Merge branch 'unity' of ssh://github.com/tqchen/xgboost into unity
This commit is contained in:
commit
a45fb2d737
73
src/data.h
73
src/data.h
@ -14,6 +14,7 @@
|
||||
#include "utils/io.h"
|
||||
#include "utils/utils.h"
|
||||
#include "utils/iterator.h"
|
||||
#include "utils/random.h"
|
||||
#include "utils/matrix_csr.h"
|
||||
|
||||
namespace xgboost {
|
||||
@ -184,7 +185,6 @@ class FMatrixS : public FMatrixInterface<FMatrixS>{
|
||||
/*! \brief constructor */
|
||||
FMatrixS(void) {
|
||||
iter_ = NULL;
|
||||
num_buffered_row_ = 0;
|
||||
}
|
||||
// destructor
|
||||
~FMatrixS(void) {
|
||||
@ -199,11 +199,15 @@ class FMatrixS : public FMatrixInterface<FMatrixS>{
|
||||
utils::Check(this->HaveColAccess(), "NumCol:need column access");
|
||||
return col_ptr_.size() - 1;
|
||||
}
|
||||
/*! \brief get number of buffered rows */
|
||||
inline const std::vector<bst_uint> buffered_rowset(void) const {
|
||||
return buffered_rowset_;
|
||||
}
|
||||
/*! \brief get col sorted iterator */
|
||||
inline ColIter GetSortedCol(size_t cidx) const {
|
||||
utils::Assert(cidx < this->NumCol(), "col id exceed bound");
|
||||
return ColIter(&col_data_[col_ptr_[cidx]] - 1,
|
||||
&col_data_[col_ptr_[cidx + 1]] - 1);
|
||||
return ColIter(&col_data_[0] + col_ptr_[cidx] - 1,
|
||||
&col_data_[0] + col_ptr_[cidx + 1] - 1);
|
||||
}
|
||||
/*!
|
||||
* \brief get reversed col iterator,
|
||||
@ -211,8 +215,8 @@ class FMatrixS : public FMatrixInterface<FMatrixS>{
|
||||
*/
|
||||
inline ColBackIter GetReverseSortedCol(size_t cidx) const {
|
||||
utils::Assert(cidx < this->NumCol(), "col id exceed bound");
|
||||
return ColBackIter(&col_data_[col_ptr_[cidx + 1]],
|
||||
&col_data_[col_ptr_[cidx]]);
|
||||
return ColBackIter(&col_data_[0] + col_ptr_[cidx + 1],
|
||||
&col_data_[0] + col_ptr_[cidx]);
|
||||
}
|
||||
/*! \brief get col size */
|
||||
inline size_t GetColSize(size_t cidx) const {
|
||||
@ -220,12 +224,12 @@ class FMatrixS : public FMatrixInterface<FMatrixS>{
|
||||
}
|
||||
/*! \brief get column density */
|
||||
inline float GetColDensity(size_t cidx) const {
|
||||
size_t nmiss = num_buffered_row_ - (col_ptr_[cidx+1] - col_ptr_[cidx]);
|
||||
return 1.0f - (static_cast<float>(nmiss)) / num_buffered_row_;
|
||||
size_t nmiss = buffered_rowset_.size() - (col_ptr_[cidx+1] - col_ptr_[cidx]);
|
||||
return 1.0f - (static_cast<float>(nmiss)) / buffered_rowset_.size();
|
||||
}
|
||||
inline void InitColAccess(size_t max_nrow = ULONG_MAX) {
|
||||
inline void InitColAccess(float pkeep = 1.0f) {
|
||||
if (this->HaveColAccess()) return;
|
||||
this->InitColData(max_nrow);
|
||||
this->InitColData(pkeep);
|
||||
}
|
||||
/*!
|
||||
* \brief get the row iterator associated with FMatrix
|
||||
@ -244,8 +248,8 @@ class FMatrixS : public FMatrixInterface<FMatrixS>{
|
||||
* \param fo output stream to save to
|
||||
*/
|
||||
inline void SaveColAccess(utils::IStream &fo) const {
|
||||
fo.Write(&num_buffered_row_, sizeof(num_buffered_row_));
|
||||
if (num_buffered_row_ != 0) {
|
||||
fo.Write(buffered_rowset_);
|
||||
if (buffered_rowset_.size() != 0) {
|
||||
SaveBinary(fo, col_ptr_, col_data_);
|
||||
}
|
||||
}
|
||||
@ -254,9 +258,8 @@ class FMatrixS : public FMatrixInterface<FMatrixS>{
|
||||
* \param fo output stream to load from
|
||||
*/
|
||||
inline void LoadColAccess(utils::IStream &fi) {
|
||||
utils::Check(fi.Read(&num_buffered_row_, sizeof(num_buffered_row_)) != 0,
|
||||
"invalid input file format");
|
||||
if (num_buffered_row_ != 0) {
|
||||
utils::Check(fi.Read(&buffered_rowset_), "invalid input file format");
|
||||
if (buffered_rowset_.size() != 0) {
|
||||
LoadBinary(fi, &col_ptr_, &col_data_);
|
||||
}
|
||||
}
|
||||
@ -300,39 +303,43 @@ class FMatrixS : public FMatrixInterface<FMatrixS>{
|
||||
protected:
|
||||
/*!
|
||||
* \brief intialize column data
|
||||
* \param max_nrow maximum number of rows supported
|
||||
* \param pkeep probability to keep a row
|
||||
*/
|
||||
inline void InitColData(size_t max_nrow) {
|
||||
inline void InitColData(float pkeep) {
|
||||
buffered_rowset_.clear();
|
||||
// note: this part of code is serial, todo, parallelize this transformer
|
||||
utils::SparseCSRMBuilder<SparseBatch::Entry> builder(col_ptr_, col_data_);
|
||||
builder.InitBudget(0);
|
||||
// start working
|
||||
iter_->BeforeFirst();
|
||||
num_buffered_row_ = 0;
|
||||
while (iter_->Next()) {
|
||||
const SparseBatch &batch = iter_->Value();
|
||||
if (batch.base_rowid >= max_nrow) break;
|
||||
const size_t nbatch = std::min(batch.size, max_nrow - batch.base_rowid);
|
||||
for (size_t i = 0; i < nbatch; ++i, ++num_buffered_row_) {
|
||||
SparseBatch::Inst inst = batch[i];
|
||||
for (bst_uint j = 0; j < inst.length; ++j) {
|
||||
builder.AddBudget(inst[j].findex);
|
||||
for (size_t i = 0; i < batch.size; ++i) {
|
||||
if (pkeep==1.0f || random::SampleBinary(pkeep)) {
|
||||
buffered_rowset_.push_back(batch.base_rowid+i);
|
||||
SparseBatch::Inst inst = batch[i];
|
||||
for (bst_uint j = 0; j < inst.length; ++j) {
|
||||
builder.AddBudget(inst[j].findex);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
builder.InitStorage();
|
||||
|
||||
iter_->BeforeFirst();
|
||||
size_t ktop = 0;
|
||||
while (iter_->Next()) {
|
||||
const SparseBatch &batch = iter_->Value();
|
||||
if (batch.base_rowid >= max_nrow) break;
|
||||
const size_t nbatch = std::min(batch.size, max_nrow - batch.base_rowid);
|
||||
for (size_t i = 0; i < nbatch; ++i) {
|
||||
SparseBatch::Inst inst = batch[i];
|
||||
for (bst_uint j = 0; j < inst.length; ++j) {
|
||||
builder.PushElem(inst[j].findex,
|
||||
Entry((bst_uint)(batch.base_rowid+i),
|
||||
inst[j].fvalue));
|
||||
for (size_t i = 0; i < batch.size; ++i) {
|
||||
if (ktop < buffered_rowset_.size() &&
|
||||
buffered_rowset_[ktop] == batch.base_rowid+i) {
|
||||
++ ktop;
|
||||
SparseBatch::Inst inst = batch[i];
|
||||
for (bst_uint j = 0; j < inst.length; ++j) {
|
||||
builder.PushElem(inst[j].findex,
|
||||
Entry((bst_uint)(batch.base_rowid+i),
|
||||
inst[j].fvalue));
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
@ -349,8 +356,8 @@ class FMatrixS : public FMatrixInterface<FMatrixS>{
|
||||
private:
|
||||
// --- data structure used to support InitColAccess --
|
||||
utils::IIterator<SparseBatch> *iter_;
|
||||
/*! \brief number */
|
||||
size_t num_buffered_row_;
|
||||
/*! \brief list of row index that are buffered */
|
||||
std::vector<bst_uint> buffered_rowset_;
|
||||
/*! \brief column pointer of CSC format */
|
||||
std::vector<size_t> col_ptr_;
|
||||
/*! \brief column datas in CSC format */
|
||||
|
||||
@ -9,6 +9,7 @@
|
||||
#include <vector>
|
||||
#include <utility>
|
||||
#include <string>
|
||||
#include <limits>
|
||||
#include "./objective.h"
|
||||
#include "./evaluation.h"
|
||||
#include "../gbm/gbm.h"
|
||||
@ -28,6 +29,8 @@ class BoostLearner {
|
||||
gbm_ = NULL;
|
||||
name_obj_ = "reg:linear";
|
||||
name_gbm_ = "gbtree";
|
||||
silent= 0;
|
||||
prob_buffer_row = 1.0f;
|
||||
}
|
||||
~BoostLearner(void) {
|
||||
if (obj_ != NULL) delete obj_;
|
||||
@ -77,6 +80,7 @@ class BoostLearner {
|
||||
*/
|
||||
inline void SetParam(const char *name, const char *val) {
|
||||
if (!strcmp(name, "silent")) silent = atoi(val);
|
||||
if (!strcmp(name, "prob_buffer_row")) prob_buffer_row = static_cast<float>(atof(val));
|
||||
if (!strcmp(name, "eval_metric")) evaluator_.AddEval(val);
|
||||
if (!strcmp("seed", name)) random::Seed(atoi(val));
|
||||
if (!strcmp(name, "num_class")) this->SetParam("num_output_group", val);
|
||||
@ -90,7 +94,9 @@ class BoostLearner {
|
||||
}
|
||||
if (gbm_ != NULL) gbm_->SetParam(name, val);
|
||||
if (obj_ != NULL) obj_->SetParam(name, val);
|
||||
cfg_.push_back(std::make_pair(std::string(name), std::string(val)));
|
||||
if (gbm_ == NULL || obj_ == NULL) {
|
||||
cfg_.push_back(std::make_pair(std::string(name), std::string(val)));
|
||||
}
|
||||
}
|
||||
/*!
|
||||
* \brief initialize the model
|
||||
@ -147,8 +153,8 @@ class BoostLearner {
|
||||
* if not intialize it
|
||||
* \param p_train pointer to the matrix used by training
|
||||
*/
|
||||
inline void CheckInit(DMatrix<FMatrix> *p_train) const {
|
||||
p_train->fmat.InitColAccess();
|
||||
inline void CheckInit(DMatrix<FMatrix> *p_train) {
|
||||
p_train->fmat.InitColAccess(prob_buffer_row);
|
||||
}
|
||||
/*!
|
||||
* \brief update the model for one iteration
|
||||
@ -289,6 +295,8 @@ class BoostLearner {
|
||||
// data fields
|
||||
// silent during training
|
||||
int silent;
|
||||
// maximum buffred row value
|
||||
float prob_buffer_row;
|
||||
// evaluation set
|
||||
EvalSet evaluator_;
|
||||
// model parameter
|
||||
|
||||
@ -105,19 +105,22 @@ class RegLossObj : public IObjFunction{
|
||||
scale_pos_weight = static_cast<float>(atof(val));
|
||||
}
|
||||
}
|
||||
virtual void GetGradient(const std::vector<float>& preds,
|
||||
virtual void GetGradient(const std::vector<float> &preds,
|
||||
const MetaInfo &info,
|
||||
int iter,
|
||||
std::vector<bst_gpair> *out_gpair) {
|
||||
utils::Check(preds.size() == info.labels.size(),
|
||||
utils::Check(info.labels.size() != 0, "label set cannot be empty");
|
||||
utils::Check(preds.size() % info.labels.size() == 0,
|
||||
"labels are not correctly provided");
|
||||
std::vector<bst_gpair> &gpair = *out_gpair;
|
||||
gpair.resize(preds.size());
|
||||
// start calculating gradient
|
||||
const unsigned nstep = static_cast<unsigned>(info.labels.size());
|
||||
const unsigned ndata = static_cast<unsigned>(preds.size());
|
||||
#pragma omp parallel for schedule(static)
|
||||
for (unsigned j = 0; j < ndata; ++j) {
|
||||
float p = loss.PredTransform(preds[j]);
|
||||
for (unsigned i = 0; i < ndata; ++i) {
|
||||
const unsigned j = i % nstep;
|
||||
float p = loss.PredTransform(preds[i]);
|
||||
float w = info.GetWeight(j);
|
||||
if (info.labels[j] == 1.0f) w *= scale_pos_weight;
|
||||
gpair[j] = bst_gpair(loss.FirstOrderGradient(p, info.labels[j]) * w,
|
||||
@ -155,25 +158,28 @@ class SoftmaxMultiClassObj : public IObjFunction {
|
||||
virtual void SetParam(const char *name, const char *val) {
|
||||
if (!strcmp( "num_class", name )) nclass = atoi(val);
|
||||
}
|
||||
virtual void GetGradient(const std::vector<float>& preds,
|
||||
virtual void GetGradient(const std::vector<float> &preds,
|
||||
const MetaInfo &info,
|
||||
int iter,
|
||||
std::vector<bst_gpair> *out_gpair) {
|
||||
utils::Check(nclass != 0, "must set num_class to use softmax");
|
||||
utils::Check(preds.size() == static_cast<size_t>(nclass) * info.labels.size(),
|
||||
utils::Check(info.labels.size() != 0, "label set cannot be empty");
|
||||
utils::Check(preds.size() % (static_cast<size_t>(nclass) * info.labels.size()) == 0,
|
||||
"SoftmaxMultiClassObj: label size and pred size does not match");
|
||||
std::vector<bst_gpair> &gpair = *out_gpair;
|
||||
gpair.resize(preds.size());
|
||||
const unsigned ndata = static_cast<unsigned>(info.labels.size());
|
||||
const unsigned nstep = static_cast<unsigned>(info.labels.size() * nclass);
|
||||
const unsigned ndata = static_cast<unsigned>(preds.size() / nclass);
|
||||
#pragma omp parallel
|
||||
{
|
||||
std::vector<float> rec(nclass);
|
||||
#pragma omp for schedule(static)
|
||||
for (unsigned j = 0; j < ndata; ++j) {
|
||||
for (unsigned i = 0; i < ndata; ++i) {
|
||||
for (int k = 0; k < nclass; ++k) {
|
||||
rec[k] = preds[j * nclass + k];
|
||||
rec[k] = preds[i * nclass + k];
|
||||
}
|
||||
Softmax(&rec);
|
||||
const unsigned j = i % nstep;
|
||||
int label = static_cast<int>(info.labels[j]);
|
||||
utils::Check(label < nclass, "SoftmaxMultiClassObj: label exceed num_class");
|
||||
const float wt = info.GetWeight(j);
|
||||
@ -181,9 +187,9 @@ class SoftmaxMultiClassObj : public IObjFunction {
|
||||
float p = rec[k];
|
||||
const float h = 2.0f * p * (1.0f - p) * wt;
|
||||
if (label == k) {
|
||||
gpair[j * nclass + k] = bst_gpair((p - 1.0f) * wt, h);
|
||||
gpair[i * nclass + k] = bst_gpair((p - 1.0f) * wt, h);
|
||||
} else {
|
||||
gpair[j * nclass + k] = bst_gpair(p* wt, h);
|
||||
gpair[i * nclass + k] = bst_gpair(p* wt, h);
|
||||
}
|
||||
}
|
||||
}
|
||||
@ -203,7 +209,9 @@ class SoftmaxMultiClassObj : public IObjFunction {
|
||||
inline void Transform(std::vector<float> *io_preds, int prob) {
|
||||
utils::Check(nclass != 0, "must set num_class to use softmax");
|
||||
std::vector<float> &preds = *io_preds;
|
||||
std::vector<float> tmp;
|
||||
const unsigned ndata = static_cast<unsigned>(preds.size()/nclass);
|
||||
if (prob == 0) tmp.resize(ndata);
|
||||
#pragma omp parallel
|
||||
{
|
||||
std::vector<float> rec(nclass);
|
||||
@ -213,7 +221,7 @@ class SoftmaxMultiClassObj : public IObjFunction {
|
||||
rec[k] = preds[j * nclass + k];
|
||||
}
|
||||
if (prob == 0) {
|
||||
preds[j] = FindMaxIndex(rec);
|
||||
tmp[j] = FindMaxIndex(rec);
|
||||
} else {
|
||||
Softmax(&rec);
|
||||
for (int k = 0; k < nclass; ++k) {
|
||||
@ -222,9 +230,7 @@ class SoftmaxMultiClassObj : public IObjFunction {
|
||||
}
|
||||
}
|
||||
}
|
||||
if (prob == 0) {
|
||||
preds.resize(ndata);
|
||||
}
|
||||
if (prob == 0) preds = tmp;
|
||||
}
|
||||
// data field
|
||||
int nclass;
|
||||
@ -245,17 +251,17 @@ class LambdaRankObj : public IObjFunction {
|
||||
if (!strcmp( "fix_list_weight", name)) fix_list_weight = static_cast<float>(atof(val));
|
||||
if (!strcmp( "num_pairsample", name)) num_pairsample = atoi(val);
|
||||
}
|
||||
virtual void GetGradient(const std::vector<float>& preds,
|
||||
virtual void GetGradient(const std::vector<float> &preds,
|
||||
const MetaInfo &info,
|
||||
int iter,
|
||||
std::vector<bst_gpair> *out_gpair) {
|
||||
utils::Assert(preds.size() == info.labels.size(), "label size predict size not match");
|
||||
utils::Check(preds.size() == info.labels.size(), "label size predict size not match");
|
||||
std::vector<bst_gpair> &gpair = *out_gpair;
|
||||
gpair.resize(preds.size());
|
||||
// quick consistency when group is not available
|
||||
std::vector<unsigned> tgptr(2, 0); tgptr[1] = preds.size();
|
||||
std::vector<unsigned> tgptr(2, 0); tgptr[1] = info.labels.size();
|
||||
const std::vector<unsigned> &gptr = info.group_ptr.size() == 0 ? tgptr : info.group_ptr;
|
||||
utils::Check(gptr.size() != 0 && gptr.back() == preds.size(),
|
||||
utils::Check(gptr.size() != 0 && gptr.back() == info.labels.size(),
|
||||
"group structure not consistent with #rows");
|
||||
const unsigned ngroup = static_cast<unsigned>(gptr.size() - 1);
|
||||
#pragma omp parallel
|
||||
|
||||
@ -27,7 +27,7 @@ class IObjFunction{
|
||||
* \param iter current iteration number
|
||||
* \param out_gpair output of get gradient, saves gradient and second order gradient in
|
||||
*/
|
||||
virtual void GetGradient(const std::vector<float>& preds,
|
||||
virtual void GetGradient(const std::vector<float> &preds,
|
||||
const MetaInfo &info,
|
||||
int iter,
|
||||
std::vector<bst_gpair> *out_gpair) = 0;
|
||||
|
||||
@ -80,13 +80,13 @@ class ColMaker: public IUpdater<FMatrix> {
|
||||
const std::vector<unsigned> &root_index,
|
||||
RegTree *p_tree) {
|
||||
this->InitData(gpair, fmat, root_index, *p_tree);
|
||||
this->InitNewNode(qexpand, gpair, *p_tree);
|
||||
this->InitNewNode(qexpand, gpair, fmat, *p_tree);
|
||||
|
||||
for (int depth = 0; depth < param.max_depth; ++depth) {
|
||||
this->FindSplit(depth, this->qexpand, gpair, fmat, p_tree);
|
||||
this->ResetPosition(this->qexpand, fmat, *p_tree);
|
||||
this->UpdateQueueExpand(*p_tree, &this->qexpand);
|
||||
this->InitNewNode(qexpand, gpair, *p_tree);
|
||||
this->InitNewNode(qexpand, gpair, fmat, *p_tree);
|
||||
// if nothing left to be expand, break
|
||||
if (qexpand.size() == 0) break;
|
||||
}
|
||||
@ -109,25 +109,31 @@ class ColMaker: public IUpdater<FMatrix> {
|
||||
const FMatrix &fmat,
|
||||
const std::vector<unsigned> &root_index, const RegTree &tree) {
|
||||
utils::Assert(tree.param.num_nodes == tree.param.num_roots, "ColMaker: can only grow new tree");
|
||||
const std::vector<bst_uint> &rowset = fmat.buffered_rowset();
|
||||
{// setup position
|
||||
position.resize(gpair.size());
|
||||
if (root_index.size() == 0) {
|
||||
std::fill(position.begin(), position.end(), 0);
|
||||
for (size_t i = 0; i < rowset.size(); ++i) {
|
||||
position[rowset[i]] = 0;
|
||||
}
|
||||
} else {
|
||||
for (size_t i = 0; i < root_index.size(); ++i) {
|
||||
position[i] = root_index[i];
|
||||
utils::Assert(root_index[i] < (unsigned)tree.param.num_roots, "root index exceed setting");
|
||||
for (size_t i = 0; i < rowset.size(); ++i) {
|
||||
const bst_uint ridx = rowset[i];
|
||||
position[ridx] = root_index[ridx];
|
||||
utils::Assert(root_index[ridx] < (unsigned)tree.param.num_roots, "root index exceed setting");
|
||||
}
|
||||
}
|
||||
// mark delete for the deleted datas
|
||||
for (size_t i = 0; i < gpair.size(); ++i) {
|
||||
if (gpair[i].hess < 0.0f) position[i] = -1;
|
||||
for (size_t i = 0; i < rowset.size(); ++i) {
|
||||
const bst_uint ridx = rowset[i];
|
||||
if (gpair[ridx].hess < 0.0f) position[ridx] = -1;
|
||||
}
|
||||
// mark subsample
|
||||
if (param.subsample < 1.0f) {
|
||||
for (size_t i = 0; i < gpair.size(); ++i) {
|
||||
if (gpair[i].hess < 0.0f) continue;
|
||||
if (random::SampleBinary(param.subsample) == 0) position[i] = -1;
|
||||
for (size_t i = 0; i < rowset.size(); ++i) {
|
||||
const bst_uint ridx = rowset[i];
|
||||
if (gpair[ridx].hess < 0.0f) continue;
|
||||
if (random::SampleBinary(param.subsample) == 0) position[ridx] = -1;
|
||||
}
|
||||
}
|
||||
}
|
||||
@ -168,6 +174,7 @@ class ColMaker: public IUpdater<FMatrix> {
|
||||
/*! \brief initialize the base_weight, root_gain, and NodeEntry for all the new nodes in qexpand */
|
||||
inline void InitNewNode(const std::vector<int> &qexpand,
|
||||
const std::vector<bst_gpair> &gpair,
|
||||
const FMatrix &fmat,
|
||||
const RegTree &tree) {
|
||||
{// setup statistics space for each tree node
|
||||
for (size_t i = 0; i < stemp.size(); ++i) {
|
||||
@ -175,13 +182,15 @@ class ColMaker: public IUpdater<FMatrix> {
|
||||
}
|
||||
snode.resize(tree.param.num_nodes, NodeEntry());
|
||||
}
|
||||
const std::vector<bst_uint> &rowset = fmat.buffered_rowset();
|
||||
// setup position
|
||||
const unsigned ndata = static_cast<unsigned>(position.size());
|
||||
const unsigned ndata = static_cast<unsigned>(rowset.size());
|
||||
#pragma omp parallel for schedule(static)
|
||||
for (unsigned i = 0; i < ndata; ++i) {
|
||||
const bst_uint ridx = rowset[i];
|
||||
const int tid = omp_get_thread_num();
|
||||
if (position[i] < 0) continue;
|
||||
stemp[tid][position[i]].stats.Add(gpair[i]);
|
||||
if (position[ridx] < 0) continue;
|
||||
stemp[tid][position[ridx]].stats.Add(gpair[ridx]);
|
||||
}
|
||||
// sum the per thread statistics together
|
||||
for (size_t j = 0; j < qexpand.size(); ++j) {
|
||||
@ -271,7 +280,9 @@ class ColMaker: public IUpdater<FMatrix> {
|
||||
}
|
||||
// start enumeration
|
||||
const unsigned nsize = static_cast<unsigned>(feat_set.size());
|
||||
#if defined(_OPENMP)
|
||||
const int batch_size = std::max(static_cast<int>(nsize / this->nthread / 32), 1);
|
||||
#endif
|
||||
#pragma omp parallel for schedule(dynamic, batch_size)
|
||||
for (unsigned i = 0; i < nsize; ++i) {
|
||||
const unsigned fid = feat_set[i];
|
||||
@ -301,17 +312,19 @@ class ColMaker: public IUpdater<FMatrix> {
|
||||
}
|
||||
// reset position of each data points after split is created in the tree
|
||||
inline void ResetPosition(const std::vector<int> &qexpand, const FMatrix &fmat, const RegTree &tree) {
|
||||
const std::vector<bst_uint> &rowset = fmat.buffered_rowset();
|
||||
// step 1, set default direct nodes to default, and leaf nodes to -1
|
||||
const unsigned ndata = static_cast<unsigned>(position.size());
|
||||
const unsigned ndata = static_cast<unsigned>(rowset.size());
|
||||
#pragma omp parallel for schedule(static)
|
||||
for (unsigned i = 0; i < ndata; ++i) {
|
||||
const int nid = position[i];
|
||||
for (unsigned i = 0; i < ndata; ++i) {
|
||||
const bst_uint ridx = rowset[i];
|
||||
const int nid = position[ridx];
|
||||
if (nid >= 0) {
|
||||
if (tree[nid].is_leaf()) {
|
||||
position[i] = -1;
|
||||
position[ridx] = -1;
|
||||
} else {
|
||||
// push to default branch, correct latter
|
||||
position[i] = tree[nid].default_left() ? tree[nid].cleft(): tree[nid].cright();
|
||||
position[ridx] = tree[nid].default_left() ? tree[nid].cleft(): tree[nid].cright();
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
@ -20,7 +20,6 @@ class TreeRefresher: public IUpdater<FMatrix> {
|
||||
// set training parameter
|
||||
virtual void SetParam(const char *name, const char *val) {
|
||||
param.SetParam(name, val);
|
||||
if (!strcmp(name, "silent")) silent = atoi(val);
|
||||
}
|
||||
// update the tree, do pruning
|
||||
virtual void Update(const std::vector<bst_gpair> &gpair,
|
||||
@ -127,8 +126,6 @@ class TreeRefresher: public IUpdater<FMatrix> {
|
||||
}
|
||||
// number of thread in the data
|
||||
int nthread;
|
||||
// shutup
|
||||
int silent;
|
||||
// training parameter
|
||||
TrainParam param;
|
||||
};
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user