xgboost/tests/python-gpu/test_gpu_updaters.py
2017-11-27 13:44:24 +13:00

127 lines
4.7 KiB
Python

from __future__ import print_function
import sys
sys.path.append("../../tests/python")
import xgboost as xgb
import numpy as np
import unittest
from nose.plugins.attrib import attr
from sklearn.datasets import load_digits, load_boston, load_breast_cancer, make_regression
import itertools as it
rng = np.random.RandomState(1994)
def non_increasing(L, tolerance):
return all((y - x) < tolerance for x, y in zip(L, L[1:]))
# Check result is always decreasing and final accuracy is within tolerance
def assert_accuracy(res, tree_method, comparison_tree_method, tolerance, param):
assert non_increasing(res[tree_method], tolerance)
assert np.allclose(res[tree_method][-1], res[comparison_tree_method][-1], 1e-3, 1e-2)
def train_boston(param_in, comparison_tree_method):
data = load_boston()
dtrain = xgb.DMatrix(data.data, label=data.target)
param = {}
param.update(param_in)
param['max_depth'] = 2
res_tmp = {}
res = {}
num_rounds = 10
bst = xgb.train(param, dtrain, num_rounds, [(dtrain, 'train')], evals_result=res_tmp)
res[param['tree_method']] = res_tmp['train']['rmse']
param["tree_method"] = comparison_tree_method
bst = xgb.train(param, dtrain, num_rounds, [(dtrain, 'train')], evals_result=res_tmp)
res[comparison_tree_method] = res_tmp['train']['rmse']
return res
def train_digits(param_in, comparison_tree_method):
data = load_digits()
dtrain = xgb.DMatrix(data.data, label=data.target)
param = {}
param['objective'] = 'multi:softmax'
param['num_class'] = 10
param.update(param_in)
res_tmp = {}
res = {}
num_rounds = 10
xgb.train(param, dtrain, num_rounds, [(dtrain, 'train')], evals_result=res_tmp)
res[param['tree_method']] = res_tmp['train']['merror']
param["tree_method"] = comparison_tree_method
xgb.train(param, dtrain, num_rounds, [(dtrain, 'train')], evals_result=res_tmp)
res[comparison_tree_method] = res_tmp['train']['merror']
return res
def train_cancer(param_in, comparison_tree_method):
data = load_breast_cancer()
dtrain = xgb.DMatrix(data.data, label=data.target)
param = {}
param['objective'] = 'binary:logistic'
param.update(param_in)
res_tmp = {}
res = {}
num_rounds = 10
xgb.train(param, dtrain, num_rounds, [(dtrain, 'train')], evals_result=res_tmp)
res[param['tree_method']] = res_tmp['train']['error']
param["tree_method"] = comparison_tree_method
xgb.train(param, dtrain, num_rounds, [(dtrain, 'train')], evals_result=res_tmp)
res[comparison_tree_method] = res_tmp['train']['error']
return res
def train_sparse(param_in, comparison_tree_method):
n = 5000
sparsity = 0.75
X, y = make_regression(n, random_state=rng)
X = np.array([[np.nan if rng.uniform(0, 1) < sparsity else x for x in x_row] for x_row in X])
dtrain = xgb.DMatrix(X, label=y)
param = {}
param.update(param_in)
res_tmp = {}
res = {}
num_rounds = 10
bst = xgb.train(param, dtrain, num_rounds, [(dtrain, 'train')], evals_result=res_tmp)
res[param['tree_method']] = res_tmp['train']['rmse']
param["tree_method"] = comparison_tree_method
bst = xgb.train(param, dtrain, num_rounds, [(dtrain, 'train')], evals_result=res_tmp)
res[comparison_tree_method] = res_tmp['train']['rmse']
return res
# Enumerates all permutations of variable parameters
def assert_updater_accuracy(tree_method, comparison_tree_method, variable_param, tolerance):
param = {'tree_method': tree_method }
names = sorted(variable_param)
combinations = it.product(*(variable_param[Name] for Name in names))
for set in combinations:
print(names, file=sys.stderr)
print(set, file=sys.stderr)
param_tmp = param.copy()
for i, name in enumerate(names):
param_tmp[name] = set[i]
print(param_tmp, file=sys.stderr)
assert_accuracy(train_boston(param_tmp, comparison_tree_method), tree_method, comparison_tree_method, tolerance, param_tmp)
assert_accuracy(train_digits(param_tmp, comparison_tree_method), tree_method, comparison_tree_method, tolerance, param_tmp)
assert_accuracy(train_cancer(param_tmp, comparison_tree_method), tree_method, comparison_tree_method, tolerance, param_tmp)
assert_accuracy(train_sparse(param_tmp, comparison_tree_method), tree_method, comparison_tree_method, tolerance, param_tmp)
@attr('gpu')
class TestGPU(unittest.TestCase):
def test_gpu_exact(self):
variable_param = {'max_depth': [2, 6, 15]}
assert_updater_accuracy('gpu_exact', 'exact', variable_param, 0.02)
def test_gpu_hist(self):
variable_param = {'n_gpus': [1, -1], 'max_depth': [2, 6], 'max_leaves': [255, 4], 'max_bin': [2, 16, 1024]}
assert_updater_accuracy('gpu_hist', 'hist', variable_param, 0.01)