check in softmax multiclass

This commit is contained in:
tqchen 2014-08-17 19:16:17 -07:00
parent e77df13815
commit 9df8bb1397
5 changed files with 116 additions and 22 deletions

View File

@ -42,8 +42,9 @@ print ('predicting, classification error=%f' % (sum( int(pred[i]) != test_Y[i] f
# do the same thing again, but output probabilities
param['objective'] = 'multi:softprob'
bst = xgb.train(param, xg_train, num_round, watchlist );
# get prediction, this is in 1D array, need reshape to (nclass, ndata)
yprob = bst.predict( xg_test ).reshape( 6, test_Y.shape[0] )
ylabel = np.argmax( yprob, axis=0)
# Note: this convention has been changed since xgboost-unity
# get prediction, this is in 1D array, need reshape to (ndata, nclass)
yprob = bst.predict( xg_test ).reshape( test_Y.shape[0], 6 )
ylabel = np.argmax(yprob, axis=1)
print ('predicting, classification error=%f' % (sum( int(ylabel[i]) != test_Y[i] for i in range(len(test_Y))) / float(len(test_Y)) ))

View File

@ -32,7 +32,7 @@ class Booster: public learner::BoostLearner<FMatrixS> {
inline void BoostOneIter(const DataMatrix &train,
float *grad, float *hess, size_t len) {
this->gpair_.resize(len);
const unsigned ndata = static_cast<unsigned>(len);
const unsigned ndata = static_cast<unsigned>(len);
#pragma omp parallel for schedule(static)
for (unsigned j = 0; j < ndata; ++j) {
gpair_[j] = bst_gpair(grad[j], hess[j]);
@ -42,7 +42,7 @@ class Booster: public learner::BoostLearner<FMatrixS> {
inline void CheckInitModel(void) {
if (!init_model) {
this->InitModel(); init_model = true;
}
}
}
inline void LoadModel(const char *fname) {
learner::BoostLearner<FMatrixS>::LoadModel(fname);
@ -50,7 +50,7 @@ class Booster: public learner::BoostLearner<FMatrixS> {
}
inline const char** GetModelDump(const utils::FeatMap& fmap, bool with_stats, size_t *len) {
model_dump = this->DumpModel(fmap, with_stats);
model_dump_cptr.resize(model_dump.size());
model_dump_cptr.resize(model_dump.size());
for (size_t i = 0; i < model_dump.size(); ++i) {
model_dump_cptr[i] = model_dump[i].c_str();
}
@ -82,11 +82,11 @@ extern "C"{
size_t nindptr,
size_t nelem) {
DMatrixSimple *p_mat = new DMatrixSimple();
DMatrixSimple &mat = *p_mat;
DMatrixSimple &mat = *p_mat;
mat.row_ptr_.resize(nindptr);
memcpy(&mat.row_ptr_[0], indptr, sizeof(size_t)*nindptr);
mat.row_data_.resize(nelem);
for (size_t i = 0; i < nelem; ++ i) {
for (size_t i = 0; i < nelem; ++i) {
mat.row_data_[i] = SparseBatch::Entry(indices[i], data[i]);
mat.info.num_col = std::max(mat.info.num_col,
static_cast<size_t>(indices[i]+1));
@ -133,15 +133,15 @@ extern "C"{
ret.info.num_row = len;
ret.info.num_col = src.info.num_col;
utils::IIterator<SparseBatch> *iter = src.fmat.RowIterator();
utils::IIterator<SparseBatch> *iter = src.fmat.RowIterator();
iter->BeforeFirst();
utils::Assert(iter->Next(), "slice");
const SparseBatch &batch = iter->Value();
for(size_t i = 0; i < len; ++i) {
for (size_t i = 0; i < len; ++i) {
const int ridx = idxset[i];
SparseBatch::Inst inst = batch[ridx];
utils::Check(ridx < batch.size, "slice index exceed number of rows");
ret.row_data_.resize(ret.row_data_.size() + inst.length);
ret.row_data_.resize(ret.row_data_.size() + inst.length);
memcpy(&ret.row_data_[ret.row_ptr_.back()], inst.data,
sizeof(SparseBatch::Entry) * inst.length);
ret.row_ptr_.push_back(ret.row_ptr_.back() + inst.length);
@ -160,9 +160,9 @@ extern "C"{
void XGDMatrixFree(void *handle) {
delete static_cast<DataMatrix*>(handle);
}
void XGDMatrixSaveBinary(void *handle, const char *fname, int silent) {
void XGDMatrixSaveBinary(void *handle, const char *fname, int silent) {
SaveDataMatrix(*static_cast<DataMatrix*>(handle), fname, silent);
}
}
void XGDMatrixSetLabel(void *handle, const float *label, size_t len) {
DataMatrix *pmat = static_cast<DataMatrix*>(handle);
pmat->info.labels.resize(len);
@ -173,11 +173,11 @@ extern "C"{
pmat->info.weights.resize(len);
memcpy(&(pmat->info).weights[0], weight, sizeof(float) * len);
}
void XGDMatrixSetGroup(void *handle, const unsigned *group, size_t len){
void XGDMatrixSetGroup(void *handle, const unsigned *group, size_t len) {
DataMatrix *pmat = static_cast<DataMatrix*>(handle);
pmat->info.group_ptr.resize(len + 1);
pmat->info.group_ptr[0] = 0;
for (size_t i = 0; i < len; ++ i) {
for (size_t i = 0; i < len; ++i) {
pmat->info.group_ptr[i+1] = pmat->info.group_ptr[i]+group[i];
}
}
@ -217,7 +217,7 @@ extern "C"{
bst->CheckInit(dtr);
bst->UpdateOneIter(iter, *dtr);
}
void XGBoosterBoostOneIter(void *handle, void *dtrain,
void XGBoosterBoostOneIter(void *handle, void *dtrain,
float *grad, float *hess, size_t len) {
Booster *bst = static_cast<Booster*>(handle);
DataMatrix *dtr = static_cast<DataMatrix*>(dtrain);
@ -225,8 +225,9 @@ extern "C"{
bst->CheckInit(dtr);
bst->BoostOneIter(*dtr, grad, hess, len);
}
const char* XGBoosterEvalOneIter(void *handle, int iter, void *dmats[], const char *evnames[], size_t len) {
Booster *bst = static_cast<Booster*>(handle);
const char* XGBoosterEvalOneIter(void *handle, int iter, void *dmats[],
const char *evnames[], size_t len) {
Booster *bst = static_cast<Booster*>(handle);
std::vector<std::string> names;
std::vector<const DataMatrix*> mats;
for (size_t i = 0; i < len; ++i) {
@ -243,13 +244,12 @@ extern "C"{
void XGBoosterLoadModel(void *handle, const char *fname) {
static_cast<Booster*>(handle)->LoadModel(fname);
}
void XGBoosterSaveModel( const void *handle, const char *fname) {
void XGBoosterSaveModel(const void *handle, const char *fname) {
static_cast<const Booster*>(handle)->SaveModel(fname);
}
const char** XGBoosterDumpModel(void *handle, const char *fmap, size_t *len){
using namespace xgboost::utils;
FeatMap featmap;
if(strlen(fmap) != 0) {
utils::FeatMap featmap;
if (strlen(fmap) != 0) {
featmap.LoadText(fmap);
}
return static_cast<Booster*>(handle)->GetModelDump(featmap, false, len);

View File

@ -79,6 +79,7 @@ class BoostLearner {
if (!strcmp(name, "silent")) silent = atoi(val);
if (!strcmp(name, "eval_metric")) evaluator_.AddEval(val);
if (!strcmp("seed", name)) random::Seed(atoi(val));
if (!strcmp(name, "num_class")) this->SetParam("num_output_group", val);
if (gbm_ == NULL) {
if (!strcmp(name, "objective")) name_obj_ = val;
if (!strcmp(name, "booster")) name_gbm_ = val;

View File

@ -7,7 +7,9 @@
*/
#include <vector>
#include <cmath>
#include "../data.h"
#include "./objective.h"
#include "./helper_utils.h"
namespace xgboost {
namespace learner {
@ -133,6 +135,94 @@ class RegLossObj : public IObjFunction{
float scale_pos_weight;
LossType loss;
};
// softmax multi-class classification
class SoftmaxMultiClassObj : public IObjFunction {
public:
explicit SoftmaxMultiClassObj(int output_prob)
: output_prob(output_prob) {
nclass = 0;
}
virtual ~SoftmaxMultiClassObj(void) {}
virtual void SetParam(const char *name, const char *val) {
if (!strcmp( "num_class", name )) nclass = atoi(val);
}
virtual void GetGradient(const std::vector<float>& preds,
const MetaInfo &info,
int iter,
std::vector<bst_gpair> *out_gpair) {
utils::Check(nclass != 0, "must set num_class to use softmax");
utils::Check(preds.size() == static_cast<size_t>(nclass) * info.labels.size(),
"SoftmaxMultiClassObj: label size and pred size does not match");
std::vector<bst_gpair> &gpair = *out_gpair;
gpair.resize(preds.size());
const unsigned ndata = static_cast<unsigned>(info.labels.size());
#pragma omp parallel
{
std::vector<float> rec(nclass);
#pragma omp for schedule(static)
for (unsigned j = 0; j < ndata; ++j) {
for (int k = 0; k < nclass; ++k) {
rec[k] = preds[j * nclass + k];
}
Softmax(&rec);
unsigned label = static_cast<unsigned>(info.labels[j]);
utils::Check(label < nclass, "SoftmaxMultiClassObj: label exceed num_class");
const float wt = info.GetWeight(j);
for (int k = 0; k < nclass; ++k) {
float p = rec[k];
const float h = 2.0f * p * (1.0f - p) * wt;
if (label == k) {
gpair[j * nclass + k] = bst_gpair((p - 1.0f) * wt, h);
} else {
gpair[j * nclass + k] = bst_gpair(p* wt, h);
}
}
}
}
}
virtual void PredTransform(std::vector<float> *io_preds) {
this->Transform(io_preds, output_prob);
}
virtual void EvalTransform(std::vector<float> *io_preds) {
this->Transform(io_preds, 0);
}
virtual const char* DefaultEvalMetric(void) {
return "merror";
}
private:
inline void Transform(std::vector<float> *io_preds, int prob) {
utils::Check(nclass != 0, "must set num_class to use softmax");
std::vector<float> &preds = *io_preds;
const unsigned ndata = static_cast<unsigned>(preds.size()/nclass);
#pragma omp parallel
{
std::vector<float> rec(nclass);
#pragma omp for schedule(static)
for (unsigned j = 0; j < ndata; ++j) {
for (int k = 0; k < nclass; ++k) {
rec[k] = preds[j * nclass + k];
}
if (prob == 0) {
preds[j] = FindMaxIndex(rec);
} else {
Softmax(&rec);
for (int k = 0; k < nclass; ++k) {
preds[j * nclass + k] = rec[k];
}
}
}
}
if (prob == 0) {
preds.resize(ndata);
}
}
// data field
int nclass;
int output_prob;
};
} // namespace learner
} // namespace xgboost
#endif // XGBOOST_LEARNER_OBJECTIVE_INL_HPP_

View File

@ -71,6 +71,8 @@ inline IObjFunction* CreateObjFunction(const char *name) {
if (!strcmp("reg:logistic", name)) return new RegLossObj(LossType::kLogisticNeglik);
if (!strcmp("binary:logistic", name)) return new RegLossObj(LossType::kLogisticClassify);
if (!strcmp("binary:logitraw", name)) return new RegLossObj(LossType::kLogisticRaw);
if (!strcmp("multi:softmax", name)) return new SoftmaxMultiClassObj(0);
if (!strcmp("multi:softprob", name)) return new SoftmaxMultiClassObj(1);
utils::Error("unknown objective function type: %s", name);
return NULL;
}