Reduce warnings and flakiness in tests. (#10659)

- Fix warnings in tests.
- Try to reduce the flakiness of dask test.
This commit is contained in:
Jiaming Yuan 2024-08-03 07:32:47 +08:00 committed by GitHub
parent 2e7ba900ef
commit a185b693dc
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
4 changed files with 32 additions and 26 deletions

View File

@ -37,6 +37,7 @@ from scipy import sparse
import xgboost as xgb
from xgboost import RabitTracker
from xgboost.core import ArrayLike
from xgboost.data import is_pd_cat_dtype
from xgboost.sklearn import SklObjective
from xgboost.testing.data import (
get_california_housing,
@ -403,7 +404,6 @@ def make_categorical(
X, y
"""
import pandas as pd
from pandas.api.types import is_categorical_dtype
rng = np.random.RandomState(1994)
@ -431,8 +431,8 @@ def make_categorical(
low=0, high=n_samples - 1, size=int(n_samples * sparsity)
)
df.iloc[index, i] = np.nan
if is_categorical_dtype(df.dtypes[i]):
assert n_categories == np.unique(df.dtypes[i].categories).size
if is_pd_cat_dtype(df.dtypes.iloc[i]):
assert n_categories == np.unique(df.dtypes.iloc[i].categories).size
if onehot:
df = pd.get_dummies(df)

View File

@ -8,6 +8,7 @@ import numpy as np
import xgboost as xgb
import xgboost.testing as tm
from xgboost.data import is_pd_cat_dtype
def get_basescore(model: xgb.XGBModel) -> float:
@ -166,8 +167,6 @@ def check_cut(
n_entries: int, indptr: np.ndarray, data: np.ndarray, dtypes: Any
) -> None:
"""Check the cut values."""
from pandas.api.types import is_categorical_dtype
assert data.shape[0] == indptr[-1]
assert data.shape[0] == n_entries
@ -177,18 +176,18 @@ def check_cut(
end = int(indptr[i])
for j in range(beg + 1, end):
assert data[j] > data[j - 1]
if is_categorical_dtype(dtypes[i - 1]):
if is_pd_cat_dtype(dtypes.iloc[i - 1]):
assert data[j] == data[j - 1] + 1
def check_get_quantile_cut_device(tree_method: str, use_cupy: bool) -> None:
"""Check with optional cupy."""
from pandas.api.types import is_categorical_dtype
import pandas as pd
n_samples = 1024
n_features = 14
max_bin = 16
dtypes = [np.float32] * n_features
dtypes = pd.Series([np.float32] * n_features)
# numerical
X, y, w = tm.make_regression(n_samples, n_features, use_cupy=use_cupy)
@ -237,7 +236,7 @@ def check_get_quantile_cut_device(tree_method: str, use_cupy: bool) -> None:
X, y = tm.make_categorical(
n_samples, n_features, n_categories, False, sparsity=0.8, cat_ratio=0.5
)
n_cat_features = len([0 for dtype in X.dtypes if is_categorical_dtype(dtype)])
n_cat_features = len([0 for dtype in X.dtypes if is_pd_cat_dtype(dtype)])
n_num_features = n_features - n_cat_features
n_entries = n_categories * n_cat_features + (max_bin + 1) * n_num_features
# - qdm

View File

@ -54,7 +54,7 @@ def run_external_memory(worker_id: int, n_workers: int, comm_args: dict) -> None
X = concat(lx)
yconcat = concat(ly)
wconcat = concat(lw)
Xy = xgb.DMatrix(X, yconcat, wconcat, nthread=n_threads)
Xy = xgb.DMatrix(X, yconcat, weight=wconcat, nthread=n_threads)
results_local: xgb.callback.TrainingCallback.EvalsLog = {}
booster = xgb.train(

View File

@ -155,6 +155,10 @@ def deterministic_repartition(
m: Margin,
divisions,
) -> Tuple[dd.DataFrame, dd.Series, Margin]:
"""Try to partition the dataframes according to divisions, this doesn't guarantee
the reproducibiliy.
"""
X, y, margin = (
dd.repartition(X, divisions=divisions, force=True),
dd.repartition(y, divisions=divisions, force=True),
@ -434,7 +438,7 @@ def run_boost_from_prediction_multi_class(
device=device,
)
X, y, _ = deterministic_repartition(client, X, y, None, divisions)
model_0.fit(X=X, y=y)
model_0.fit(X=X, y=y, eval_set=[(X, y)])
margin = xgb.dask.inplace_predict(
client, model_0.get_booster(), X, predict_type="margin"
)
@ -448,7 +452,9 @@ def run_boost_from_prediction_multi_class(
device=device,
)
X, y, margin = deterministic_repartition(client, X, y, margin, divisions)
model_1.fit(X=X, y=y, base_margin=margin)
model_1.fit(
X=X, y=y, base_margin=margin, eval_set=[(X, y)], base_margin_eval_set=[margin]
)
predictions_1 = xgb.dask.predict(
client,
model_1.get_booster(),
@ -464,7 +470,7 @@ def run_boost_from_prediction_multi_class(
device=device,
)
X, y, _ = deterministic_repartition(client, X, y, None, divisions)
model_2.fit(X=X, y=y)
model_2.fit(X=X, y=y, eval_set=[(X, y)])
predictions_2 = xgb.dask.inplace_predict(
client, model_2.get_booster(), X, predict_type="margin"
)
@ -492,45 +498,46 @@ def run_boost_from_prediction(
model_0 = xgb.dask.DaskXGBClassifier(
learning_rate=0.3,
n_estimators=4,
n_estimators=3,
tree_method=tree_method,
max_bin=512,
device=device,
)
X, y, _ = deterministic_repartition(client, X, y, None, divisions)
model_0.fit(X=X, y=y)
model_0.fit(X=X, y=y, eval_set=[(X, y)])
margin: dd.Series = model_0.predict(X, output_margin=True)
model_1 = xgb.dask.DaskXGBClassifier(
learning_rate=0.3,
n_estimators=4,
n_estimators=3,
tree_method=tree_method,
max_bin=512,
device=device,
)
X, y, margin = deterministic_repartition(client, X, y, margin, divisions)
model_1.fit(X=X, y=y, base_margin=margin)
model_1.fit(
X=X, y=y, base_margin=margin, eval_set=[(X, y)], base_margin_eval_set=[margin]
)
X, y, margin = deterministic_repartition(client, X, y, margin, divisions)
predictions_1: dd.Series = model_1.predict(X, base_margin=margin)
model_2 = xgb.dask.DaskXGBClassifier(
learning_rate=0.3,
n_estimators=8,
n_estimators=6,
tree_method=tree_method,
max_bin=512,
device=device,
)
X, y, _ = deterministic_repartition(client, X, y, None, divisions)
model_2.fit(X=X, y=y)
model_2.fit(X=X, y=y, eval_set=[(X, y)])
predictions_2: dd.Series = model_2.predict(X)
predt_1 = predictions_1.compute()
predt_2 = predictions_2.compute()
if hasattr(predt_1, "to_numpy"):
predt_1 = predt_1.to_numpy()
if hasattr(predt_2, "to_numpy"):
predt_2 = predt_2.to_numpy()
np.testing.assert_allclose(predt_1, predt_2, atol=1e-5)
logloss_concat = (
model_0.evals_result()["validation_0"]["logloss"]
+ model_1.evals_result()["validation_0"]["logloss"]
)
logloss_2 = model_2.evals_result()["validation_0"]["logloss"]
np.testing.assert_allclose(logloss_concat, logloss_2, rtol=1e-4)
margined = xgb.dask.DaskXGBClassifier(n_estimators=4)
X, y, margin = deterministic_repartition(client, X, y, margin, divisions)