6 @@ DMLC_REGISTRY_LINK_TAG(updater_sync);
|
||||
#ifdef XGBOOST_USE_CUDA
|
||||
DMLC_REGISTRY_LINK_TAG(updater_gpu);
|
||||
DMLC_REGISTRY_LINK_TAG(updater_gpu_hist);
|
||||
DMLC_REGISTRY_LINK_TAG(updater_gpu_hist_experimental);
|
||||
#endif
|
||||
} // namespace tree
|
||||
} // namespace xgboost
|
||||
|
||||
File diff suppressed because it is too large
Load Diff
@ -1,899 +0,0 @@
|
||||
/*!
|
||||
* Copyright 2017 XGBoost contributors
|
||||
*/
|
||||
#include <thrust/execution_policy.h>
|
||||
#include <thrust/reduce.h>
|
||||
#include <thrust/sequence.h>
|
||||
#include <xgboost/tree_updater.h>
|
||||
#include <algorithm>
|
||||
#include <memory>
|
||||
#include <queue>
|
||||
#include <utility>
|
||||
#include <vector>
|
||||
#include "../common/compressed_iterator.h"
|
||||
#include "../common/device_helpers.cuh"
|
||||
#include "../common/hist_util.h"
|
||||
#include "../common/timer.h"
|
||||
#include "param.h"
|
||||
#include "updater_gpu_common.cuh"
|
||||
|
||||
namespace xgboost {
|
||||
namespace tree {
|
||||
|
||||
DMLC_REGISTRY_FILE_TAG(updater_gpu_hist_experimental);
|
||||
|
||||
typedef bst_gpair_precise gpair_sum_t;
|
||||
|
||||
template <int BLOCK_THREADS, typename reduce_t, typename temp_storage_t>
|
||||
__device__ gpair_sum_t ReduceFeature(const gpair_sum_t* begin,
|
||||
const gpair_sum_t* end,
|
||||
temp_storage_t* temp_storage) {
|
||||
__shared__ cub::Uninitialized<gpair_sum_t> uninitialized_sum;
|
||||
gpair_sum_t& shared_sum = uninitialized_sum.Alias();
|
||||
|
||||
gpair_sum_t local_sum = gpair_sum_t();
|
||||
for (auto itr = begin; itr < end; itr += BLOCK_THREADS) {
|
||||
bool thread_active = itr + threadIdx.x < end;
|
||||
// Scan histogram
|
||||
gpair_sum_t bin = thread_active ? *(itr + threadIdx.x) : gpair_sum_t();
|
||||
|
||||
local_sum += reduce_t(temp_storage->sum_reduce).Reduce(bin, cub::Sum());
|
||||
}
|
||||
|
||||
if (threadIdx.x == 0) {
|
||||
shared_sum = local_sum;
|
||||
}
|
||||
__syncthreads();
|
||||
|
||||
return shared_sum;
|
||||
}
|
||||
|
||||
template <int BLOCK_THREADS, typename reduce_t, typename scan_t,
|
||||
typename max_reduce_t, typename temp_storage_t>
|
||||
__device__ void EvaluateFeature(int fidx, const gpair_sum_t* hist,
|
||||
const int* feature_segments, float min_fvalue,
|
||||
const float* gidx_fvalue_map,
|
||||
DeviceSplitCandidate* best_split,
|
||||
const DeviceNodeStats& node,
|
||||
const GPUTrainingParam& param,
|
||||
temp_storage_t* temp_storage) {
|
||||
int gidx_begin = feature_segments[fidx];
|
||||
int gidx_end = feature_segments[fidx + 1];
|
||||
|
||||
gpair_sum_t feature_sum = ReduceFeature<BLOCK_THREADS, reduce_t>(
|
||||
hist + gidx_begin, hist + gidx_end, temp_storage);
|
||||
|
||||
auto prefix_op = SumCallbackOp<gpair_sum_t>();
|
||||
for (int scan_begin = gidx_begin; scan_begin < gidx_end;
|
||||
scan_begin += BLOCK_THREADS) {
|
||||
bool thread_active = scan_begin + threadIdx.x < gidx_end;
|
||||
|
||||
gpair_sum_t bin =
|
||||
thread_active ? hist[scan_begin + threadIdx.x] : gpair_sum_t();
|
||||
scan_t(temp_storage->scan).ExclusiveScan(bin, bin, cub::Sum(), prefix_op);
|
||||
|
||||
// Calculate gain
|
||||
gpair_sum_t parent_sum = gpair_sum_t(node.sum_gradients);
|
||||
|
||||
gpair_sum_t missing = parent_sum - feature_sum;
|
||||
|
||||
bool missing_left = true;
|
||||
const float null_gain = -FLT_MAX;
|
||||
float gain = null_gain;
|
||||
if (thread_active) {
|
||||
gain = loss_chg_missing(bin, missing, parent_sum, node.root_gain, param,
|
||||
missing_left);
|
||||
}
|
||||
|
||||
__syncthreads();
|
||||
|
||||
// Find thread with best gain
|
||||
cub::KeyValuePair<int, float> tuple(threadIdx.x, gain);
|
||||
cub::KeyValuePair<int, float> best =
|
||||
max_reduce_t(temp_storage->max_reduce).Reduce(tuple, cub::ArgMax());
|
||||
|
||||
__shared__ cub::KeyValuePair<int, float> block_max;
|
||||
if (threadIdx.x == 0) {
|
||||
block_max = best;
|
||||
}
|
||||
|
||||
__syncthreads();
|
||||
|
||||
// Best thread updates split
|
||||
if (threadIdx.x == block_max.key) {
|
||||
int gidx = scan_begin + threadIdx.x;
|
||||
float fvalue =
|
||||
gidx == gidx_begin ? min_fvalue : gidx_fvalue_map[gidx - 1];
|
||||
|
||||
gpair_sum_t left = missing_left ? bin + missing : bin;
|
||||
gpair_sum_t right = parent_sum - left;
|
||||
|
||||
best_split->Update(gain, missing_left ? LeftDir : RightDir, fvalue, fidx,
|
||||
left, right, param);
|
||||
}
|
||||
__syncthreads();
|
||||
}
|
||||
}
|
||||
|
||||
template <int BLOCK_THREADS>
|
||||
__global__ void evaluate_split_kernel(
|
||||
const gpair_sum_t* d_hist, int nidx, uint64_t n_features,
|
||||
DeviceNodeStats nodes, const int* d_feature_segments,
|
||||
const float* d_fidx_min_map, const float* d_gidx_fvalue_map,
|
||||
GPUTrainingParam gpu_param, DeviceSplitCandidate* d_split) {
|
||||
typedef cub::KeyValuePair<int, float> ArgMaxT;
|
||||
typedef cub::BlockScan<gpair_sum_t, BLOCK_THREADS, cub::BLOCK_SCAN_WARP_SCANS>
|
||||
BlockScanT;
|
||||
typedef cub::BlockReduce<ArgMaxT, BLOCK_THREADS> MaxReduceT;
|
||||
|
||||
typedef cub::BlockReduce<gpair_sum_t, BLOCK_THREADS> SumReduceT;
|
||||
|
||||
union TempStorage {
|
||||
typename BlockScanT::TempStorage scan;
|
||||
typename MaxReduceT::TempStorage max_reduce;
|
||||
typename SumReduceT::TempStorage sum_reduce;
|
||||
};
|
||||
|
||||
__shared__ cub::Uninitialized<DeviceSplitCandidate> uninitialized_split;
|
||||
DeviceSplitCandidate& best_split = uninitialized_split.Alias();
|
||||
__shared__ TempStorage temp_storage;
|
||||
|
||||
if (threadIdx.x == 0) {
|
||||
best_split = DeviceSplitCandidate();
|
||||
}
|
||||
|
||||
__syncthreads();
|
||||
|
||||
auto fidx = blockIdx.x;
|
||||
EvaluateFeature<BLOCK_THREADS, SumReduceT, BlockScanT, MaxReduceT>(
|
||||
fidx, d_hist, d_feature_segments, d_fidx_min_map[fidx], d_gidx_fvalue_map,
|
||||
&best_split, nodes, gpu_param, &temp_storage);
|
||||
|
||||
__syncthreads();
|
||||
|
||||
if (threadIdx.x == 0) {
|
||||
// Record best loss
|
||||
d_split[fidx] = best_split;
|
||||
}
|
||||
}
|
||||
|
||||
// Find a gidx value for a given feature otherwise return -1 if not found
|
||||
template <typename gidx_iter_t>
|
||||
__device__ int BinarySearchRow(bst_uint begin, bst_uint end, gidx_iter_t data,
|
||||
int fidx_begin, int fidx_end) {
|
||||
bst_uint previous_middle = UINT32_MAX;
|
||||
while (end != begin) {
|
||||
auto middle = begin + (end - begin) / 2;
|
||||
if (middle == previous_middle) {
|
||||
break;
|
||||
}
|
||||
previous_middle = middle;
|
||||
|
||||
auto gidx = data[middle];
|
||||
|
||||
if (gidx >= fidx_begin && gidx < fidx_end) {
|
||||
return gidx;
|
||||
} else if (gidx < fidx_begin) {
|
||||
begin = middle;
|
||||
} else {
|
||||
end = middle;
|
||||
}
|
||||
}
|
||||
// Value is missing
|
||||
return -1;
|
||||
}
|
||||
|
||||
struct DeviceHistogram {
|
||||
dh::bulk_allocator<dh::memory_type::DEVICE> ba;
|
||||
dh::dvec<gpair_sum_t> data;
|
||||
int n_bins;
|
||||
void Init(int device_idx, int max_nodes, int n_bins, bool silent) {
|
||||
this->n_bins = n_bins;
|
||||
ba.allocate(device_idx, silent, &data, size_t(max_nodes) * size_t(n_bins));
|
||||
}
|
||||
|
||||
void Reset() { data.fill(gpair_sum_t()); }
|
||||
gpair_sum_t* GetHistPtr(int nidx) { return data.data() + nidx * n_bins; }
|
||||
|
||||
void PrintNidx(int nidx) const {
|
||||
auto h_data = data.as_vector();
|
||||
std::cout << "nidx " << nidx << ":\n";
|
||||
for (int i = n_bins * nidx; i < n_bins * (nidx + 1); i++) {
|
||||
std::cout << h_data[i] << " ";
|
||||
}
|
||||
std::cout << "\n";
|
||||
}
|
||||
};
|
||||
|
||||
// Manage memory for a single GPU
|
||||
struct DeviceShard {
|
||||
struct Segment {
|
||||
size_t begin;
|
||||
size_t end;
|
||||
|
||||
Segment() : begin(0), end(0) {}
|
||||
|
||||
Segment(size_t begin, size_t end) : begin(begin), end(end) {
|
||||
CHECK_GE(end, begin);
|
||||
}
|
||||
size_t Size() const { return end - begin; }
|
||||
};
|
||||
|
||||
int device_idx;
|
||||
int normalised_device_idx; // Device index counting from param.gpu_id
|
||||
dh::bulk_allocator<dh::memory_type::DEVICE> ba;
|
||||
dh::dvec<common::compressed_byte_t> gidx_buffer;
|
||||
dh::dvec<bst_gpair> gpair;
|
||||
dh::dvec2<bst_uint> ridx; // Row index relative to this shard
|
||||
dh::dvec2<int> position;
|
||||
std::vector<Segment> ridx_segments;
|
||||
dh::dvec<int> feature_segments;
|
||||
dh::dvec<float> gidx_fvalue_map;
|
||||
dh::dvec<float> min_fvalue;
|
||||
std::vector<bst_gpair> node_sum_gradients;
|
||||
common::CompressedIterator<uint32_t> gidx;
|
||||
int row_stride;
|
||||
bst_uint row_begin_idx; // The row offset for this shard
|
||||
bst_uint row_end_idx;
|
||||
bst_uint n_rows;
|
||||
int n_bins;
|
||||
int null_gidx_value;
|
||||
DeviceHistogram hist;
|
||||
TrainParam param;
|
||||
|
||||
int64_t* tmp_pinned; // Small amount of staging memory
|
||||
|
||||
std::vector<cudaStream_t> streams;
|
||||
|
||||
dh::CubMemory temp_memory;
|
||||
|
||||
DeviceShard(int device_idx, int normalised_device_idx,
|
||||
const common::GHistIndexMatrix& gmat, bst_uint row_begin,
|
||||
bst_uint row_end, int n_bins, TrainParam param)
|
||||
: device_idx(device_idx),
|
||||
normalised_device_idx(normalised_device_idx),
|
||||
row_begin_idx(row_begin),
|
||||
row_end_idx(row_end),
|
||||
n_rows(row_end - row_begin),
|
||||
n_bins(n_bins),
|
||||
null_gidx_value(n_bins),
|
||||
param(param) {
|
||||
// Convert to ELLPACK matrix representation
|
||||
int max_elements_row = 0;
|
||||
for (auto i = row_begin; i < row_end; i++) {
|
||||
max_elements_row =
|
||||
(std::max)(max_elements_row,
|
||||
static_cast<int>(gmat.row_ptr[i + 1] - gmat.row_ptr[i]));
|
||||
}
|
||||
row_stride = max_elements_row;
|
||||
std::vector<int> ellpack_matrix(row_stride * n_rows, null_gidx_value);
|
||||
|
||||
for (auto i = row_begin; i < row_end; i++) {
|
||||
int row_count = 0;
|
||||
for (auto j = gmat.row_ptr[i]; j < gmat.row_ptr[i + 1]; j++) {
|
||||
ellpack_matrix[(i - row_begin) * row_stride + row_count] =
|
||||
gmat.index[j];
|
||||
row_count++;
|
||||
}
|
||||
}
|
||||
|
||||
// Allocate
|
||||
int num_symbols = n_bins + 1;
|
||||
size_t compressed_size_bytes =
|
||||
common::CompressedBufferWriter::CalculateBufferSize(
|
||||
ellpack_matrix.size(), num_symbols);
|
||||
int max_nodes =
|
||||
param.max_leaves > 0 ? param.max_leaves * 2 : n_nodes(param.max_depth);
|
||||
ba.allocate(device_idx, param.silent, &gidx_buffer, compressed_size_bytes,
|
||||
&gpair, n_rows, &ridx, n_rows, &position, n_rows,
|
||||
&feature_segments, gmat.cut->row_ptr.size(), &gidx_fvalue_map,
|
||||
gmat.cut->cut.size(), &min_fvalue, gmat.cut->min_val.size());
|
||||
gidx_fvalue_map = gmat.cut->cut;
|
||||
min_fvalue = gmat.cut->min_val;
|
||||
feature_segments = gmat.cut->row_ptr;
|
||||
|
||||
node_sum_gradients.resize(max_nodes);
|
||||
ridx_segments.resize(max_nodes);
|
||||
|
||||
// Compress gidx
|
||||
common::CompressedBufferWriter cbw(num_symbols);
|
||||
std::vector<common::compressed_byte_t> host_buffer(gidx_buffer.size());
|
||||
cbw.Write(host_buffer.data(), ellpack_matrix.begin(), ellpack_matrix.end());
|
||||
gidx_buffer = host_buffer;
|
||||
gidx =
|
||||
common::CompressedIterator<uint32_t>(gidx_buffer.data(), num_symbols);
|
||||
|
||||
common::CompressedIterator<uint32_t> ci_host(host_buffer.data(),
|
||||
num_symbols);
|
||||
|
||||
// Init histogram
|
||||
hist.Init(device_idx, max_nodes, gmat.cut->row_ptr.back(), param.silent);
|
||||
|
||||
dh::safe_cuda(cudaMallocHost(&tmp_pinned, sizeof(int64_t)));
|
||||
}
|
||||
|
||||
~DeviceShard() {
|
||||
for (auto& stream : streams) {
|
||||
dh::safe_cuda(cudaStreamDestroy(stream));
|
||||
}
|
||||
dh::safe_cuda(cudaFreeHost(tmp_pinned));
|
||||
}
|
||||
|
||||
// Get vector of at least n initialised streams
|
||||
std::vector<cudaStream_t>& GetStreams(int n) {
|
||||
if (n > streams.size()) {
|
||||
for (auto& stream : streams) {
|
||||
dh::safe_cuda(cudaStreamDestroy(stream));
|
||||
}
|
||||
|
||||
streams.clear();
|
||||
streams.resize(n);
|
||||
|
||||
for (auto& stream : streams) {
|
||||
dh::safe_cuda(cudaStreamCreate(&stream));
|
||||
}
|
||||
}
|
||||
|
||||
return streams;
|
||||
}
|
||||
|
||||
// Reset values for each update iteration
|
||||
void Reset(const std::vector<bst_gpair>& host_gpair) {
|
||||
dh::safe_cuda(cudaSetDevice(device_idx));
|
||||
position.current_dvec().fill(0);
|
||||
std::fill(node_sum_gradients.begin(), node_sum_gradients.end(),
|
||||
bst_gpair());
|
||||
|
||||
thrust::sequence(ridx.current_dvec().tbegin(), ridx.current_dvec().tend());
|
||||
|
||||
std::fill(ridx_segments.begin(), ridx_segments.end(), Segment(0, 0));
|
||||
ridx_segments.front() = Segment(0, ridx.size());
|
||||
this->gpair.copy(host_gpair.begin() + row_begin_idx,
|
||||
host_gpair.begin() + row_end_idx);
|
||||
subsample_gpair(&gpair, param.subsample, row_begin_idx);
|
||||
hist.Reset();
|
||||
}
|
||||
|
||||
void BuildHist(int nidx) {
|
||||
auto segment = ridx_segments[nidx];
|
||||
auto d_node_hist = hist.GetHistPtr(nidx);
|
||||
auto d_gidx = gidx;
|
||||
auto d_ridx = ridx.current();
|
||||
auto d_gpair = gpair.data();
|
||||
auto row_stride = this->row_stride;
|
||||
auto null_gidx_value = this->null_gidx_value;
|
||||
auto n_elements = segment.Size() * row_stride;
|
||||
|
||||
dh::launch_n(device_idx, n_elements, [=] __device__(size_t idx) {
|
||||
int ridx = d_ridx[(idx / row_stride) + segment.begin];
|
||||
int gidx = d_gidx[ridx * row_stride + idx % row_stride];
|
||||
|
||||
if (gidx != null_gidx_value) {
|
||||
AtomicAddGpair(d_node_hist + gidx, d_gpair[ridx]);
|
||||
}
|
||||
});
|
||||
}
|
||||
void SubtractionTrick(int nidx_parent, int nidx_histogram,
|
||||
int nidx_subtraction) {
|
||||
auto d_node_hist_parent = hist.GetHistPtr(nidx_parent);
|
||||
auto d_node_hist_histogram = hist.GetHistPtr(nidx_histogram);
|
||||
auto d_node_hist_subtraction = hist.GetHistPtr(nidx_subtraction);
|
||||
|
||||
dh::launch_n(device_idx, hist.n_bins, [=] __device__(size_t idx) {
|
||||
d_node_hist_subtraction[idx] =
|
||||
d_node_hist_parent[idx] - d_node_hist_histogram[idx];
|
||||
});
|
||||
}
|
||||
|
||||
__device__ void CountLeft(int64_t* d_count, int val, int left_nidx) {
|
||||
unsigned ballot = __ballot(val == left_nidx);
|
||||
if (threadIdx.x % 32 == 0) {
|
||||
atomicAdd(reinterpret_cast<unsigned long long*>(d_count), // NOLINT
|
||||
static_cast<unsigned long long>(__popc(ballot))); // NOLINT
|
||||
}
|
||||
}
|
||||
|
||||
void UpdatePosition(int nidx, int left_nidx, int right_nidx, int fidx,
|
||||
int split_gidx, bool default_dir_left, bool is_dense,
|
||||
int fidx_begin, int fidx_end) {
|
||||
dh::safe_cuda(cudaSetDevice(device_idx));
|
||||
temp_memory.LazyAllocate(sizeof(int64_t));
|
||||
auto d_left_count = temp_memory.Pointer<int64_t>();
|
||||
dh::safe_cuda(cudaMemset(d_left_count, 0, sizeof(int64_t)));
|
||||
auto segment = ridx_segments[nidx];
|
||||
auto d_ridx = ridx.current();
|
||||
auto d_position = position.current();
|
||||
auto d_gidx = gidx;
|
||||
auto row_stride = this->row_stride;
|
||||
dh::launch_n<1, 512>(
|
||||
device_idx, segment.Size(), [=] __device__(bst_uint idx) {
|
||||
idx += segment.begin;
|
||||
auto ridx = d_ridx[idx];
|
||||
auto row_begin = row_stride * ridx;
|
||||
auto row_end = row_begin + row_stride;
|
||||
auto gidx = -1;
|
||||
if (is_dense) {
|
||||
gidx = d_gidx[row_begin + fidx];
|
||||
} else {
|
||||
gidx = BinarySearchRow(row_begin, row_end, d_gidx, fidx_begin,
|
||||
fidx_end);
|
||||
}
|
||||
|
||||
int position;
|
||||
if (gidx >= 0) {
|
||||
// Feature is found
|
||||
position = gidx <= split_gidx ? left_nidx : right_nidx;
|
||||
} else {
|
||||
// Feature is missing
|
||||
position = default_dir_left ? left_nidx : right_nidx;
|
||||
}
|
||||
|
||||
CountLeft(d_left_count, position, left_nidx);
|
||||
d_position[idx] = position;
|
||||
});
|
||||
|
||||
dh::safe_cuda(cudaMemcpy(tmp_pinned, d_left_count, sizeof(int64_t),
|
||||
cudaMemcpyDeviceToHost));
|
||||
auto left_count = *tmp_pinned;
|
||||
|
||||
SortPosition(segment, left_nidx, right_nidx);
|
||||
// dh::safe_cuda(cudaStreamSynchronize(stream));
|
||||
ridx_segments[left_nidx] =
|
||||
Segment(segment.begin, segment.begin + left_count);
|
||||
ridx_segments[right_nidx] =
|
||||
Segment(segment.begin + left_count, segment.end);
|
||||
}
|
||||
|
||||
void SortPosition(const Segment& segment, int left_nidx, int right_nidx) {
|
||||
int min_bits = 0;
|
||||
int max_bits = static_cast<int>(
|
||||
std::ceil(std::log2((std::max)(left_nidx, right_nidx) + 1)));
|
||||
|
||||
size_t temp_storage_bytes = 0;
|
||||
cub::DeviceRadixSort::SortPairs(
|
||||
nullptr, temp_storage_bytes, position.current() + segment.begin,
|
||||
position.other() + segment.begin, ridx.current() + segment.begin,
|
||||
ridx.other() + segment.begin, segment.Size(), min_bits, max_bits);
|
||||
|
||||
temp_memory.LazyAllocate(temp_storage_bytes);
|
||||
|
||||
cub::DeviceRadixSort::SortPairs(
|
||||
temp_memory.d_temp_storage, temp_memory.temp_storage_bytes,
|
||||
position.current() + segment.begin, position.other() + segment.begin,
|
||||
ridx.current() + segment.begin, ridx.other() + segment.begin,
|
||||
segment.Size(), min_bits, max_bits);
|
||||
dh::safe_cuda(cudaMemcpy(
|
||||
position.current() + segment.begin, position.other() + segment.begin,
|
||||
segment.Size() * sizeof(int), cudaMemcpyDeviceToDevice));
|
||||
dh::safe_cuda(cudaMemcpy(
|
||||
ridx.current() + segment.begin, ridx.other() + segment.begin,
|
||||
segment.Size() * sizeof(bst_uint), cudaMemcpyDeviceToDevice));
|
||||
}
|
||||
};
|
||||
|
||||
class GPUHistMakerExperimental : public TreeUpdater {
|
||||
public:
|
||||
struct ExpandEntry;
|
||||
|
||||
GPUHistMakerExperimental() : initialised(false) {}
|
||||
~GPUHistMakerExperimental() {}
|
||||
void Init(
|
||||
const std::vector<std::pair<std::string, std::string>>& args) override {
|
||||
param.InitAllowUnknown(args);
|
||||
CHECK(param.n_gpus != 0) << "Must have at least one device";
|
||||
n_devices = param.n_gpus;
|
||||
|
||||
dh::check_compute_capability();
|
||||
|
||||
if (param.grow_policy == TrainParam::kLossGuide) {
|
||||
qexpand_.reset(new ExpandQueue(loss_guide));
|
||||
} else {
|
||||
qexpand_.reset(new ExpandQueue(depth_wise));
|
||||
}
|
||||
|
||||
monitor.Init("updater_gpu_hist_experimental", param.debug_verbose);
|
||||
}
|
||||
void Update(const std::vector<bst_gpair>& gpair, DMatrix* dmat,
|
||||
const std::vector<RegTree*>& trees) override {
|
||||
monitor.Start("Update");
|
||||
GradStats::CheckInfo(dmat->info());
|
||||
// rescale learning rate according to size of trees
|
||||
float lr = param.learning_rate;
|
||||
param.learning_rate = lr / trees.size();
|
||||
// build tree
|
||||
try {
|
||||
for (size_t i = 0; i < trees.size(); ++i) {
|
||||
this->UpdateTree(gpair, dmat, trees[i]);
|
||||
}
|
||||
} catch (const std::exception& e) {
|
||||
LOG(FATAL) << "GPU plugin exception: " << e.what() << std::endl;
|
||||
}
|
||||
param.learning_rate = lr;
|
||||
monitor.Stop("Update");
|
||||
}
|
||||
|
||||
void InitDataOnce(DMatrix* dmat) {
|
||||
info = &dmat->info();
|
||||
monitor.Start("Quantiles");
|
||||
hmat_.Init(dmat, param.max_bin);
|
||||
gmat_.cut = &hmat_;
|
||||
gmat_.Init(dmat);
|
||||
monitor.Stop("Quantiles");
|
||||
n_bins = hmat_.row_ptr.back();
|
||||
|
||||
int n_devices = dh::n_devices(param.n_gpus, info->num_row);
|
||||
|
||||
bst_uint row_begin = 0;
|
||||
bst_uint shard_size =
|
||||
std::ceil(static_cast<double>(info->num_row) / n_devices);
|
||||
|
||||
std::vector<int> dList(n_devices);
|
||||
for (int d_idx = 0; d_idx < n_devices; ++d_idx) {
|
||||
int device_idx = (param.gpu_id + d_idx) % dh::n_visible_devices();
|
||||
dList[d_idx] = device_idx;
|
||||
}
|
||||
|
||||
reducer.Init(dList);
|
||||
|
||||
// Partition input matrix into row segments
|
||||
std::vector<size_t> row_segments;
|
||||
shards.resize(n_devices);
|
||||
row_segments.push_back(0);
|
||||
for (int d_idx = 0; d_idx < n_devices; ++d_idx) {
|
||||
bst_uint row_end =
|
||||
std::min(static_cast<size_t>(row_begin + shard_size), info->num_row);
|
||||
row_segments.push_back(row_end);
|
||||
row_begin = row_end;
|
||||
}
|
||||
|
||||
// Create device shards
|
||||
omp_set_num_threads(shards.size());
|
||||
#pragma omp parallel
|
||||
{
|
||||
auto cpu_thread_id = omp_get_thread_num();
|
||||
shards[cpu_thread_id] = std::unique_ptr<DeviceShard>(
|
||||
new DeviceShard(dList[cpu_thread_id], cpu_thread_id, gmat_,
|
||||
row_segments[cpu_thread_id],
|
||||
row_segments[cpu_thread_id + 1], n_bins, param));
|
||||
}
|
||||
|
||||
initialised = true;
|
||||
}
|
||||
|
||||
void InitData(const std::vector<bst_gpair>& gpair, DMatrix* dmat,
|
||||
const RegTree& tree) {
|
||||
monitor.Start("InitDataOnce");
|
||||
if (!initialised) {
|
||||
this->InitDataOnce(dmat);
|
||||
}
|
||||
monitor.Stop("InitDataOnce");
|
||||
|
||||
column_sampler.Init(info->num_col, param);
|
||||
|
||||
// Copy gpair & reset memory
|
||||
monitor.Start("InitDataReset");
|
||||
omp_set_num_threads(shards.size());
|
||||
#pragma omp parallel
|
||||
{
|
||||
auto cpu_thread_id = omp_get_thread_num();
|
||||
shards[cpu_thread_id]->Reset(gpair);
|
||||
}
|
||||
monitor.Stop("InitDataReset");
|
||||
}
|
||||
|
||||
void AllReduceHist(int nidx) {
|
||||
for (auto& shard : shards) {
|
||||
auto d_node_hist = shard->hist.GetHistPtr(nidx);
|
||||
reducer.AllReduceSum(
|
||||
shard->normalised_device_idx,
|
||||
reinterpret_cast<gpair_sum_t::value_t*>(d_node_hist),
|
||||
reinterpret_cast<gpair_sum_t::value_t*>(d_node_hist),
|
||||
n_bins * (sizeof(gpair_sum_t) / sizeof(gpair_sum_t::value_t)));
|
||||
}
|
||||
|
||||
reducer.Synchronize();
|
||||
}
|
||||
|
||||
void BuildHistLeftRight(int nidx_parent, int nidx_left, int nidx_right) {
|
||||
size_t left_node_max_elements = 0;
|
||||
size_t right_node_max_elements = 0;
|
||||
for (auto& shard : shards) {
|
||||
left_node_max_elements = (std::max)(
|
||||
left_node_max_elements, shard->ridx_segments[nidx_left].Size());
|
||||
right_node_max_elements = (std::max)(
|
||||
right_node_max_elements, shard->ridx_segments[nidx_right].Size());
|
||||
}
|
||||
|
||||
auto build_hist_nidx = nidx_left;
|
||||
auto subtraction_trick_nidx = nidx_right;
|
||||
|
||||
if (right_node_max_elements < left_node_max_elements) {
|
||||
build_hist_nidx = nidx_right;
|
||||
subtraction_trick_nidx = nidx_left;
|
||||
}
|
||||
|
||||
for (auto& shard : shards) {
|
||||
shard->BuildHist(build_hist_nidx);
|
||||
}
|
||||
|
||||
this->AllReduceHist(build_hist_nidx);
|
||||
|
||||
for (auto& shard : shards) {
|
||||
shard->SubtractionTrick(nidx_parent, build_hist_nidx,
|
||||
subtraction_trick_nidx);
|
||||
}
|
||||
}
|
||||
|
||||
// Returns best loss
|
||||
std::vector<DeviceSplitCandidate> EvaluateSplits(
|
||||
const std::vector<int>& nidx_set, RegTree* p_tree) {
|
||||
auto columns = info->num_col;
|
||||
std::vector<DeviceSplitCandidate> best_splits(nidx_set.size());
|
||||
std::vector<DeviceSplitCandidate> candidate_splits(nidx_set.size() *
|
||||
columns);
|
||||
// Use first device
|
||||
auto& shard = shards.front();
|
||||
dh::safe_cuda(cudaSetDevice(shard->device_idx));
|
||||
shard->temp_memory.LazyAllocate(sizeof(DeviceSplitCandidate) * columns *
|
||||
nidx_set.size());
|
||||
auto d_split = shard->temp_memory.Pointer<DeviceSplitCandidate>();
|
||||
|
||||
auto& streams = shard->GetStreams(static_cast<int>(nidx_set.size()));
|
||||
|
||||
// Use streams to process nodes concurrently
|
||||
for (auto i = 0; i < nidx_set.size(); i++) {
|
||||
auto nidx = nidx_set[i];
|
||||
DeviceNodeStats node(shard->node_sum_gradients[nidx], nidx, param);
|
||||
|
||||
const int BLOCK_THREADS = 256;
|
||||
evaluate_split_kernel<BLOCK_THREADS>
|
||||
<<<uint32_t(columns), BLOCK_THREADS, 0, streams[i]>>>(
|
||||
shard->hist.GetHistPtr(nidx), nidx, info->num_col, node,
|
||||
shard->feature_segments.data(), shard->min_fvalue.data(),
|
||||
shard->gidx_fvalue_map.data(), GPUTrainingParam(param),
|
||||
d_split + i * columns);
|
||||
}
|
||||
|
||||
dh::safe_cuda(
|
||||
cudaMemcpy(candidate_splits.data(), shard->temp_memory.d_temp_storage,
|
||||
sizeof(DeviceSplitCandidate) * columns * nidx_set.size(),
|
||||
cudaMemcpyDeviceToHost));
|
||||
|
||||
for (auto i = 0; i < nidx_set.size(); i++) {
|
||||
auto nidx = nidx_set[i];
|
||||
DeviceSplitCandidate nidx_best;
|
||||
for (auto fidx = 0; fidx < columns; fidx++) {
|
||||
auto& candidate = candidate_splits[i * columns + fidx];
|
||||
if (column_sampler.ColumnUsed(candidate.findex,
|
||||
p_tree->GetDepth(nidx))) {
|
||||
nidx_best.Update(candidate_splits[i * columns + fidx], param);
|
||||
}
|
||||
}
|
||||
best_splits[i] = nidx_best;
|
||||
}
|
||||
return std::move(best_splits);
|
||||
}
|
||||
|
||||
void InitRoot(const std::vector<bst_gpair>& gpair, RegTree* p_tree) {
|
||||
auto root_nidx = 0;
|
||||
// Sum gradients
|
||||
std::vector<bst_gpair> tmp_sums(shards.size());
|
||||
omp_set_num_threads(shards.size());
|
||||
#pragma omp parallel
|
||||
{
|
||||
auto cpu_thread_id = omp_get_thread_num();
|
||||
dh::safe_cuda(cudaSetDevice(shards[cpu_thread_id]->device_idx));
|
||||
tmp_sums[cpu_thread_id] =
|
||||
thrust::reduce(thrust::cuda::par(shards[cpu_thread_id]->temp_memory),
|
||||
shards[cpu_thread_id]->gpair.tbegin(),
|
||||
shards[cpu_thread_id]->gpair.tend());
|
||||
}
|
||||
auto sum_gradient =
|
||||
std::accumulate(tmp_sums.begin(), tmp_sums.end(), bst_gpair());
|
||||
|
||||
// Generate root histogram
|
||||
for (auto& shard : shards) {
|
||||
shard->BuildHist(root_nidx);
|
||||
}
|
||||
|
||||
this->AllReduceHist(root_nidx);
|
||||
|
||||
// Remember root stats
|
||||
p_tree->stat(root_nidx).sum_hess = sum_gradient.GetHess();
|
||||
p_tree->stat(root_nidx).base_weight = CalcWeight(param, sum_gradient);
|
||||
|
||||
// Store sum gradients
|
||||
for (auto& shard : shards) {
|
||||
shard->node_sum_gradients[root_nidx] = sum_gradient;
|
||||
}
|
||||
|
||||
// Generate first split
|
||||
auto splits = this->EvaluateSplits({root_nidx}, p_tree);
|
||||
qexpand_->push(
|
||||
ExpandEntry(root_nidx, p_tree->GetDepth(root_nidx), splits.front(), 0));
|
||||
}
|
||||
|
||||
void UpdatePosition(const ExpandEntry& candidate, RegTree* p_tree) {
|
||||
auto nidx = candidate.nid;
|
||||
auto left_nidx = (*p_tree)[nidx].cleft();
|
||||
auto right_nidx = (*p_tree)[nidx].cright();
|
||||
|
||||
// convert floating-point split_pt into corresponding bin_id
|
||||
// split_cond = -1 indicates that split_pt is less than all known cut points
|
||||
auto split_gidx = -1;
|
||||
auto fidx = candidate.split.findex;
|
||||
auto default_dir_left = candidate.split.dir == LeftDir;
|
||||
auto fidx_begin = hmat_.row_ptr[fidx];
|
||||
auto fidx_end = hmat_.row_ptr[fidx + 1];
|
||||
for (auto i = fidx_begin; i < fidx_end; ++i) {
|
||||
if (candidate.split.fvalue == hmat_.cut[i]) {
|
||||
split_gidx = static_cast<int32_t>(i);
|
||||
}
|
||||
}
|
||||
|
||||
auto is_dense = info->num_nonzero == info->num_row * info->num_col;
|
||||
|
||||
omp_set_num_threads(shards.size());
|
||||
#pragma omp parallel
|
||||
{
|
||||
auto cpu_thread_id = omp_get_thread_num();
|
||||
shards[cpu_thread_id]->UpdatePosition(nidx, left_nidx, right_nidx, fidx,
|
||||
split_gidx, default_dir_left,
|
||||
is_dense, fidx_begin, fidx_end);
|
||||
}
|
||||
}
|
||||
|
||||
void ApplySplit(const ExpandEntry& candidate, RegTree* p_tree) {
|
||||
// Add new leaves
|
||||
RegTree& tree = *p_tree;
|
||||
tree.AddChilds(candidate.nid);
|
||||
auto& parent = tree[candidate.nid];
|
||||
parent.set_split(candidate.split.findex, candidate.split.fvalue,
|
||||
candidate.split.dir == LeftDir);
|
||||
tree.stat(candidate.nid).loss_chg = candidate.split.loss_chg;
|
||||
|
||||
// Configure left child
|
||||
auto left_weight = CalcWeight(param, candidate.split.left_sum);
|
||||
tree[parent.cleft()].set_leaf(left_weight * param.learning_rate, 0);
|
||||
tree.stat(parent.cleft()).base_weight = left_weight;
|
||||
tree.stat(parent.cleft()).sum_hess = candidate.split.left_sum.GetHess();
|
||||
|
||||
// Configure right child
|
||||
auto right_weight = CalcWeight(param, candidate.split.right_sum);
|
||||
tree[parent.cright()].set_leaf(right_weight * param.learning_rate, 0);
|
||||
tree.stat(parent.cright()).base_weight = right_weight;
|
||||
tree.stat(parent.cright()).sum_hess = candidate.split.right_sum.GetHess();
|
||||
// Store sum gradients
|
||||
for (auto& shard : shards) {
|
||||
shard->node_sum_gradients[parent.cleft()] = candidate.split.left_sum;
|
||||
shard->node_sum_gradients[parent.cright()] = candidate.split.right_sum;
|
||||
}
|
||||
this->UpdatePosition(candidate, p_tree);
|
||||
}
|
||||
|
||||
void UpdateTree(const std::vector<bst_gpair>& gpair, DMatrix* p_fmat,
|
||||
RegTree* p_tree) {
|
||||
// Temporarily store number of threads so we can change it back later
|
||||
int nthread = omp_get_max_threads();
|
||||
|
||||
auto& tree = *p_tree;
|
||||
|
||||
monitor.Start("InitData");
|
||||
this->InitData(gpair, p_fmat, *p_tree);
|
||||
monitor.Stop("InitData");
|
||||
monitor.Start("InitRoot");
|
||||
this->InitRoot(gpair, p_tree);
|
||||
monitor.Stop("InitRoot");
|
||||
|
||||
auto timestamp = qexpand_->size();
|
||||
auto num_leaves = 1;
|
||||
|
||||
while (!qexpand_->empty()) {
|
||||
auto candidate = qexpand_->top();
|
||||
qexpand_->pop();
|
||||
if (!candidate.IsValid(param, num_leaves)) continue;
|
||||
// std::cout << candidate;
|
||||
monitor.Start("ApplySplit");
|
||||
this->ApplySplit(candidate, p_tree);
|
||||
monitor.Stop("ApplySplit");
|
||||
num_leaves++;
|
||||
|
||||
auto left_child_nidx = tree[candidate.nid].cleft();
|
||||
auto right_child_nidx = tree[candidate.nid].cright();
|
||||
|
||||
// Only create child entries if needed
|
||||
if (ExpandEntry::ChildIsValid(param, tree.GetDepth(left_child_nidx),
|
||||
num_leaves)) {
|
||||
monitor.Start("BuildHist");
|
||||
this->BuildHistLeftRight(candidate.nid, left_child_nidx,
|
||||
right_child_nidx);
|
||||
monitor.Stop("BuildHist");
|
||||
|
||||
monitor.Start("EvaluateSplits");
|
||||
auto splits =
|
||||
this->EvaluateSplits({left_child_nidx, right_child_nidx}, p_tree);
|
||||
qexpand_->push(ExpandEntry(left_child_nidx,
|
||||
tree.GetDepth(left_child_nidx), splits[0],
|
||||
timestamp++));
|
||||
qexpand_->push(ExpandEntry(right_child_nidx,
|
||||
tree.GetDepth(right_child_nidx), splits[1],
|
||||
timestamp++));
|
||||
monitor.Stop("EvaluateSplits");
|
||||
}
|
||||
}
|
||||
|
||||
// Reset omp num threads
|
||||
omp_set_num_threads(nthread);
|
||||
}
|
||||
|
||||
struct ExpandEntry {
|
||||
int nid;
|
||||
int depth;
|
||||
DeviceSplitCandidate split;
|
||||
uint64_t timestamp;
|
||||
ExpandEntry(int nid, int depth, const DeviceSplitCandidate& split,
|
||||
uint64_t timestamp)
|
||||
: nid(nid), depth(depth), split(split), timestamp(timestamp) {}
|
||||
bool IsValid(const TrainParam& param, int num_leaves) const {
|
||||
if (split.loss_chg <= rt_eps) return false;
|
||||
if (param.max_depth > 0 && depth == param.max_depth) return false;
|
||||
if (param.max_leaves > 0 && num_leaves == param.max_leaves) return false;
|
||||
return true;
|
||||
}
|
||||
|
||||
static bool ChildIsValid(const TrainParam& param, int depth,
|
||||
int num_leaves) {
|
||||
if (param.max_depth > 0 && depth == param.max_depth) return false;
|
||||
if (param.max_leaves > 0 && num_leaves == param.max_leaves) return false;
|
||||
return true;
|
||||
}
|
||||
|
||||
friend std::ostream& operator<<(std::ostream& os, const ExpandEntry& e) {
|
||||
os << "ExpandEntry: \n";
|
||||
os << "nidx: " << e.nid << "\n";
|
||||
os << "depth: " << e.depth << "\n";
|
||||
os << "loss: " << e.split.loss_chg << "\n";
|
||||
os << "left_sum: " << e.split.left_sum << "\n";
|
||||
os << "right_sum: " << e.split.right_sum << "\n";
|
||||
return os;
|
||||
}
|
||||
};
|
||||
|
||||
inline static bool depth_wise(ExpandEntry lhs, ExpandEntry rhs) {
|
||||
if (lhs.depth == rhs.depth) {
|
||||
return lhs.timestamp > rhs.timestamp; // favor small timestamp
|
||||
} else {
|
||||
return lhs.depth > rhs.depth; // favor small depth
|
||||
}
|
||||
}
|
||||
inline static bool loss_guide(ExpandEntry lhs, ExpandEntry rhs) {
|
||||
if (lhs.split.loss_chg == rhs.split.loss_chg) {
|
||||
return lhs.timestamp > rhs.timestamp; // favor small timestamp
|
||||
} else {
|
||||
return lhs.split.loss_chg < rhs.split.loss_chg; // favor large loss_chg
|
||||
}
|
||||
}
|
||||
TrainParam param;
|
||||
common::HistCutMatrix hmat_;
|
||||
common::GHistIndexMatrix gmat_;
|
||||
MetaInfo* info;
|
||||
bool initialised;
|
||||
int n_devices;
|
||||
int n_bins;
|
||||
|
||||
std::vector<std::unique_ptr<DeviceShard>> shards;
|
||||
ColumnSampler column_sampler;
|
||||
typedef std::priority_queue<ExpandEntry, std::vector<ExpandEntry>,
|
||||
std::function<bool(ExpandEntry, ExpandEntry)>>
|
||||
ExpandQueue;
|
||||
std::unique_ptr<ExpandQueue> qexpand_;
|
||||
common::Monitor monitor;
|
||||
dh::AllReducer reducer;
|
||||
};
|
||||
|
||||
XGBOOST_REGISTER_TREE_UPDATER(GPUHistMakerExperimental,
|
||||
"grow_gpu_hist_experimental")
|
||||
.describe("Grow tree with GPU.")
|
||||
.set_body([]() { return new GPUHistMakerExperimental(); });
|
||||
} // namespace tree
|
||||
} // namespace xgboost
|
||||
@ -8,7 +8,7 @@
|
||||
#include "gtest/gtest.h"
|
||||
|
||||
#include "../../../src/gbm/gbtree_model.h"
|
||||
#include "../../../src/tree/updater_gpu_hist_experimental.cu"
|
||||
#include "../../../src/tree/updater_gpu_hist.cu"
|
||||
|
||||
namespace xgboost {
|
||||
namespace tree {
|
||||
@ -117,14 +117,10 @@ def assert_updater_accuracy(tree_method, comparison_tree_method, variable_param,
|
||||
|
||||
@attr('gpu')
|
||||
class TestGPU(unittest.TestCase):
|
||||
def test_gpu_hist(self):
|
||||
variable_param = {'max_depth': [2, 6, 11], 'max_bin': [2, 16, 1024], 'n_gpus': [1, -1]}
|
||||
assert_updater_accuracy('gpu_hist', 'hist', variable_param, 0.02)
|
||||
|
||||
def test_gpu_exact(self):
|
||||
variable_param = {'max_depth': [2, 6, 15]}
|
||||
assert_updater_accuracy('gpu_exact', 'exact', variable_param, 0.02)
|
||||
|
||||
def test_gpu_hist_experimental(self):
|
||||
def test_gpu_hist(self):
|
||||
variable_param = {'n_gpus': [1, -1], 'max_depth': [2, 6], 'max_leaves': [255, 4], 'max_bin': [2, 16, 1024]}
|
||||
assert_updater_accuracy('gpu_hist_experimental', 'hist', variable_param, 0.01)
|
||||
assert_updater_accuracy('gpu_hist', 'hist', variable_param, 0.01)
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user