Merge pull request #967 from CodingCat/master
[jvm-packages] change the API name
This commit is contained in:
commit
acdd23e789
@ -25,6 +25,7 @@ object DistTrainWithFlink {
|
||||
// read trainining data
|
||||
val trainData =
|
||||
MLUtils.readLibSVM(env, "/path/to/data/agaricus.txt.train")
|
||||
val testData = MLUtils.readLibSVM(env, "/path/to/data/agaricus.txt.test")
|
||||
// define parameters
|
||||
val paramMap = List(
|
||||
"eta" -> 0.1,
|
||||
@ -34,7 +35,7 @@ object DistTrainWithFlink {
|
||||
val round = 2
|
||||
// train the model
|
||||
val model = XGBoost.train(paramMap, trainData, round)
|
||||
val predTrain = model.predict(trainData.map{x => x.vector})
|
||||
model.saveModelToHadoop("file:///path/to/xgboost.model")
|
||||
val predTest = model.predict(testData.map{x => x.vector})
|
||||
model.saveModelAsHadoopFile("file:///path/to/xgboost.model")
|
||||
}
|
||||
}
|
||||
|
||||
@ -40,6 +40,6 @@ object DistTrainWithSpark {
|
||||
"objective" -> "binary:logistic").toMap
|
||||
val xgboostModel = XGBoost.train(trainRDD, paramMap, numRound)
|
||||
// save model to HDFS path
|
||||
xgboostModel.saveModelToHadoop(outputModelPath)
|
||||
xgboostModel.saveModelAsHadoopFile(outputModelPath)
|
||||
}
|
||||
}
|
||||
|
||||
@ -70,7 +70,7 @@ object XGBoost {
|
||||
* @param modelPath The path that is accessible by hadoop filesystem API.
|
||||
* @return The loaded model
|
||||
*/
|
||||
def loadModelFromHadoop(modelPath: String) : XGBoostModel = {
|
||||
def loadModelFromHadoopFile(modelPath: String) : XGBoostModel = {
|
||||
new XGBoostModel(
|
||||
XGBoostScala.loadModel(
|
||||
FileSystem
|
||||
|
||||
@ -31,7 +31,7 @@ class XGBoostModel (booster: Booster) extends Serializable {
|
||||
*
|
||||
* @param modelPath The model path as in Hadoop path.
|
||||
*/
|
||||
def saveModelToHadoop(modelPath: String): Unit = {
|
||||
def saveModelAsHadoopFile(modelPath: String): Unit = {
|
||||
booster.saveModel(FileSystem
|
||||
.get(new Configuration)
|
||||
.create(new Path(modelPath)))
|
||||
|
||||
@ -128,7 +128,8 @@ object XGBoost extends Serializable {
|
||||
* @param modelPath The path of the file representing the model
|
||||
* @return The loaded model
|
||||
*/
|
||||
def loadModelFromHadoop(modelPath: String)(implicit sparkContext: SparkContext): XGBoostModel = {
|
||||
def loadModelFromHadoopFile(modelPath: String)(implicit sparkContext: SparkContext):
|
||||
XGBoostModel = {
|
||||
val path = new Path(modelPath)
|
||||
val dataInStream = path.getFileSystem(sparkContext.hadoopConfiguration).open(path)
|
||||
val xgBoostModel = new XGBoostModel(SXGBoost.loadModel(dataInStream))
|
||||
|
||||
@ -49,7 +49,7 @@ class XGBoostModel(booster: Booster)(implicit val sc: SparkContext) extends Seri
|
||||
*
|
||||
* @param modelPath The model path as in Hadoop path.
|
||||
*/
|
||||
def saveModelToHadoop(modelPath: String): Unit = {
|
||||
def saveModelAsHadoopFile(modelPath: String): Unit = {
|
||||
val path = new Path(modelPath)
|
||||
val outputStream = path.getFileSystem(sc.hadoopConfiguration).create(path)
|
||||
booster.saveModel(outputStream)
|
||||
|
||||
@ -150,8 +150,8 @@ class XGBoostSuite extends FunSuite with BeforeAndAfter {
|
||||
"objective" -> "binary:logistic").toMap
|
||||
val xgBoostModel = XGBoost.train(trainingRDD, paramMap, 5)
|
||||
assert(eval.eval(xgBoostModel.predict(testSetDMatrix), testSetDMatrix) < 0.1)
|
||||
xgBoostModel.saveModelToHadoop(tempFile.toFile.getAbsolutePath)
|
||||
val loadedXGBooostModel = XGBoost.loadModelFromHadoop(tempFile.toFile.getAbsolutePath)
|
||||
xgBoostModel.saveModelAsHadoopFile(tempFile.toFile.getAbsolutePath)
|
||||
val loadedXGBooostModel = XGBoost.loadModelFromHadoopFile(tempFile.toFile.getAbsolutePath)
|
||||
val predicts = loadedXGBooostModel.predict(testSetDMatrix)
|
||||
assert(eval.eval(predicts, testSetDMatrix) < 0.1)
|
||||
}
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user