Fix mypy errors. (#8444)
This commit is contained in:
parent
0252d504d8
commit
9dd8d70f0e
@ -135,7 +135,7 @@ class CallbackContainer:
|
|||||||
def __init__(
|
def __init__(
|
||||||
self,
|
self,
|
||||||
callbacks: Sequence[TrainingCallback],
|
callbacks: Sequence[TrainingCallback],
|
||||||
metric: Callable = None,
|
metric: Optional[Callable] = None,
|
||||||
output_margin: bool = True,
|
output_margin: bool = True,
|
||||||
is_cv: bool = False
|
is_cv: bool = False
|
||||||
) -> None:
|
) -> None:
|
||||||
@ -391,8 +391,6 @@ class EarlyStopping(TrainingCallback):
|
|||||||
else:
|
else:
|
||||||
improve_op = minimize
|
improve_op = minimize
|
||||||
|
|
||||||
assert improve_op
|
|
||||||
|
|
||||||
if not self.stopping_history: # First round
|
if not self.stopping_history: # First round
|
||||||
self.current_rounds = 0
|
self.current_rounds = 0
|
||||||
self.stopping_history[name] = {}
|
self.stopping_history[name] = {}
|
||||||
|
|||||||
@ -288,10 +288,10 @@ class DaskDMatrix:
|
|||||||
*,
|
*,
|
||||||
weight: Optional[_DaskCollection] = None,
|
weight: Optional[_DaskCollection] = None,
|
||||||
base_margin: Optional[_DaskCollection] = None,
|
base_margin: Optional[_DaskCollection] = None,
|
||||||
missing: float = None,
|
missing: Optional[float] = None,
|
||||||
silent: bool = False, # pylint: disable=unused-argument
|
silent: bool = False, # pylint: disable=unused-argument
|
||||||
feature_names: Optional[FeatureNames] = None,
|
feature_names: Optional[FeatureNames] = None,
|
||||||
feature_types: FeatureTypes = None,
|
feature_types: Optional[FeatureTypes] = None,
|
||||||
group: Optional[_DaskCollection] = None,
|
group: Optional[_DaskCollection] = None,
|
||||||
qid: Optional[_DaskCollection] = None,
|
qid: Optional[_DaskCollection] = None,
|
||||||
label_lower_bound: Optional[_DaskCollection] = None,
|
label_lower_bound: Optional[_DaskCollection] = None,
|
||||||
@ -304,7 +304,7 @@ class DaskDMatrix:
|
|||||||
|
|
||||||
self.feature_names = feature_names
|
self.feature_names = feature_names
|
||||||
self.feature_types = feature_types
|
self.feature_types = feature_types
|
||||||
self.missing = missing
|
self.missing = missing if missing is not None else numpy.nan
|
||||||
self.enable_categorical = enable_categorical
|
self.enable_categorical = enable_categorical
|
||||||
|
|
||||||
if qid is not None and weight is not None:
|
if qid is not None and weight is not None:
|
||||||
@ -651,7 +651,7 @@ class DaskQuantileDMatrix(DaskDMatrix):
|
|||||||
*,
|
*,
|
||||||
weight: Optional[_DaskCollection] = None,
|
weight: Optional[_DaskCollection] = None,
|
||||||
base_margin: Optional[_DaskCollection] = None,
|
base_margin: Optional[_DaskCollection] = None,
|
||||||
missing: float = None,
|
missing: Optional[float] = None,
|
||||||
silent: bool = False, # disable=unused-argument
|
silent: bool = False, # disable=unused-argument
|
||||||
feature_names: Optional[FeatureNames] = None,
|
feature_names: Optional[FeatureNames] = None,
|
||||||
feature_types: Optional[Union[Any, List[Any]]] = None,
|
feature_types: Optional[Union[Any, List[Any]]] = None,
|
||||||
@ -2129,7 +2129,7 @@ class DaskXGBRanker(DaskScikitLearnBase, XGBRankerMixIn):
|
|||||||
eval_group: Optional[Sequence[_DaskCollection]] = None,
|
eval_group: Optional[Sequence[_DaskCollection]] = None,
|
||||||
eval_qid: Optional[Sequence[_DaskCollection]] = None,
|
eval_qid: Optional[Sequence[_DaskCollection]] = None,
|
||||||
eval_metric: Optional[Union[str, Sequence[str], Callable]] = None,
|
eval_metric: Optional[Union[str, Sequence[str], Callable]] = None,
|
||||||
early_stopping_rounds: int = None,
|
early_stopping_rounds: Optional[int] = None,
|
||||||
verbose: Union[int, bool] = False,
|
verbose: Union[int, bool] = False,
|
||||||
xgb_model: Optional[Union[XGBModel, Booster]] = None,
|
xgb_model: Optional[Union[XGBModel, Booster]] = None,
|
||||||
sample_weight_eval_set: Optional[Sequence[_DaskCollection]] = None,
|
sample_weight_eval_set: Optional[Sequence[_DaskCollection]] = None,
|
||||||
|
|||||||
@ -152,7 +152,7 @@ def version_number() -> int:
|
|||||||
class RabitContext:
|
class RabitContext:
|
||||||
"""A context controlling rabit initialization and finalization."""
|
"""A context controlling rabit initialization and finalization."""
|
||||||
|
|
||||||
def __init__(self, args: List[bytes] = None) -> None:
|
def __init__(self, args: Optional[List[bytes]] = None) -> None:
|
||||||
if args is None:
|
if args is None:
|
||||||
args = []
|
args = []
|
||||||
self.args = args
|
self.args = args
|
||||||
|
|||||||
@ -233,7 +233,7 @@ __model_doc = f"""
|
|||||||
should be used to specify categorical data type. Also, JSON/UBJSON
|
should be used to specify categorical data type. Also, JSON/UBJSON
|
||||||
serialization format is required.
|
serialization format is required.
|
||||||
|
|
||||||
feature_types : FeatureTypes
|
feature_types : Optional[FeatureTypes]
|
||||||
|
|
||||||
.. versionadded:: 1.7.0
|
.. versionadded:: 1.7.0
|
||||||
|
|
||||||
@ -572,7 +572,7 @@ class XGBModel(XGBModelBase):
|
|||||||
validate_parameters: Optional[bool] = None,
|
validate_parameters: Optional[bool] = None,
|
||||||
predictor: Optional[str] = None,
|
predictor: Optional[str] = None,
|
||||||
enable_categorical: bool = False,
|
enable_categorical: bool = False,
|
||||||
feature_types: FeatureTypes = None,
|
feature_types: Optional[FeatureTypes] = None,
|
||||||
max_cat_to_onehot: Optional[int] = None,
|
max_cat_to_onehot: Optional[int] = None,
|
||||||
max_cat_threshold: Optional[int] = None,
|
max_cat_threshold: Optional[int] = None,
|
||||||
eval_metric: Optional[Union[str, List[str], Callable]] = None,
|
eval_metric: Optional[Union[str, List[str], Callable]] = None,
|
||||||
|
|||||||
@ -1,4 +1,3 @@
|
|||||||
# coding: utf-8
|
|
||||||
# pylint: disable=too-many-locals, too-many-arguments, invalid-name
|
# pylint: disable=too-many-locals, too-many-arguments, invalid-name
|
||||||
# pylint: disable=too-many-branches, too-many-statements
|
# pylint: disable=too-many-branches, too-many-statements
|
||||||
"""Training Library containing training routines."""
|
"""Training Library containing training routines."""
|
||||||
@ -71,7 +70,7 @@ def train(
|
|||||||
feval: Optional[Metric] = None,
|
feval: Optional[Metric] = None,
|
||||||
maximize: Optional[bool] = None,
|
maximize: Optional[bool] = None,
|
||||||
early_stopping_rounds: Optional[int] = None,
|
early_stopping_rounds: Optional[int] = None,
|
||||||
evals_result: TrainingCallback.EvalsLog = None,
|
evals_result: Optional[TrainingCallback.EvalsLog] = None,
|
||||||
verbose_eval: Optional[Union[bool, int]] = True,
|
verbose_eval: Optional[Union[bool, int]] = True,
|
||||||
xgb_model: Optional[Union[str, os.PathLike, Booster, bytearray]] = None,
|
xgb_model: Optional[Union[str, os.PathLike, Booster, bytearray]] = None,
|
||||||
callbacks: Optional[Sequence[TrainingCallback]] = None,
|
callbacks: Optional[Sequence[TrainingCallback]] = None,
|
||||||
@ -285,15 +284,20 @@ def groups_to_rows(groups: List[np.ndarray], boundaries: np.ndarray) -> np.ndarr
|
|||||||
return np.concatenate([np.arange(boundaries[g], boundaries[g+1]) for g in groups])
|
return np.concatenate([np.arange(boundaries[g], boundaries[g+1]) for g in groups])
|
||||||
|
|
||||||
|
|
||||||
def mkgroupfold(dall: DMatrix, nfold: int, param: BoosterParam,
|
def mkgroupfold(
|
||||||
evals: Sequence[str] = (), fpreproc: FPreProcCallable = None,
|
dall: DMatrix,
|
||||||
shuffle: bool = True) -> List[CVPack]:
|
nfold: int,
|
||||||
|
param: BoosterParam,
|
||||||
|
evals: Sequence[str] = (),
|
||||||
|
fpreproc: Optional[FPreProcCallable] = None,
|
||||||
|
shuffle: bool = True,
|
||||||
|
) -> List[CVPack]:
|
||||||
"""
|
"""
|
||||||
Make n folds for cross-validation maintaining groups
|
Make n folds for cross-validation maintaining groups
|
||||||
:return: cross-validation folds
|
:return: cross-validation folds
|
||||||
"""
|
"""
|
||||||
# we have groups for pairwise ranking... get a list of the group indexes
|
# we have groups for pairwise ranking... get a list of the group indexes
|
||||||
group_boundaries = dall.get_uint_info('group_ptr')
|
group_boundaries = dall.get_uint_info("group_ptr")
|
||||||
group_sizes = np.diff(group_boundaries)
|
group_sizes = np.diff(group_boundaries)
|
||||||
|
|
||||||
if shuffle is True:
|
if shuffle is True:
|
||||||
@ -327,9 +331,16 @@ def mkgroupfold(dall: DMatrix, nfold: int, param: BoosterParam,
|
|||||||
return ret
|
return ret
|
||||||
|
|
||||||
|
|
||||||
def mknfold(dall: DMatrix, nfold: int, param: BoosterParam, seed: int,
|
def mknfold(
|
||||||
evals: Sequence[str] = (), fpreproc: FPreProcCallable = None,
|
dall: DMatrix,
|
||||||
stratified: bool = False, folds: XGBStratifiedKFold = None, shuffle: bool = True
|
nfold: int,
|
||||||
|
param: BoosterParam,
|
||||||
|
seed: int,
|
||||||
|
evals: Sequence[str] = (),
|
||||||
|
fpreproc: Optional[FPreProcCallable] = None,
|
||||||
|
stratified: Optional[bool] = False,
|
||||||
|
folds: Optional[XGBStratifiedKFold] = None,
|
||||||
|
shuffle: bool = True,
|
||||||
) -> List[CVPack]:
|
) -> List[CVPack]:
|
||||||
"""
|
"""
|
||||||
Make an n-fold list of CVPack from random indices.
|
Make an n-fold list of CVPack from random indices.
|
||||||
@ -393,14 +404,14 @@ def cv(
|
|||||||
metrics: Sequence[str] = (),
|
metrics: Sequence[str] = (),
|
||||||
obj: Optional[Objective] = None,
|
obj: Optional[Objective] = None,
|
||||||
feval: Optional[Metric] = None,
|
feval: Optional[Metric] = None,
|
||||||
maximize: bool = None,
|
maximize: Optional[bool] = None,
|
||||||
early_stopping_rounds: int = None,
|
early_stopping_rounds: Optional[int] = None,
|
||||||
fpreproc: FPreProcCallable = None,
|
fpreproc: Optional[FPreProcCallable] = None,
|
||||||
as_pandas: bool = True,
|
as_pandas: bool = True,
|
||||||
verbose_eval: Optional[Union[int, bool]] = None,
|
verbose_eval: Optional[Union[int, bool]] = None,
|
||||||
show_stdv: bool = True,
|
show_stdv: bool = True,
|
||||||
seed: int = 0,
|
seed: int = 0,
|
||||||
callbacks: Sequence[TrainingCallback] = None,
|
callbacks: Optional[Sequence[TrainingCallback]] = None,
|
||||||
shuffle: bool = True,
|
shuffle: bool = True,
|
||||||
custom_metric: Optional[Metric] = None,
|
custom_metric: Optional[Metric] = None,
|
||||||
) -> Union[Dict[str, float], DataFrame]:
|
) -> Union[Dict[str, float], DataFrame]:
|
||||||
|
|||||||
Loading…
x
Reference in New Issue
Block a user