adding feature contributions to R and gblinear (#2295)

* [gblinear] add features contribution prediction; fix DumpModel bug

* [gbtree] minor changes to PredContrib

* [R] add feature contribution prediction to R

* [R] bump up version; update NEWS

* [gblinear] fix the base_margin issue; fixes #1969

* [R] list of matrices as output of multiclass feature contributions

* [gblinear] make order of DumpModel coefficients consistent: group index changes the fastest
This commit is contained in:
Vadim Khotilovich 2017-05-21 06:41:51 -05:00 committed by Yuan (Terry) Tang
parent e5e721722e
commit b52db87d5c
10 changed files with 255 additions and 60 deletions

View File

@ -12,10 +12,14 @@ This file records the changes in xgboost library in reverse chronological order.
- Thread local variable is upgraded so it is automatically freed at thread exit.
* Migrate to C++11
- The current master version now requires C++11 enabled compiled(g++4.8 or higher)
* New functionality
- Ability to adjust tree model's statistics to a new dataset without changing tree structures.
- Extracting feature contributions to individual predictions.
* R package:
- New parameters:
- `silent` in `xgb.DMatrix()`
- `use_int_id` in `xgb.model.dt.tree()`
- `predcontrib` in `predict()`
- Default value of the `save_period` parameter in `xgboost()` changed to NULL (consistent with `xgb.train()`).
## v0.6 (2016.07.29)

View File

@ -1,7 +1,7 @@
Package: xgboost
Type: Package
Title: Extreme Gradient Boosting
Version: 0.6.4.4
Version: 0.6.4.5
Date: 2017-01-04
Author: Tianqi Chen <tianqi.tchen@gmail.com>, Tong He <hetong007@gmail.com>,
Michael Benesty <michael@benesty.fr>, Vadim Khotilovich <khotilovich@gmail.com>,

View File

@ -126,7 +126,8 @@ xgb.Booster.complete <- function(object, saveraw = TRUE) {
#' logistic regression would result in predictions for log-odds instead of probabilities.
#' @param ntreelimit limit the number of model's trees or boosting iterations used in prediction (see Details).
#' It will use all the trees by default (\code{NULL} value).
#' @param predleaf whether predict leaf index instead.
#' @param predleaf whether predict leaf index instead.
#' @param predcontrib whether to return feature contributions to individual predictions instead (see Details).
#' @param reshape whether to reshape the vector of predictions to a matrix form when there are several
#' prediction outputs per case. This option has no effect when \code{predleaf = TRUE}.
#' @param ... Parameters passed to \code{predict.xgb.Booster}
@ -135,15 +136,22 @@ xgb.Booster.complete <- function(object, saveraw = TRUE) {
#' Note that \code{ntreelimit} is not necessarily equal to the number of boosting iterations
#' and it is not necessarily equal to the number of trees in a model.
#' E.g., in a random forest-like model, \code{ntreelimit} would limit the number of trees.
#' But for multiclass classification, there are multiple trees per iteration,
#' but \code{ntreelimit} limits the number of boosting iterations.
#' But for multiclass classification, while there are multiple trees per iteration,
#' \code{ntreelimit} limits the number of boosting iterations.
#'
#' Also note that \code{ntreelimit} would currently do nothing for predictions from gblinear,
#' since gblinear doesn't keep its boosting history.
#' since gblinear doesn't keep its boosting history.
#'
#' One possible practical applications of the \code{predleaf} option is to use the model
#' as a generator of new features which capture non-linearity and interactions,
#' e.g., as implemented in \code{\link{xgb.create.features}}.
#' e.g., as implemented in \code{\link{xgb.create.features}}.
#'
#' Setting \code{predcontrib = TRUE} allows to calculate contributions of each feature to
#' individual predictions. For "gblinear" booster, feature contributions are simply linear terms
#' (feature_beta * feature_value). For "gbtree" booster, feature contribution is calculated
#' as a sum of average contribution of that feature's split nodes across all trees to an
#' individual prediction, following the idea explained in
#' \url{http://blog.datadive.net/interpreting-random-forests/}.
#'
#' @return
#' For regression or binary classification, it returns a vector of length \code{nrows(newdata)}.
@ -154,6 +162,12 @@ xgb.Booster.complete <- function(object, saveraw = TRUE) {
#' When \code{predleaf = TRUE}, the output is a matrix object with the
#' number of columns corresponding to the number of trees.
#'
#' When \code{predcontrib = TRUE} and it is not a multiclass setting, the output is a matrix object with
#' \code{num_features + 1} columns. The last "+ 1" column in a matrix corresponds to bias.
#' For a multiclass case, a list of \code{num_class} elements is returned, where each element is
#' such a matrix. The contribution values are on the scale of untransformed margin
#' (e.g., for binary classification would mean that the contributions are log-odds deviations from bias).
#'
#' @seealso
#' \code{\link{xgb.train}}.
#'
@ -166,11 +180,32 @@ xgb.Booster.complete <- function(object, saveraw = TRUE) {
#' test <- agaricus.test
#'
#' bst <- xgboost(data = train$data, label = train$label, max_depth = 2,
#' eta = 1, nthread = 2, nrounds = 2, objective = "binary:logistic")
#' eta = 0.5, nthread = 2, nrounds = 5, objective = "binary:logistic")
#' # use all trees by default
#' pred <- predict(bst, test$data)
#' # use only the 1st tree
#' pred <- predict(bst, test$data, ntreelimit = 1)
#' pred1 <- predict(bst, test$data, ntreelimit = 1)
#'
#' # Predicting tree leafs:
#' # the result is an nsamples X ntrees matrix
#' pred_leaf <- predict(bst, test$data, predleaf = TRUE)
#' str(pred_leaf)
#'
#' # Predicting feature contributions to predictions:
#' # the result is an nsamples X (nfeatures + 1) matrix
#' pred_contr <- predict(bst, test$data, predcontrib = TRUE)
#' str(pred_contr)
#' # verify that contributions' sums are equal to log-odds of predictions (up to foat precision):
#' summary(rowSums(pred_contr) - qlogis(pred))
#' # for the 1st record, let's inspect its features that had non-zero contribution to prediction:
#' contr1 <- pred_contr[1,]
#' contr1 <- contr1[-length(contr1)] # drop BIAS
#' contr1 <- contr1[contr1 != 0] # drop non-contributing features
#' contr1 <- contr1[order(abs(contr1))] # order by contribution magnitude
#' old_mar <- par("mar")
#' par(mar = old_mar + c(0,7,0,0))
#' barplot(contr1, horiz = TRUE, las = 2, xlab = "contribution to prediction in log-odds")
#' par(mar = old_mar)
#'
#'
#' ## multiclass classification in iris dataset:
@ -222,8 +257,8 @@ xgb.Booster.complete <- function(object, saveraw = TRUE) {
#'
#' @rdname predict.xgb.Booster
#' @export
predict.xgb.Booster <- function(object, newdata, missing = NA,
outputmargin = FALSE, ntreelimit = NULL, predleaf = FALSE, reshape = FALSE, ...) {
predict.xgb.Booster <- function(object, newdata, missing = NA, outputmargin = FALSE, ntreelimit = NULL,
predleaf = FALSE, predcontrib = FALSE, reshape = FALSE, ...) {
object <- xgb.Booster.complete(object, saveraw = FALSE)
if (!inherits(newdata, "xgb.DMatrix"))
@ -235,23 +270,40 @@ predict.xgb.Booster <- function(object, newdata, missing = NA,
if (ntreelimit < 0)
stop("ntreelimit cannot be negative")
option <- 0L + 1L * as.logical(outputmargin) + 2L * as.logical(predleaf)
option <- 0L + 1L * as.logical(outputmargin) + 2L * as.logical(predleaf) + 4L * as.logical(predcontrib)
ret <- .Call(XGBoosterPredict_R, object$handle, newdata, option[1], as.integer(ntreelimit))
if (length(ret) %% nrow(newdata) != 0)
stop("prediction length ", length(ret)," is not multiple of nrows(newdata) ", nrow(newdata))
npred_per_case <- length(ret) / nrow(newdata)
if (predleaf){
len <- nrow(newdata)
ret <- if (length(ret) == len) {
n_ret <- length(ret)
n_row <- nrow(newdata)
npred_per_case <- n_ret / n_row
if (n_ret %% n_row != 0)
stop("prediction length ", n_ret, " is not multiple of nrows(newdata) ", n_row)
if (predleaf) {
ret <- if (n_ret == n_row) {
matrix(ret, ncol = 1)
} else {
t(matrix(ret, ncol = len))
matrix(ret, nrow = n_row, byrow = TRUE)
}
} else if (predcontrib) {
n_col1 <- ncol(newdata) + 1
n_group <- npred_per_case / n_col1
dnames <- list(NULL, c(colnames(newdata), "BIAS"))
ret <- if (n_ret == n_row) {
matrix(ret, ncol = 1, dimnames = dnames)
} else if (n_group == 1) {
matrix(ret, nrow = n_row, byrow = TRUE, dimnames = dnames)
} else {
grp_mask <- rep(1:n_col1, n_row) +
rep((0:(n_row - 1)) * n_col1 * n_group, each = n_col1)
lapply(1:n_group, function(g) {
matrix(ret[grp_mask + n_col1 * (g - 1)], nrow = n_row, byrow = TRUE, dimnames = dnames)
})
}
} else if (reshape && npred_per_case > 1) {
ret <- matrix(ret, ncol = length(ret) / nrow(newdata), byrow = TRUE)
ret <- matrix(ret, nrow = n_row, byrow = TRUE)
}
return(ret)
}

View File

@ -7,7 +7,7 @@
\usage{
\method{predict}{xgb.Booster}(object, newdata, missing = NA,
outputmargin = FALSE, ntreelimit = NULL, predleaf = FALSE,
reshape = FALSE, ...)
predcontrib = FALSE, reshape = FALSE, ...)
\method{predict}{xgb.Booster.handle}(object, ...)
}
@ -28,6 +28,8 @@ It will use all the trees by default (\code{NULL} value).}
\item{predleaf}{whether predict leaf index instead.}
\item{predcontrib}{whether to return feature contributions to individual predictions instead (see Details).}
\item{reshape}{whether to reshape the vector of predictions to a matrix form when there are several
prediction outputs per case. This option has no effect when \code{predleaf = TRUE}.}
@ -41,6 +43,12 @@ the \code{reshape} value.
When \code{predleaf = TRUE}, the output is a matrix object with the
number of columns corresponding to the number of trees.
When \code{predcontrib = TRUE} and it is not a multiclass setting, the output is a matrix object with
\code{num_features + 1} columns. The last "+ 1" column in a matrix corresponds to bias.
For a multiclass case, a list of \code{num_class} elements is returned, where each element is
such a matrix. The contribution values are on the scale of untransformed margin
(e.g., for binary classification would mean that the contributions are log-odds deviations from bias).
}
\description{
Predicted values based on either xgboost model or model handle object.
@ -49,15 +57,22 @@ Predicted values based on either xgboost model or model handle object.
Note that \code{ntreelimit} is not necessarily equal to the number of boosting iterations
and it is not necessarily equal to the number of trees in a model.
E.g., in a random forest-like model, \code{ntreelimit} would limit the number of trees.
But for multiclass classification, there are multiple trees per iteration,
but \code{ntreelimit} limits the number of boosting iterations.
But for multiclass classification, while there are multiple trees per iteration,
\code{ntreelimit} limits the number of boosting iterations.
Also note that \code{ntreelimit} would currently do nothing for predictions from gblinear,
since gblinear doesn't keep its boosting history.
since gblinear doesn't keep its boosting history.
One possible practical applications of the \code{predleaf} option is to use the model
as a generator of new features which capture non-linearity and interactions,
e.g., as implemented in \code{\link{xgb.create.features}}.
Setting \code{predcontrib = TRUE} allows to calculate contributions of each feature to
individual predictions. For "gblinear" booster, feature contributions are simply linear terms
(feature_beta * feature_value). For "gbtree" booster, feature contribution is calculated
as a sum of average contribution of that feature's split nodes across all trees to an
individual prediction, following the idea explained in
\url{http://blog.datadive.net/interpreting-random-forests/}.
}
\examples{
## binary classification:
@ -68,11 +83,32 @@ train <- agaricus.train
test <- agaricus.test
bst <- xgboost(data = train$data, label = train$label, max_depth = 2,
eta = 1, nthread = 2, nrounds = 2, objective = "binary:logistic")
eta = 0.5, nthread = 2, nrounds = 5, objective = "binary:logistic")
# use all trees by default
pred <- predict(bst, test$data)
# use only the 1st tree
pred <- predict(bst, test$data, ntreelimit = 1)
pred1 <- predict(bst, test$data, ntreelimit = 1)
# Predicting tree leafs:
# the result is an nsamples X ntrees matrix
pred_leaf <- predict(bst, test$data, predleaf = TRUE)
str(pred_leaf)
# Predicting feature contributions to predictions:
# the result is an nsamples X (nfeatures + 1) matrix
pred_contr <- predict(bst, test$data, predcontrib = TRUE)
str(pred_contr)
# verify that contributions' sums are equal to log-odds of predictions (up to foat precision):
summary(rowSums(pred_contr) - qlogis(pred))
# for the 1st record, let's inspect its features that had non-zero contribution to prediction:
contr1 <- pred_contr[1,]
contr1 <- contr1[-length(contr1)] # drop BIAS
contr1 <- contr1[contr1 != 0] # drop non-contributing features
contr1 <- contr1[order(abs(contr1))] # order by contribution magnitude
old_mar <- par("mar")
par(mar = old_mar + c(0,7,0,0))
barplot(contr1, horiz = TRUE, las = 2, xlab = "contribution to prediction in log-odds")
par(mar = old_mar)
## multiclass classification in iris dataset:

View File

@ -14,18 +14,19 @@ df[,ID := NULL]
sparse_matrix <- sparse.model.matrix(Improved~.-1, data = df)
label <- df[, ifelse(Improved == "Marked", 1, 0)]
nrounds <- 12
bst.Tree <- xgboost(data = sparse_matrix, label = label, max_depth = 9,
eta = 1, nthread = 2, nrounds = 10, verbose = 0,
eta = 1, nthread = 2, nrounds = nrounds, verbose = 0,
objective = "binary:logistic", booster = "gbtree")
bst.GLM <- xgboost(data = sparse_matrix, label = label,
eta = 1, nthread = 2, nrounds = 10, verbose = 0,
eta = 1, nthread = 1, nrounds = nrounds, verbose = 0,
objective = "binary:logistic", booster = "gblinear")
feature.names <- colnames(sparse_matrix)
test_that("xgb.dump works", {
expect_length(xgb.dump(bst.Tree), 172)
expect_length(xgb.dump(bst.Tree), 200)
expect_true(xgb.dump(bst.Tree, 'xgb.model.dump', with_stats = T))
expect_true(file.exists('xgb.model.dump'))
expect_gt(file.size('xgb.model.dump'), 8000)
@ -33,7 +34,7 @@ test_that("xgb.dump works", {
# JSON format
dmp <- xgb.dump(bst.Tree, dump_format = "json")
expect_length(dmp, 1)
expect_length(grep('nodeid', strsplit(dmp, '\n')[[1]]), 162)
expect_length(grep('nodeid', strsplit(dmp, '\n')[[1]]), 188)
})
test_that("xgb.dump works for gblinear", {
@ -52,13 +53,74 @@ test_that("xgb.dump works for gblinear", {
expect_length(grep('\\d', strsplit(dmp, '\n')[[1]]), 11)
})
test_that("predict leafs works", {
# no error for gbtree
expect_error(pred_leaf <- predict(bst.Tree, sparse_matrix, predleaf = TRUE), regexp = NA)
expect_equal(dim(pred_leaf), c(nrow(sparse_matrix), nrounds))
# error for gblinear
expect_error(predict(bst.GLM, sparse_matrix, predleaf = TRUE))
})
test_that("predict feature contributions works", {
# gbtree binary classifier
expect_error(pred_contr <- predict(bst.Tree, sparse_matrix, predcontrib = TRUE), regexp = NA)
expect_equal(dim(pred_contr), c(nrow(sparse_matrix), ncol(sparse_matrix) + 1))
expect_equal(colnames(pred_contr), c(colnames(sparse_matrix), "BIAS"))
pred <- predict(bst.Tree, sparse_matrix, outputmargin = TRUE)
expect_lt(max(abs(rowSums(pred_contr) - pred)), 1e-6)
# gblinear binary classifier
expect_error(pred_contr <- predict(bst.GLM, sparse_matrix, predcontrib = TRUE), regexp = NA)
expect_equal(dim(pred_contr), c(nrow(sparse_matrix), ncol(sparse_matrix) + 1))
expect_equal(colnames(pred_contr), c(colnames(sparse_matrix), "BIAS"))
pred <- predict(bst.GLM, sparse_matrix, outputmargin = TRUE)
expect_lt(max(abs(rowSums(pred_contr) - pred)), 2e-6)
# manual calculation of linear terms
coefs <- xgb.dump(bst.GLM)[-c(1,2,4)] %>% as.numeric
coefs <- c(coefs[-1], coefs[1]) # intercept must be the last
pred_contr_manual <- sweep(cbind(sparse_matrix, 1), 2, coefs, FUN="*")
expect_equal(as.numeric(pred_contr), as.numeric(pred_contr_manual), 2e-6)
# gbtree multiclass
lb <- as.numeric(iris$Species) - 1
bst <- xgboost(data = as.matrix(iris[, -5]), label = lb, verbose = 0,
max_depth = 3, eta = 0.5, nthread = 2, nrounds = 5,
objective = "multi:softprob", num_class = 3)
pred <- predict(bst, as.matrix(iris[, -5]), outputmargin = TRUE, reshape = TRUE)
pred_contr <- predict(bst, as.matrix(iris[, -5]), predcontrib = TRUE)
expect_is(pred_contr, "list")
expect_length(pred_contr, 3)
for (g in seq_along(pred_contr)) {
expect_equal(colnames(pred_contr[[g]]), c(colnames(iris[, -5]), "BIAS"))
expect_lt(max(abs(rowSums(pred_contr[[g]]) - pred[, g])), 2e-6)
}
# gblinear multiclass (set base_score = 0, which is base margin in multiclass)
bst <- xgboost(data = as.matrix(iris[, -5]), label = lb, verbose = 0,
booster = "gblinear", eta = 0.1, nthread = 1, nrounds = 10,
objective = "multi:softprob", num_class = 3, base_score = 0)
pred <- predict(bst, as.matrix(iris[, -5]), outputmargin = TRUE, reshape = TRUE)
pred_contr <- predict(bst, as.matrix(iris[, -5]), predcontrib = TRUE)
expect_length(pred_contr, 3)
coefs_all <- xgb.dump(bst)[-c(1,2,6)] %>% as.numeric
for (g in seq_along(pred_contr)) {
expect_equal(colnames(pred_contr[[g]]), c(colnames(iris[, -5]), "BIAS"))
expect_lt(max(abs(rowSums(pred_contr[[g]]) - pred[, g])), 2e-6)
# manual calculation of linear terms
coefs <- coefs_all[seq(g, length(coefs_all), by = 3)]
coefs <- c(coefs[-1], coefs[1]) # intercept needs to be the last
pred_contr_manual <- sweep(as.matrix(cbind(iris[,-5], 1)), 2, coefs, FUN="*")
expect_equal(as.numeric(pred_contr[[g]]), as.numeric(pred_contr_manual), 2e-6)
}
})
test_that("xgb-attribute functionality", {
val <- "my attribute value"
list.val <- list(my_attr=val, a=123, b='ok')
list.ch <- list.val[order(names(list.val))]
list.ch <- lapply(list.ch, as.character)
# note: iter is 0-index in xgb attributes
list.default <- list(niter = "9")
list.default <- list(niter = as.character(nrounds - 1))
list.ch <- c(list.ch, list.default)
# proper input:
expect_error(xgb.attr(bst.Tree, NULL))
@ -85,7 +147,9 @@ test_that("xgb-attribute functionality", {
expect_null(xgb.attributes(bst))
})
if (grepl('Windows', Sys.info()[['sysname']]) || grepl('Linux', Sys.info()[['sysname']]) || grepl('Darwin', Sys.info()[['sysname']])) {
if (grepl('Windows', Sys.info()[['sysname']]) ||
grepl('Linux', Sys.info()[['sysname']]) ||
grepl('Darwin', Sys.info()[['sysname']])) {
test_that("xgb-attribute numeric precision", {
# check that lossless conversion works with 17 digits
# numeric -> character -> numeric
@ -121,7 +185,7 @@ test_that("xgb.model.dt.tree works with and without feature names", {
names.dt.trees <- c("Tree", "Node", "ID", "Feature", "Split", "Yes", "No", "Missing", "Quality", "Cover")
dt.tree <- xgb.model.dt.tree(feature_names = feature.names, model = bst.Tree)
expect_equal(names.dt.trees, names(dt.tree))
expect_equal(dim(dt.tree), c(162, 10))
expect_equal(dim(dt.tree), c(188, 10))
expect_output(str(dt.tree), 'Feature.*\\"Age\\"')
dt.tree.0 <- xgb.model.dt.tree(model = bst.Tree)

View File

@ -384,7 +384,7 @@ XGB_DLL int XGBoosterEvalOneIter(BoosterHandle handle,
* 0:normal prediction
* 1:output margin instead of transformed value
* 2:output leaf index of trees instead of leaf value, note leaf index is unique per tree
* 4:output feature contributions of all trees instead of predictions
* 4:output feature contributions to individual predictions
* \param ntree_limit limit number of trees used for prediction, this is only valid for boosted trees
* when the parameter is set to 0, we will use all the trees
* \param out_len used to store length of returning result

View File

@ -109,8 +109,8 @@ class GradientBooster {
unsigned ntree_limit = 0) = 0;
/*!
* \brief predict the feature contributions of each tree, the output will be nsample * (nfeats + 1) vector
* this is only valid in gbtree predictor
* \brief feature contributions to individual predictions; the output will be a vector
* of length (nfeats + 1) * num_output_group * nsample, arranged in that order
* \param dmat feature matrix
* \param out_contribs output vector to hold the contributions
* \param ntree_limit limit the number of trees used in prediction, when it equals 0, this means

View File

@ -103,7 +103,7 @@ class Learner : public rabit::Serializable {
* \param ntree_limit limit number of trees used for boosted tree
* predictor, when it equals 0, this means we are using all the trees
* \param pred_leaf whether to only predict the leaf index of each tree in a boosted tree predictor
* \param pred_contribs whether to only predict the feature contributions of all trees
* \param pred_contribs whether to only predict the feature contributions
*/
virtual void Predict(DMatrix* data,
bool output_margin,

View File

@ -180,10 +180,6 @@ class GBLinear : public GradientBooster {
<< "GBLinear::Predict ntrees is only valid for gbtree predictor";
std::vector<bst_float> &preds = *out_preds;
const std::vector<bst_float>& base_margin = p_fmat->info().base_margin;
if (base_margin.size() != 0) {
CHECK_EQ(preds.size(), base_margin.size())
<< "base_margin.size does not match with prediction size";
}
preds.resize(0);
// start collecting the prediction
dmlc::DataIter<RowBatch> *iter = p_fmat->RowIterator();
@ -218,45 +214,87 @@ class GBLinear : public GradientBooster {
this->Pred(inst, dmlc::BeginPtr(*out_preds), gid, base_margin_);
}
}
void PredictLeaf(DMatrix *p_fmat,
std::vector<bst_float> *out_preds,
unsigned ntree_limit) override {
LOG(FATAL) << "gblinear does not support predict leaf index";
LOG(FATAL) << "gblinear does not support prediction of leaf index";
}
void PredictContribution(DMatrix* p_fmat,
std::vector<bst_float>* out_contribs,
unsigned ntree_limit) override {
LOG(FATAL) << "gblinear does not support predict contributions";
if (model.weight.size() == 0) {
model.InitModel();
}
CHECK_EQ(ntree_limit, 0U)
<< "GBLinear::PredictContribution: ntrees is only valid for gbtree predictor";
const std::vector<bst_float>& base_margin = p_fmat->info().base_margin;
const int ngroup = model.param.num_output_group;
const size_t ncolumns = model.param.num_feature + 1;
// allocate space for (#features + bias) times #groups times #rows
std::vector<bst_float>& contribs = *out_contribs;
contribs.resize(p_fmat->info().num_row * ncolumns * ngroup);
// make sure contributions is zeroed, we could be reusing a previously allocated one
std::fill(contribs.begin(), contribs.end(), 0);
// start collecting the contributions
dmlc::DataIter<RowBatch>* iter = p_fmat->RowIterator();
iter->BeforeFirst();
while (iter->Next()) {
const RowBatch& batch = iter->Value();
// parallel over local batch
const bst_omp_uint nsize = static_cast<bst_omp_uint>(batch.size);
#pragma omp parallel for schedule(static)
for (bst_omp_uint i = 0; i < nsize; ++i) {
const RowBatch::Inst &inst = batch[i];
size_t row_idx = static_cast<size_t>(batch.base_rowid + i);
// loop over output groups
for (int gid = 0; gid < ngroup; ++gid) {
bst_float *p_contribs = &contribs[(row_idx * ngroup + gid) * ncolumns];
// calculate linear terms' contributions
for (bst_uint c = 0; c < inst.length; ++c) {
if (inst[c].index >= model.param.num_feature) continue;
p_contribs[inst[c].index] = inst[c].fvalue * model[inst[c].index][gid];
}
// add base margin to BIAS
p_contribs[ncolumns - 1] = model.bias()[gid] +
((base_margin.size() != 0) ? base_margin[row_idx * ngroup + gid] : base_margin_);
}
}
}
}
std::vector<std::string> DumpModel(const FeatureMap& fmap,
bool with_stats,
std::string format) const override {
const int ngroup = model.param.num_output_group;
const unsigned nfeature = model.param.num_feature;
std::stringstream fo("");
if (format == "json") {
fo << " { \"bias\": [" << std::endl;
for (int i = 0; i < model.param.num_output_group; ++i) {
if (i != 0) fo << "," << std::endl;
fo << " " << model.bias()[i];
for (int gid = 0; gid < ngroup; ++gid) {
if (gid != 0) fo << "," << std::endl;
fo << " " << model.bias()[gid];
}
fo << std::endl << " ]," << std::endl
<< " \"weight\": [" << std::endl;
for (int i = 0; i < model.param.num_output_group; ++i) {
for (unsigned j = 0; j < model.param.num_feature; ++j) {
if (i != 0 || j != 0) fo << "," << std::endl;
fo << " " << model[i][j];
for (unsigned i = 0; i < nfeature; ++i) {
for (int gid = 0; gid < ngroup; ++gid) {
if (i != 0 || gid != 0) fo << "," << std::endl;
fo << " " << model[i][gid];
}
}
fo << std::endl << " ]" << std::endl << " }";
} else {
fo << "bias:\n";
for (int i = 0; i < model.param.num_output_group; ++i) {
fo << model.bias()[i] << std::endl;
for (int gid = 0; gid < ngroup; ++gid) {
fo << model.bias()[gid] << std::endl;
}
fo << "weight:\n";
for (int i = 0; i < model.param.num_output_group; ++i) {
for (unsigned j = 0; j <model.param.num_feature; ++j) {
fo << model[i][j] << std::endl;
for (unsigned i = 0; i < nfeature; ++i) {
for (int gid = 0; gid < ngroup; ++gid) {
fo << model[i][gid] << std::endl;
}
}
}

View File

@ -571,6 +571,7 @@ class GBTree : public GradientBooster {
if (ntree_limit == 0 || ntree_limit > trees.size()) {
ntree_limit = static_cast<unsigned>(trees.size());
}
const int ngroup = mparam.num_output_group;
size_t ncolumns = mparam.num_feature + 1;
// allocate space for (number of features + bias) times the number of rows
std::vector<bst_float>& contribs = *out_contribs;
@ -584,7 +585,7 @@ class GBTree : public GradientBooster {
}
// start collecting the contributions
dmlc::DataIter<RowBatch>* iter = p_fmat->RowIterator();
const std::vector<bst_float>& base_margin = p_fmat->info().base_margin;
const std::vector<bst_float>& base_margin = info.base_margin;
iter->BeforeFirst();
while (iter->Next()) {
const RowBatch& batch = iter->Value();
@ -596,8 +597,8 @@ class GBTree : public GradientBooster {
unsigned root_id = info.GetRoot(row_idx);
RegTree::FVec &feats = thread_temp[omp_get_thread_num()];
// loop over all classes
for (int gid = 0; gid < mparam.num_output_group; ++gid) {
bst_float *p_contribs = &contribs[(row_idx * mparam.num_output_group + gid) * ncolumns];
for (int gid = 0; gid < ngroup; ++gid) {
bst_float *p_contribs = &contribs[(row_idx * ngroup + gid) * ncolumns];
feats.Fill(batch[i]);
// calculate contributions
for (unsigned j = 0; j < ntree_limit; ++j) {
@ -607,9 +608,9 @@ class GBTree : public GradientBooster {
trees[j]->CalculateContributions(feats, root_id, p_contribs);
}
feats.Drop(batch[i]);
// add base margin to BIAS feature
// add base margin to BIAS
if (base_margin.size() != 0) {
p_contribs[ncolumns - 1] += base_margin[row_idx * mparam.num_output_group + gid];
p_contribs[ncolumns - 1] += base_margin[row_idx * ngroup + gid];
} else {
p_contribs[ncolumns - 1] += base_margin_;
}