xgboost/R-package/DESCRIPTION
Vadim Khotilovich b52db87d5c adding feature contributions to R and gblinear (#2295)
* [gblinear] add features contribution prediction; fix DumpModel bug

* [gbtree] minor changes to PredContrib

* [R] add feature contribution prediction to R

* [R] bump up version; update NEWS

* [gblinear] fix the base_margin issue; fixes #1969

* [R] list of matrices as output of multiclass feature contributions

* [gblinear] make order of DumpModel coefficients consistent: group index changes the fastest
2017-05-21 07:41:51 -04:00

41 lines
1.5 KiB
Plaintext

Package: xgboost
Type: Package
Title: Extreme Gradient Boosting
Version: 0.6.4.5
Date: 2017-01-04
Author: Tianqi Chen <tianqi.tchen@gmail.com>, Tong He <hetong007@gmail.com>,
Michael Benesty <michael@benesty.fr>, Vadim Khotilovich <khotilovich@gmail.com>,
Yuan Tang <terrytangyuan@gmail.com>
Maintainer: Tong He <hetong007@gmail.com>
Description: Extreme Gradient Boosting, which is an efficient implementation
of the gradient boosting framework from Chen & Guestrin (2016) <doi:10.1145/2939672.2939785>.
This package is its R interface. The package includes efficient linear
model solver and tree learning algorithms. The package can automatically
do parallel computation on a single machine which could be more than 10
times faster than existing gradient boosting packages. It supports
various objective functions, including regression, classification and ranking.
The package is made to be extensible, so that users are also allowed to define
their own objectives easily.
License: Apache License (== 2.0) | file LICENSE
URL: https://github.com/dmlc/xgboost
BugReports: https://github.com/dmlc/xgboost/issues
VignetteBuilder: knitr
Suggests:
knitr,
rmarkdown,
ggplot2 (>= 1.0.1),
DiagrammeR (>= 0.9.0),
Ckmeans.1d.dp (>= 3.3.1),
vcd (>= 1.3),
testthat,
igraph (>= 1.0.1)
Depends:
R (>= 3.3.0)
Imports:
Matrix (>= 1.1-0),
methods,
data.table (>= 1.9.6),
magrittr (>= 1.5),
stringi (>= 0.5.2)
RoxygenNote: 6.0.1