adding feature contributions to R and gblinear (#2295)
* [gblinear] add features contribution prediction; fix DumpModel bug * [gbtree] minor changes to PredContrib * [R] add feature contribution prediction to R * [R] bump up version; update NEWS * [gblinear] fix the base_margin issue; fixes #1969 * [R] list of matrices as output of multiclass feature contributions * [gblinear] make order of DumpModel coefficients consistent: group index changes the fastest
This commit is contained in:
parent
e5e721722e
commit
b52db87d5c
4
NEWS.md
4
NEWS.md
@ -12,10 +12,14 @@ This file records the changes in xgboost library in reverse chronological order.
|
||||
- Thread local variable is upgraded so it is automatically freed at thread exit.
|
||||
* Migrate to C++11
|
||||
- The current master version now requires C++11 enabled compiled(g++4.8 or higher)
|
||||
* New functionality
|
||||
- Ability to adjust tree model's statistics to a new dataset without changing tree structures.
|
||||
- Extracting feature contributions to individual predictions.
|
||||
* R package:
|
||||
- New parameters:
|
||||
- `silent` in `xgb.DMatrix()`
|
||||
- `use_int_id` in `xgb.model.dt.tree()`
|
||||
- `predcontrib` in `predict()`
|
||||
- Default value of the `save_period` parameter in `xgboost()` changed to NULL (consistent with `xgb.train()`).
|
||||
|
||||
## v0.6 (2016.07.29)
|
||||
|
||||
@ -1,7 +1,7 @@
|
||||
Package: xgboost
|
||||
Type: Package
|
||||
Title: Extreme Gradient Boosting
|
||||
Version: 0.6.4.4
|
||||
Version: 0.6.4.5
|
||||
Date: 2017-01-04
|
||||
Author: Tianqi Chen <tianqi.tchen@gmail.com>, Tong He <hetong007@gmail.com>,
|
||||
Michael Benesty <michael@benesty.fr>, Vadim Khotilovich <khotilovich@gmail.com>,
|
||||
|
||||
@ -127,6 +127,7 @@ xgb.Booster.complete <- function(object, saveraw = TRUE) {
|
||||
#' @param ntreelimit limit the number of model's trees or boosting iterations used in prediction (see Details).
|
||||
#' It will use all the trees by default (\code{NULL} value).
|
||||
#' @param predleaf whether predict leaf index instead.
|
||||
#' @param predcontrib whether to return feature contributions to individual predictions instead (see Details).
|
||||
#' @param reshape whether to reshape the vector of predictions to a matrix form when there are several
|
||||
#' prediction outputs per case. This option has no effect when \code{predleaf = TRUE}.
|
||||
#' @param ... Parameters passed to \code{predict.xgb.Booster}
|
||||
@ -135,8 +136,8 @@ xgb.Booster.complete <- function(object, saveraw = TRUE) {
|
||||
#' Note that \code{ntreelimit} is not necessarily equal to the number of boosting iterations
|
||||
#' and it is not necessarily equal to the number of trees in a model.
|
||||
#' E.g., in a random forest-like model, \code{ntreelimit} would limit the number of trees.
|
||||
#' But for multiclass classification, there are multiple trees per iteration,
|
||||
#' but \code{ntreelimit} limits the number of boosting iterations.
|
||||
#' But for multiclass classification, while there are multiple trees per iteration,
|
||||
#' \code{ntreelimit} limits the number of boosting iterations.
|
||||
#'
|
||||
#' Also note that \code{ntreelimit} would currently do nothing for predictions from gblinear,
|
||||
#' since gblinear doesn't keep its boosting history.
|
||||
@ -145,6 +146,13 @@ xgb.Booster.complete <- function(object, saveraw = TRUE) {
|
||||
#' as a generator of new features which capture non-linearity and interactions,
|
||||
#' e.g., as implemented in \code{\link{xgb.create.features}}.
|
||||
#'
|
||||
#' Setting \code{predcontrib = TRUE} allows to calculate contributions of each feature to
|
||||
#' individual predictions. For "gblinear" booster, feature contributions are simply linear terms
|
||||
#' (feature_beta * feature_value). For "gbtree" booster, feature contribution is calculated
|
||||
#' as a sum of average contribution of that feature's split nodes across all trees to an
|
||||
#' individual prediction, following the idea explained in
|
||||
#' \url{http://blog.datadive.net/interpreting-random-forests/}.
|
||||
#'
|
||||
#' @return
|
||||
#' For regression or binary classification, it returns a vector of length \code{nrows(newdata)}.
|
||||
#' For multiclass classification, either a \code{num_class * nrows(newdata)} vector or
|
||||
@ -154,6 +162,12 @@ xgb.Booster.complete <- function(object, saveraw = TRUE) {
|
||||
#' When \code{predleaf = TRUE}, the output is a matrix object with the
|
||||
#' number of columns corresponding to the number of trees.
|
||||
#'
|
||||
#' When \code{predcontrib = TRUE} and it is not a multiclass setting, the output is a matrix object with
|
||||
#' \code{num_features + 1} columns. The last "+ 1" column in a matrix corresponds to bias.
|
||||
#' For a multiclass case, a list of \code{num_class} elements is returned, where each element is
|
||||
#' such a matrix. The contribution values are on the scale of untransformed margin
|
||||
#' (e.g., for binary classification would mean that the contributions are log-odds deviations from bias).
|
||||
#'
|
||||
#' @seealso
|
||||
#' \code{\link{xgb.train}}.
|
||||
#'
|
||||
@ -166,11 +180,32 @@ xgb.Booster.complete <- function(object, saveraw = TRUE) {
|
||||
#' test <- agaricus.test
|
||||
#'
|
||||
#' bst <- xgboost(data = train$data, label = train$label, max_depth = 2,
|
||||
#' eta = 1, nthread = 2, nrounds = 2, objective = "binary:logistic")
|
||||
#' eta = 0.5, nthread = 2, nrounds = 5, objective = "binary:logistic")
|
||||
#' # use all trees by default
|
||||
#' pred <- predict(bst, test$data)
|
||||
#' # use only the 1st tree
|
||||
#' pred <- predict(bst, test$data, ntreelimit = 1)
|
||||
#' pred1 <- predict(bst, test$data, ntreelimit = 1)
|
||||
#'
|
||||
#' # Predicting tree leafs:
|
||||
#' # the result is an nsamples X ntrees matrix
|
||||
#' pred_leaf <- predict(bst, test$data, predleaf = TRUE)
|
||||
#' str(pred_leaf)
|
||||
#'
|
||||
#' # Predicting feature contributions to predictions:
|
||||
#' # the result is an nsamples X (nfeatures + 1) matrix
|
||||
#' pred_contr <- predict(bst, test$data, predcontrib = TRUE)
|
||||
#' str(pred_contr)
|
||||
#' # verify that contributions' sums are equal to log-odds of predictions (up to foat precision):
|
||||
#' summary(rowSums(pred_contr) - qlogis(pred))
|
||||
#' # for the 1st record, let's inspect its features that had non-zero contribution to prediction:
|
||||
#' contr1 <- pred_contr[1,]
|
||||
#' contr1 <- contr1[-length(contr1)] # drop BIAS
|
||||
#' contr1 <- contr1[contr1 != 0] # drop non-contributing features
|
||||
#' contr1 <- contr1[order(abs(contr1))] # order by contribution magnitude
|
||||
#' old_mar <- par("mar")
|
||||
#' par(mar = old_mar + c(0,7,0,0))
|
||||
#' barplot(contr1, horiz = TRUE, las = 2, xlab = "contribution to prediction in log-odds")
|
||||
#' par(mar = old_mar)
|
||||
#'
|
||||
#'
|
||||
#' ## multiclass classification in iris dataset:
|
||||
@ -222,8 +257,8 @@ xgb.Booster.complete <- function(object, saveraw = TRUE) {
|
||||
#'
|
||||
#' @rdname predict.xgb.Booster
|
||||
#' @export
|
||||
predict.xgb.Booster <- function(object, newdata, missing = NA,
|
||||
outputmargin = FALSE, ntreelimit = NULL, predleaf = FALSE, reshape = FALSE, ...) {
|
||||
predict.xgb.Booster <- function(object, newdata, missing = NA, outputmargin = FALSE, ntreelimit = NULL,
|
||||
predleaf = FALSE, predcontrib = FALSE, reshape = FALSE, ...) {
|
||||
|
||||
object <- xgb.Booster.complete(object, saveraw = FALSE)
|
||||
if (!inherits(newdata, "xgb.DMatrix"))
|
||||
@ -235,23 +270,40 @@ predict.xgb.Booster <- function(object, newdata, missing = NA,
|
||||
if (ntreelimit < 0)
|
||||
stop("ntreelimit cannot be negative")
|
||||
|
||||
option <- 0L + 1L * as.logical(outputmargin) + 2L * as.logical(predleaf)
|
||||
option <- 0L + 1L * as.logical(outputmargin) + 2L * as.logical(predleaf) + 4L * as.logical(predcontrib)
|
||||
|
||||
ret <- .Call(XGBoosterPredict_R, object$handle, newdata, option[1], as.integer(ntreelimit))
|
||||
|
||||
if (length(ret) %% nrow(newdata) != 0)
|
||||
stop("prediction length ", length(ret)," is not multiple of nrows(newdata) ", nrow(newdata))
|
||||
npred_per_case <- length(ret) / nrow(newdata)
|
||||
n_ret <- length(ret)
|
||||
n_row <- nrow(newdata)
|
||||
npred_per_case <- n_ret / n_row
|
||||
|
||||
if (n_ret %% n_row != 0)
|
||||
stop("prediction length ", n_ret, " is not multiple of nrows(newdata) ", n_row)
|
||||
|
||||
if (predleaf) {
|
||||
len <- nrow(newdata)
|
||||
ret <- if (length(ret) == len) {
|
||||
ret <- if (n_ret == n_row) {
|
||||
matrix(ret, ncol = 1)
|
||||
} else {
|
||||
t(matrix(ret, ncol = len))
|
||||
matrix(ret, nrow = n_row, byrow = TRUE)
|
||||
}
|
||||
} else if (predcontrib) {
|
||||
n_col1 <- ncol(newdata) + 1
|
||||
n_group <- npred_per_case / n_col1
|
||||
dnames <- list(NULL, c(colnames(newdata), "BIAS"))
|
||||
ret <- if (n_ret == n_row) {
|
||||
matrix(ret, ncol = 1, dimnames = dnames)
|
||||
} else if (n_group == 1) {
|
||||
matrix(ret, nrow = n_row, byrow = TRUE, dimnames = dnames)
|
||||
} else {
|
||||
grp_mask <- rep(1:n_col1, n_row) +
|
||||
rep((0:(n_row - 1)) * n_col1 * n_group, each = n_col1)
|
||||
lapply(1:n_group, function(g) {
|
||||
matrix(ret[grp_mask + n_col1 * (g - 1)], nrow = n_row, byrow = TRUE, dimnames = dnames)
|
||||
})
|
||||
}
|
||||
} else if (reshape && npred_per_case > 1) {
|
||||
ret <- matrix(ret, ncol = length(ret) / nrow(newdata), byrow = TRUE)
|
||||
ret <- matrix(ret, nrow = n_row, byrow = TRUE)
|
||||
}
|
||||
return(ret)
|
||||
}
|
||||
|
||||
@ -7,7 +7,7 @@
|
||||
\usage{
|
||||
\method{predict}{xgb.Booster}(object, newdata, missing = NA,
|
||||
outputmargin = FALSE, ntreelimit = NULL, predleaf = FALSE,
|
||||
reshape = FALSE, ...)
|
||||
predcontrib = FALSE, reshape = FALSE, ...)
|
||||
|
||||
\method{predict}{xgb.Booster.handle}(object, ...)
|
||||
}
|
||||
@ -28,6 +28,8 @@ It will use all the trees by default (\code{NULL} value).}
|
||||
|
||||
\item{predleaf}{whether predict leaf index instead.}
|
||||
|
||||
\item{predcontrib}{whether to return feature contributions to individual predictions instead (see Details).}
|
||||
|
||||
\item{reshape}{whether to reshape the vector of predictions to a matrix form when there are several
|
||||
prediction outputs per case. This option has no effect when \code{predleaf = TRUE}.}
|
||||
|
||||
@ -41,6 +43,12 @@ the \code{reshape} value.
|
||||
|
||||
When \code{predleaf = TRUE}, the output is a matrix object with the
|
||||
number of columns corresponding to the number of trees.
|
||||
|
||||
When \code{predcontrib = TRUE} and it is not a multiclass setting, the output is a matrix object with
|
||||
\code{num_features + 1} columns. The last "+ 1" column in a matrix corresponds to bias.
|
||||
For a multiclass case, a list of \code{num_class} elements is returned, where each element is
|
||||
such a matrix. The contribution values are on the scale of untransformed margin
|
||||
(e.g., for binary classification would mean that the contributions are log-odds deviations from bias).
|
||||
}
|
||||
\description{
|
||||
Predicted values based on either xgboost model or model handle object.
|
||||
@ -49,8 +57,8 @@ Predicted values based on either xgboost model or model handle object.
|
||||
Note that \code{ntreelimit} is not necessarily equal to the number of boosting iterations
|
||||
and it is not necessarily equal to the number of trees in a model.
|
||||
E.g., in a random forest-like model, \code{ntreelimit} would limit the number of trees.
|
||||
But for multiclass classification, there are multiple trees per iteration,
|
||||
but \code{ntreelimit} limits the number of boosting iterations.
|
||||
But for multiclass classification, while there are multiple trees per iteration,
|
||||
\code{ntreelimit} limits the number of boosting iterations.
|
||||
|
||||
Also note that \code{ntreelimit} would currently do nothing for predictions from gblinear,
|
||||
since gblinear doesn't keep its boosting history.
|
||||
@ -58,6 +66,13 @@ since gblinear doesn't keep its boosting history.
|
||||
One possible practical applications of the \code{predleaf} option is to use the model
|
||||
as a generator of new features which capture non-linearity and interactions,
|
||||
e.g., as implemented in \code{\link{xgb.create.features}}.
|
||||
|
||||
Setting \code{predcontrib = TRUE} allows to calculate contributions of each feature to
|
||||
individual predictions. For "gblinear" booster, feature contributions are simply linear terms
|
||||
(feature_beta * feature_value). For "gbtree" booster, feature contribution is calculated
|
||||
as a sum of average contribution of that feature's split nodes across all trees to an
|
||||
individual prediction, following the idea explained in
|
||||
\url{http://blog.datadive.net/interpreting-random-forests/}.
|
||||
}
|
||||
\examples{
|
||||
## binary classification:
|
||||
@ -68,11 +83,32 @@ train <- agaricus.train
|
||||
test <- agaricus.test
|
||||
|
||||
bst <- xgboost(data = train$data, label = train$label, max_depth = 2,
|
||||
eta = 1, nthread = 2, nrounds = 2, objective = "binary:logistic")
|
||||
eta = 0.5, nthread = 2, nrounds = 5, objective = "binary:logistic")
|
||||
# use all trees by default
|
||||
pred <- predict(bst, test$data)
|
||||
# use only the 1st tree
|
||||
pred <- predict(bst, test$data, ntreelimit = 1)
|
||||
pred1 <- predict(bst, test$data, ntreelimit = 1)
|
||||
|
||||
# Predicting tree leafs:
|
||||
# the result is an nsamples X ntrees matrix
|
||||
pred_leaf <- predict(bst, test$data, predleaf = TRUE)
|
||||
str(pred_leaf)
|
||||
|
||||
# Predicting feature contributions to predictions:
|
||||
# the result is an nsamples X (nfeatures + 1) matrix
|
||||
pred_contr <- predict(bst, test$data, predcontrib = TRUE)
|
||||
str(pred_contr)
|
||||
# verify that contributions' sums are equal to log-odds of predictions (up to foat precision):
|
||||
summary(rowSums(pred_contr) - qlogis(pred))
|
||||
# for the 1st record, let's inspect its features that had non-zero contribution to prediction:
|
||||
contr1 <- pred_contr[1,]
|
||||
contr1 <- contr1[-length(contr1)] # drop BIAS
|
||||
contr1 <- contr1[contr1 != 0] # drop non-contributing features
|
||||
contr1 <- contr1[order(abs(contr1))] # order by contribution magnitude
|
||||
old_mar <- par("mar")
|
||||
par(mar = old_mar + c(0,7,0,0))
|
||||
barplot(contr1, horiz = TRUE, las = 2, xlab = "contribution to prediction in log-odds")
|
||||
par(mar = old_mar)
|
||||
|
||||
|
||||
## multiclass classification in iris dataset:
|
||||
|
||||
@ -14,18 +14,19 @@ df[,ID := NULL]
|
||||
sparse_matrix <- sparse.model.matrix(Improved~.-1, data = df)
|
||||
label <- df[, ifelse(Improved == "Marked", 1, 0)]
|
||||
|
||||
nrounds <- 12
|
||||
bst.Tree <- xgboost(data = sparse_matrix, label = label, max_depth = 9,
|
||||
eta = 1, nthread = 2, nrounds = 10, verbose = 0,
|
||||
eta = 1, nthread = 2, nrounds = nrounds, verbose = 0,
|
||||
objective = "binary:logistic", booster = "gbtree")
|
||||
|
||||
bst.GLM <- xgboost(data = sparse_matrix, label = label,
|
||||
eta = 1, nthread = 2, nrounds = 10, verbose = 0,
|
||||
eta = 1, nthread = 1, nrounds = nrounds, verbose = 0,
|
||||
objective = "binary:logistic", booster = "gblinear")
|
||||
|
||||
feature.names <- colnames(sparse_matrix)
|
||||
|
||||
test_that("xgb.dump works", {
|
||||
expect_length(xgb.dump(bst.Tree), 172)
|
||||
expect_length(xgb.dump(bst.Tree), 200)
|
||||
expect_true(xgb.dump(bst.Tree, 'xgb.model.dump', with_stats = T))
|
||||
expect_true(file.exists('xgb.model.dump'))
|
||||
expect_gt(file.size('xgb.model.dump'), 8000)
|
||||
@ -33,7 +34,7 @@ test_that("xgb.dump works", {
|
||||
# JSON format
|
||||
dmp <- xgb.dump(bst.Tree, dump_format = "json")
|
||||
expect_length(dmp, 1)
|
||||
expect_length(grep('nodeid', strsplit(dmp, '\n')[[1]]), 162)
|
||||
expect_length(grep('nodeid', strsplit(dmp, '\n')[[1]]), 188)
|
||||
})
|
||||
|
||||
test_that("xgb.dump works for gblinear", {
|
||||
@ -52,13 +53,74 @@ test_that("xgb.dump works for gblinear", {
|
||||
expect_length(grep('\\d', strsplit(dmp, '\n')[[1]]), 11)
|
||||
})
|
||||
|
||||
test_that("predict leafs works", {
|
||||
# no error for gbtree
|
||||
expect_error(pred_leaf <- predict(bst.Tree, sparse_matrix, predleaf = TRUE), regexp = NA)
|
||||
expect_equal(dim(pred_leaf), c(nrow(sparse_matrix), nrounds))
|
||||
# error for gblinear
|
||||
expect_error(predict(bst.GLM, sparse_matrix, predleaf = TRUE))
|
||||
})
|
||||
|
||||
test_that("predict feature contributions works", {
|
||||
# gbtree binary classifier
|
||||
expect_error(pred_contr <- predict(bst.Tree, sparse_matrix, predcontrib = TRUE), regexp = NA)
|
||||
expect_equal(dim(pred_contr), c(nrow(sparse_matrix), ncol(sparse_matrix) + 1))
|
||||
expect_equal(colnames(pred_contr), c(colnames(sparse_matrix), "BIAS"))
|
||||
pred <- predict(bst.Tree, sparse_matrix, outputmargin = TRUE)
|
||||
expect_lt(max(abs(rowSums(pred_contr) - pred)), 1e-6)
|
||||
|
||||
# gblinear binary classifier
|
||||
expect_error(pred_contr <- predict(bst.GLM, sparse_matrix, predcontrib = TRUE), regexp = NA)
|
||||
expect_equal(dim(pred_contr), c(nrow(sparse_matrix), ncol(sparse_matrix) + 1))
|
||||
expect_equal(colnames(pred_contr), c(colnames(sparse_matrix), "BIAS"))
|
||||
pred <- predict(bst.GLM, sparse_matrix, outputmargin = TRUE)
|
||||
expect_lt(max(abs(rowSums(pred_contr) - pred)), 2e-6)
|
||||
# manual calculation of linear terms
|
||||
coefs <- xgb.dump(bst.GLM)[-c(1,2,4)] %>% as.numeric
|
||||
coefs <- c(coefs[-1], coefs[1]) # intercept must be the last
|
||||
pred_contr_manual <- sweep(cbind(sparse_matrix, 1), 2, coefs, FUN="*")
|
||||
expect_equal(as.numeric(pred_contr), as.numeric(pred_contr_manual), 2e-6)
|
||||
|
||||
# gbtree multiclass
|
||||
lb <- as.numeric(iris$Species) - 1
|
||||
bst <- xgboost(data = as.matrix(iris[, -5]), label = lb, verbose = 0,
|
||||
max_depth = 3, eta = 0.5, nthread = 2, nrounds = 5,
|
||||
objective = "multi:softprob", num_class = 3)
|
||||
pred <- predict(bst, as.matrix(iris[, -5]), outputmargin = TRUE, reshape = TRUE)
|
||||
pred_contr <- predict(bst, as.matrix(iris[, -5]), predcontrib = TRUE)
|
||||
expect_is(pred_contr, "list")
|
||||
expect_length(pred_contr, 3)
|
||||
for (g in seq_along(pred_contr)) {
|
||||
expect_equal(colnames(pred_contr[[g]]), c(colnames(iris[, -5]), "BIAS"))
|
||||
expect_lt(max(abs(rowSums(pred_contr[[g]]) - pred[, g])), 2e-6)
|
||||
}
|
||||
|
||||
# gblinear multiclass (set base_score = 0, which is base margin in multiclass)
|
||||
bst <- xgboost(data = as.matrix(iris[, -5]), label = lb, verbose = 0,
|
||||
booster = "gblinear", eta = 0.1, nthread = 1, nrounds = 10,
|
||||
objective = "multi:softprob", num_class = 3, base_score = 0)
|
||||
pred <- predict(bst, as.matrix(iris[, -5]), outputmargin = TRUE, reshape = TRUE)
|
||||
pred_contr <- predict(bst, as.matrix(iris[, -5]), predcontrib = TRUE)
|
||||
expect_length(pred_contr, 3)
|
||||
coefs_all <- xgb.dump(bst)[-c(1,2,6)] %>% as.numeric
|
||||
for (g in seq_along(pred_contr)) {
|
||||
expect_equal(colnames(pred_contr[[g]]), c(colnames(iris[, -5]), "BIAS"))
|
||||
expect_lt(max(abs(rowSums(pred_contr[[g]]) - pred[, g])), 2e-6)
|
||||
# manual calculation of linear terms
|
||||
coefs <- coefs_all[seq(g, length(coefs_all), by = 3)]
|
||||
coefs <- c(coefs[-1], coefs[1]) # intercept needs to be the last
|
||||
pred_contr_manual <- sweep(as.matrix(cbind(iris[,-5], 1)), 2, coefs, FUN="*")
|
||||
expect_equal(as.numeric(pred_contr[[g]]), as.numeric(pred_contr_manual), 2e-6)
|
||||
}
|
||||
})
|
||||
|
||||
test_that("xgb-attribute functionality", {
|
||||
val <- "my attribute value"
|
||||
list.val <- list(my_attr=val, a=123, b='ok')
|
||||
list.ch <- list.val[order(names(list.val))]
|
||||
list.ch <- lapply(list.ch, as.character)
|
||||
# note: iter is 0-index in xgb attributes
|
||||
list.default <- list(niter = "9")
|
||||
list.default <- list(niter = as.character(nrounds - 1))
|
||||
list.ch <- c(list.ch, list.default)
|
||||
# proper input:
|
||||
expect_error(xgb.attr(bst.Tree, NULL))
|
||||
@ -85,7 +147,9 @@ test_that("xgb-attribute functionality", {
|
||||
expect_null(xgb.attributes(bst))
|
||||
})
|
||||
|
||||
if (grepl('Windows', Sys.info()[['sysname']]) || grepl('Linux', Sys.info()[['sysname']]) || grepl('Darwin', Sys.info()[['sysname']])) {
|
||||
if (grepl('Windows', Sys.info()[['sysname']]) ||
|
||||
grepl('Linux', Sys.info()[['sysname']]) ||
|
||||
grepl('Darwin', Sys.info()[['sysname']])) {
|
||||
test_that("xgb-attribute numeric precision", {
|
||||
# check that lossless conversion works with 17 digits
|
||||
# numeric -> character -> numeric
|
||||
@ -121,7 +185,7 @@ test_that("xgb.model.dt.tree works with and without feature names", {
|
||||
names.dt.trees <- c("Tree", "Node", "ID", "Feature", "Split", "Yes", "No", "Missing", "Quality", "Cover")
|
||||
dt.tree <- xgb.model.dt.tree(feature_names = feature.names, model = bst.Tree)
|
||||
expect_equal(names.dt.trees, names(dt.tree))
|
||||
expect_equal(dim(dt.tree), c(162, 10))
|
||||
expect_equal(dim(dt.tree), c(188, 10))
|
||||
expect_output(str(dt.tree), 'Feature.*\\"Age\\"')
|
||||
|
||||
dt.tree.0 <- xgb.model.dt.tree(model = bst.Tree)
|
||||
|
||||
@ -384,7 +384,7 @@ XGB_DLL int XGBoosterEvalOneIter(BoosterHandle handle,
|
||||
* 0:normal prediction
|
||||
* 1:output margin instead of transformed value
|
||||
* 2:output leaf index of trees instead of leaf value, note leaf index is unique per tree
|
||||
* 4:output feature contributions of all trees instead of predictions
|
||||
* 4:output feature contributions to individual predictions
|
||||
* \param ntree_limit limit number of trees used for prediction, this is only valid for boosted trees
|
||||
* when the parameter is set to 0, we will use all the trees
|
||||
* \param out_len used to store length of returning result
|
||||
|
||||
@ -109,8 +109,8 @@ class GradientBooster {
|
||||
unsigned ntree_limit = 0) = 0;
|
||||
|
||||
/*!
|
||||
* \brief predict the feature contributions of each tree, the output will be nsample * (nfeats + 1) vector
|
||||
* this is only valid in gbtree predictor
|
||||
* \brief feature contributions to individual predictions; the output will be a vector
|
||||
* of length (nfeats + 1) * num_output_group * nsample, arranged in that order
|
||||
* \param dmat feature matrix
|
||||
* \param out_contribs output vector to hold the contributions
|
||||
* \param ntree_limit limit the number of trees used in prediction, when it equals 0, this means
|
||||
|
||||
@ -103,7 +103,7 @@ class Learner : public rabit::Serializable {
|
||||
* \param ntree_limit limit number of trees used for boosted tree
|
||||
* predictor, when it equals 0, this means we are using all the trees
|
||||
* \param pred_leaf whether to only predict the leaf index of each tree in a boosted tree predictor
|
||||
* \param pred_contribs whether to only predict the feature contributions of all trees
|
||||
* \param pred_contribs whether to only predict the feature contributions
|
||||
*/
|
||||
virtual void Predict(DMatrix* data,
|
||||
bool output_margin,
|
||||
|
||||
@ -180,10 +180,6 @@ class GBLinear : public GradientBooster {
|
||||
<< "GBLinear::Predict ntrees is only valid for gbtree predictor";
|
||||
std::vector<bst_float> &preds = *out_preds;
|
||||
const std::vector<bst_float>& base_margin = p_fmat->info().base_margin;
|
||||
if (base_margin.size() != 0) {
|
||||
CHECK_EQ(preds.size(), base_margin.size())
|
||||
<< "base_margin.size does not match with prediction size";
|
||||
}
|
||||
preds.resize(0);
|
||||
// start collecting the prediction
|
||||
dmlc::DataIter<RowBatch> *iter = p_fmat->RowIterator();
|
||||
@ -218,45 +214,87 @@ class GBLinear : public GradientBooster {
|
||||
this->Pred(inst, dmlc::BeginPtr(*out_preds), gid, base_margin_);
|
||||
}
|
||||
}
|
||||
|
||||
void PredictLeaf(DMatrix *p_fmat,
|
||||
std::vector<bst_float> *out_preds,
|
||||
unsigned ntree_limit) override {
|
||||
LOG(FATAL) << "gblinear does not support predict leaf index";
|
||||
LOG(FATAL) << "gblinear does not support prediction of leaf index";
|
||||
}
|
||||
|
||||
void PredictContribution(DMatrix* p_fmat,
|
||||
std::vector<bst_float>* out_contribs,
|
||||
unsigned ntree_limit) override {
|
||||
LOG(FATAL) << "gblinear does not support predict contributions";
|
||||
if (model.weight.size() == 0) {
|
||||
model.InitModel();
|
||||
}
|
||||
CHECK_EQ(ntree_limit, 0U)
|
||||
<< "GBLinear::PredictContribution: ntrees is only valid for gbtree predictor";
|
||||
const std::vector<bst_float>& base_margin = p_fmat->info().base_margin;
|
||||
const int ngroup = model.param.num_output_group;
|
||||
const size_t ncolumns = model.param.num_feature + 1;
|
||||
// allocate space for (#features + bias) times #groups times #rows
|
||||
std::vector<bst_float>& contribs = *out_contribs;
|
||||
contribs.resize(p_fmat->info().num_row * ncolumns * ngroup);
|
||||
// make sure contributions is zeroed, we could be reusing a previously allocated one
|
||||
std::fill(contribs.begin(), contribs.end(), 0);
|
||||
// start collecting the contributions
|
||||
dmlc::DataIter<RowBatch>* iter = p_fmat->RowIterator();
|
||||
iter->BeforeFirst();
|
||||
while (iter->Next()) {
|
||||
const RowBatch& batch = iter->Value();
|
||||
// parallel over local batch
|
||||
const bst_omp_uint nsize = static_cast<bst_omp_uint>(batch.size);
|
||||
#pragma omp parallel for schedule(static)
|
||||
for (bst_omp_uint i = 0; i < nsize; ++i) {
|
||||
const RowBatch::Inst &inst = batch[i];
|
||||
size_t row_idx = static_cast<size_t>(batch.base_rowid + i);
|
||||
// loop over output groups
|
||||
for (int gid = 0; gid < ngroup; ++gid) {
|
||||
bst_float *p_contribs = &contribs[(row_idx * ngroup + gid) * ncolumns];
|
||||
// calculate linear terms' contributions
|
||||
for (bst_uint c = 0; c < inst.length; ++c) {
|
||||
if (inst[c].index >= model.param.num_feature) continue;
|
||||
p_contribs[inst[c].index] = inst[c].fvalue * model[inst[c].index][gid];
|
||||
}
|
||||
// add base margin to BIAS
|
||||
p_contribs[ncolumns - 1] = model.bias()[gid] +
|
||||
((base_margin.size() != 0) ? base_margin[row_idx * ngroup + gid] : base_margin_);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
std::vector<std::string> DumpModel(const FeatureMap& fmap,
|
||||
bool with_stats,
|
||||
std::string format) const override {
|
||||
const int ngroup = model.param.num_output_group;
|
||||
const unsigned nfeature = model.param.num_feature;
|
||||
|
||||
std::stringstream fo("");
|
||||
if (format == "json") {
|
||||
fo << " { \"bias\": [" << std::endl;
|
||||
for (int i = 0; i < model.param.num_output_group; ++i) {
|
||||
if (i != 0) fo << "," << std::endl;
|
||||
fo << " " << model.bias()[i];
|
||||
for (int gid = 0; gid < ngroup; ++gid) {
|
||||
if (gid != 0) fo << "," << std::endl;
|
||||
fo << " " << model.bias()[gid];
|
||||
}
|
||||
fo << std::endl << " ]," << std::endl
|
||||
<< " \"weight\": [" << std::endl;
|
||||
for (int i = 0; i < model.param.num_output_group; ++i) {
|
||||
for (unsigned j = 0; j < model.param.num_feature; ++j) {
|
||||
if (i != 0 || j != 0) fo << "," << std::endl;
|
||||
fo << " " << model[i][j];
|
||||
for (unsigned i = 0; i < nfeature; ++i) {
|
||||
for (int gid = 0; gid < ngroup; ++gid) {
|
||||
if (i != 0 || gid != 0) fo << "," << std::endl;
|
||||
fo << " " << model[i][gid];
|
||||
}
|
||||
}
|
||||
fo << std::endl << " ]" << std::endl << " }";
|
||||
} else {
|
||||
fo << "bias:\n";
|
||||
for (int i = 0; i < model.param.num_output_group; ++i) {
|
||||
fo << model.bias()[i] << std::endl;
|
||||
for (int gid = 0; gid < ngroup; ++gid) {
|
||||
fo << model.bias()[gid] << std::endl;
|
||||
}
|
||||
fo << "weight:\n";
|
||||
for (int i = 0; i < model.param.num_output_group; ++i) {
|
||||
for (unsigned j = 0; j <model.param.num_feature; ++j) {
|
||||
fo << model[i][j] << std::endl;
|
||||
for (unsigned i = 0; i < nfeature; ++i) {
|
||||
for (int gid = 0; gid < ngroup; ++gid) {
|
||||
fo << model[i][gid] << std::endl;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
@ -571,6 +571,7 @@ class GBTree : public GradientBooster {
|
||||
if (ntree_limit == 0 || ntree_limit > trees.size()) {
|
||||
ntree_limit = static_cast<unsigned>(trees.size());
|
||||
}
|
||||
const int ngroup = mparam.num_output_group;
|
||||
size_t ncolumns = mparam.num_feature + 1;
|
||||
// allocate space for (number of features + bias) times the number of rows
|
||||
std::vector<bst_float>& contribs = *out_contribs;
|
||||
@ -584,7 +585,7 @@ class GBTree : public GradientBooster {
|
||||
}
|
||||
// start collecting the contributions
|
||||
dmlc::DataIter<RowBatch>* iter = p_fmat->RowIterator();
|
||||
const std::vector<bst_float>& base_margin = p_fmat->info().base_margin;
|
||||
const std::vector<bst_float>& base_margin = info.base_margin;
|
||||
iter->BeforeFirst();
|
||||
while (iter->Next()) {
|
||||
const RowBatch& batch = iter->Value();
|
||||
@ -596,8 +597,8 @@ class GBTree : public GradientBooster {
|
||||
unsigned root_id = info.GetRoot(row_idx);
|
||||
RegTree::FVec &feats = thread_temp[omp_get_thread_num()];
|
||||
// loop over all classes
|
||||
for (int gid = 0; gid < mparam.num_output_group; ++gid) {
|
||||
bst_float *p_contribs = &contribs[(row_idx * mparam.num_output_group + gid) * ncolumns];
|
||||
for (int gid = 0; gid < ngroup; ++gid) {
|
||||
bst_float *p_contribs = &contribs[(row_idx * ngroup + gid) * ncolumns];
|
||||
feats.Fill(batch[i]);
|
||||
// calculate contributions
|
||||
for (unsigned j = 0; j < ntree_limit; ++j) {
|
||||
@ -607,9 +608,9 @@ class GBTree : public GradientBooster {
|
||||
trees[j]->CalculateContributions(feats, root_id, p_contribs);
|
||||
}
|
||||
feats.Drop(batch[i]);
|
||||
// add base margin to BIAS feature
|
||||
// add base margin to BIAS
|
||||
if (base_margin.size() != 0) {
|
||||
p_contribs[ncolumns - 1] += base_margin[row_idx * mparam.num_output_group + gid];
|
||||
p_contribs[ncolumns - 1] += base_margin[row_idx * ngroup + gid];
|
||||
} else {
|
||||
p_contribs[ncolumns - 1] += base_margin_;
|
||||
}
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user