2022-11-09 13:19:11 +08:00

572 lines
19 KiB
Python

# coding: utf-8
# pylint: disable=invalid-name, too-many-statements
# pylint: disable=too-many-arguments
"""Callback library containing training routines. See :doc:`Callback Functions
</python/callbacks>` for a quick introduction.
"""
import collections
import os
import pickle
from abc import ABC
from typing import (
Any,
Callable,
Dict,
List,
Optional,
Sequence,
Tuple,
TypeVar,
Union,
cast,
)
import numpy
from . import collective
from .core import Booster, DMatrix, XGBoostError, _get_booster_layer_trees
__all__ = [
"TrainingCallback",
"LearningRateScheduler",
"EarlyStopping",
"EvaluationMonitor",
"TrainingCheckPoint",
"CallbackContainer"
]
_Score = Union[float, Tuple[float, float]]
_ScoreList = Union[List[float], List[Tuple[float, float]]]
_Model = Any # real type is Union[Booster, CVPack]; need more work
# pylint: disable=unused-argument
class TrainingCallback(ABC):
'''Interface for training callback.
.. versionadded:: 1.3.0
'''
EvalsLog = Dict[str, Dict[str, _ScoreList]]
def __init__(self) -> None:
pass
def before_training(self, model: _Model) -> _Model:
'''Run before training starts.'''
return model
def after_training(self, model: _Model) -> _Model:
'''Run after training is finished.'''
return model
def before_iteration(self, model: _Model, epoch: int, evals_log: EvalsLog) -> bool:
'''Run before each iteration. Return True when training should stop.'''
return False
def after_iteration(self, model: _Model, epoch: int, evals_log: EvalsLog) -> bool:
'''Run after each iteration. Return True when training should stop.'''
return False
def _aggcv(rlist: List[str]) -> List[Tuple[str, float, float]]:
# pylint: disable=invalid-name, too-many-locals
"""Aggregate cross-validation results.
"""
cvmap: Dict[Tuple[int, str], List[float]] = {}
idx = rlist[0].split()[0]
for line in rlist:
arr: List[str] = line.split()
assert idx == arr[0]
for metric_idx, it in enumerate(arr[1:]):
if not isinstance(it, str):
it = it.decode()
k, v = it.split(':')
if (metric_idx, k) not in cvmap:
cvmap[(metric_idx, k)] = []
cvmap[(metric_idx, k)].append(float(v))
msg = idx
results = []
for (_, name), s in sorted(cvmap.items(), key=lambda x: x[0][0]):
as_arr = numpy.array(s)
if not isinstance(msg, str):
msg = msg.decode()
mean, std = numpy.mean(as_arr), numpy.std(as_arr)
results.extend([(name, mean, std)])
return results
# allreduce type
_ART = TypeVar("_ART")
def _allreduce_metric(score: _ART) -> _ART:
'''Helper function for computing customized metric in distributed
environment. Not strictly correct as many functions don't use mean value
as final result.
'''
world = collective.get_world_size()
assert world != 0
if world == 1:
return score
if isinstance(score, tuple): # has mean and stdv
raise ValueError(
'xgboost.cv function should not be used in distributed environment.')
arr = numpy.array([score])
arr = collective.allreduce(arr, collective.Op.SUM) / world
return arr[0]
class CallbackContainer:
'''A special internal callback for invoking a list of other callbacks.
.. versionadded:: 1.3.0
'''
EvalsLog = TrainingCallback.EvalsLog
def __init__(
self,
callbacks: Sequence[TrainingCallback],
metric: Optional[Callable] = None,
output_margin: bool = True,
is_cv: bool = False
) -> None:
self.callbacks = set(callbacks)
if metric is not None:
msg = 'metric must be callable object for monitoring. For ' + \
'builtin metrics, passing them in training parameter' + \
' will invoke monitor automatically.'
assert callable(metric), msg
self.metric = metric
self.history: TrainingCallback.EvalsLog = collections.OrderedDict()
self._output_margin = output_margin
self.is_cv = is_cv
if self.is_cv:
self.aggregated_cv = None
def before_training(self, model: _Model) -> _Model:
'''Function called before training.'''
for c in self.callbacks:
model = c.before_training(model=model)
msg = 'before_training should return the model'
if self.is_cv:
assert isinstance(model.cvfolds, list), msg
else:
assert isinstance(model, Booster), msg
return model
def after_training(self, model: _Model) -> _Model:
'''Function called after training.'''
for c in self.callbacks:
model = c.after_training(model=model)
msg = 'after_training should return the model'
if self.is_cv:
assert isinstance(model.cvfolds, list), msg
else:
assert isinstance(model, Booster), msg
if not self.is_cv:
num_parallel_tree, _ = _get_booster_layer_trees(model)
if model.attr('best_score') is not None:
model.best_score = float(cast(str, model.attr('best_score')))
model.best_iteration = int(cast(str, model.attr('best_iteration')))
# num_class is handled internally
model.set_attr(
best_ntree_limit=str((model.best_iteration + 1) * num_parallel_tree)
)
model.best_ntree_limit = int(cast(str, model.attr("best_ntree_limit")))
else:
# Due to compatibility with version older than 1.4, these attributes are
# added to Python object even if early stopping is not used.
model.best_iteration = model.num_boosted_rounds() - 1
model.set_attr(best_iteration=str(model.best_iteration))
model.best_ntree_limit = (model.best_iteration + 1) * num_parallel_tree
model.set_attr(best_ntree_limit=str(model.best_ntree_limit))
return model
def before_iteration(
self, model: _Model, epoch: int, dtrain: DMatrix, evals: Optional[List[Tuple[DMatrix, str]]]
) -> bool:
'''Function called before training iteration.'''
return any(c.before_iteration(model, epoch, self.history)
for c in self.callbacks)
def _update_history(
self,
score: Union[List[Tuple[str, float]], List[Tuple[str, float, float]]],
epoch: int
) -> None:
for d in score:
name: str = d[0]
s: float = d[1]
if self.is_cv:
std = float(cast(Tuple[str, float, float], d)[2])
x: _Score = (s, std)
else:
x = s
splited_names = name.split('-')
data_name = splited_names[0]
metric_name = '-'.join(splited_names[1:])
x = _allreduce_metric(x)
if data_name not in self.history:
self.history[data_name] = collections.OrderedDict()
data_history = self.history[data_name]
if metric_name not in data_history:
data_history[metric_name] = cast(_ScoreList, [])
metric_history = data_history[metric_name]
if self.is_cv:
cast(List[Tuple[float, float]], metric_history).append(
cast(Tuple[float, float], x)
)
else:
cast(List[float], metric_history).append(cast(float, x))
def after_iteration(
self,
model: _Model,
epoch: int,
dtrain: DMatrix,
evals: Optional[List[Tuple[DMatrix, str]]],
) -> bool:
'''Function called after training iteration.'''
if self.is_cv:
scores = model.eval(epoch, self.metric, self._output_margin)
scores = _aggcv(scores)
self.aggregated_cv = scores
self._update_history(scores, epoch)
else:
evals = [] if evals is None else evals
for _, name in evals:
assert name.find('-') == -1, 'Dataset name should not contain `-`'
score: str = model.eval_set(evals, epoch, self.metric, self._output_margin)
splited = score.split()[1:] # into datasets
# split up `test-error:0.1234`
metric_score_str = [tuple(s.split(':')) for s in splited]
# convert to float
metric_score = [(n, float(s)) for n, s in metric_score_str]
self._update_history(metric_score, epoch)
ret = any(c.after_iteration(model, epoch, self.history)
for c in self.callbacks)
return ret
class LearningRateScheduler(TrainingCallback):
"""Callback function for scheduling learning rate.
.. versionadded:: 1.3.0
Parameters
----------
learning_rates :
If it's a callable object, then it should accept an integer parameter
`epoch` and returns the corresponding learning rate. Otherwise it
should be a sequence like list or tuple with the same size of boosting
rounds.
"""
def __init__(
self, learning_rates: Union[Callable[[int], float], Sequence[float]]
) -> None:
assert callable(learning_rates) or isinstance(
learning_rates, collections.abc.Sequence
)
if callable(learning_rates):
self.learning_rates = learning_rates
else:
self.learning_rates = lambda epoch: cast(Sequence, learning_rates)[epoch]
super().__init__()
def after_iteration(
self, model: _Model, epoch: int, evals_log: TrainingCallback.EvalsLog
) -> bool:
model.set_param("learning_rate", self.learning_rates(epoch))
return False
# pylint: disable=too-many-instance-attributes
class EarlyStopping(TrainingCallback):
"""Callback function for early stopping
.. versionadded:: 1.3.0
Parameters
----------
rounds :
Early stopping rounds.
metric_name :
Name of metric that is used for early stopping.
data_name :
Name of dataset that is used for early stopping.
maximize :
Whether to maximize evaluation metric. None means auto (discouraged).
save_best :
Whether training should return the best model or the last model.
min_delta :
Minimum absolute change in score to be qualified as an improvement.
.. versionadded:: 1.5.0
.. code-block:: python
clf = xgboost.XGBClassifier(tree_method="gpu_hist")
es = xgboost.callback.EarlyStopping(
rounds=2,
abs_tol=1e-3,
save_best=True,
maximize=False,
data_name="validation_0",
metric_name="mlogloss",
)
X, y = load_digits(return_X_y=True)
clf.fit(X, y, eval_set=[(X, y)], callbacks=[es])
"""
def __init__(
self,
rounds: int,
metric_name: Optional[str] = None,
data_name: Optional[str] = None,
maximize: Optional[bool] = None,
save_best: Optional[bool] = False,
min_delta: float = 0.0
) -> None:
self.data = data_name
self.metric_name = metric_name
self.rounds = rounds
self.save_best = save_best
self.maximize = maximize
self.stopping_history: TrainingCallback.EvalsLog = {}
self._min_delta = min_delta
if self._min_delta < 0:
raise ValueError("min_delta must be greater or equal to 0.")
self.current_rounds: int = 0
self.best_scores: dict = {}
self.starting_round: int = 0
super().__init__()
def before_training(self, model: _Model) -> _Model:
self.starting_round = model.num_boosted_rounds()
return model
def _update_rounds(
self, score: _Score, name: str, metric: str, model: _Model, epoch: int
) -> bool:
def get_s(x: _Score) -> float:
"""get score if it's cross validation history."""
return x[0] if isinstance(x, tuple) else x
def maximize(new: _Score, best: _Score) -> bool:
"""New score should be greater than the old one."""
return numpy.greater(get_s(new) - self._min_delta, get_s(best))
def minimize(new: _Score, best: _Score) -> bool:
"""New score should be smaller than the old one."""
return numpy.greater(get_s(best) - self._min_delta, get_s(new))
if self.maximize is None:
# Just to be compatibility with old behavior before 1.3. We should let
# user to decide.
maximize_metrics = ('auc', 'aucpr', 'map', 'ndcg', 'auc@',
'aucpr@', 'map@', 'ndcg@')
if metric != 'mape' and any(metric.startswith(x) for x in maximize_metrics):
self.maximize = True
else:
self.maximize = False
if self.maximize:
improve_op = maximize
else:
improve_op = minimize
if not self.stopping_history: # First round
self.current_rounds = 0
self.stopping_history[name] = {}
self.stopping_history[name][metric] = cast(_ScoreList, [score])
self.best_scores[name] = {}
self.best_scores[name][metric] = [score]
model.set_attr(best_score=str(score), best_iteration=str(epoch))
elif not improve_op(score, self.best_scores[name][metric][-1]):
# Not improved
self.stopping_history[name][metric].append(score) # type: ignore
self.current_rounds += 1
else: # Improved
self.stopping_history[name][metric].append(score) # type: ignore
self.best_scores[name][metric].append(score)
record = self.stopping_history[name][metric][-1]
model.set_attr(best_score=str(record), best_iteration=str(epoch))
self.current_rounds = 0 # reset
if self.current_rounds >= self.rounds:
# Should stop
return True
return False
def after_iteration(self, model: _Model, epoch: int,
evals_log: TrainingCallback.EvalsLog) -> bool:
epoch += self.starting_round # training continuation
msg = 'Must have at least 1 validation dataset for early stopping.'
assert len(evals_log.keys()) >= 1, msg
data_name = ''
if self.data:
for d, _ in evals_log.items():
if d == self.data:
data_name = d
if not data_name:
raise ValueError('No dataset named:', self.data)
else:
# Use the last one as default.
data_name = list(evals_log.keys())[-1]
assert isinstance(data_name, str) and data_name
data_log = evals_log[data_name]
# Filter out scores that can not be used for early stopping.
if self.metric_name:
metric_name = self.metric_name
else:
# Use last metric by default.
assert isinstance(data_log, collections.OrderedDict)
metric_name = list(data_log.keys())[-1]
score = data_log[metric_name][-1]
return self._update_rounds(score, data_name, metric_name, model, epoch)
def after_training(self, model: _Model) -> _Model:
try:
if self.save_best:
model = model[: int(model.attr("best_iteration")) + 1]
except XGBoostError as e:
raise XGBoostError(
"`save_best` is not applicable to current booster"
) from e
return model
class EvaluationMonitor(TrainingCallback):
'''Print the evaluation result at each iteration.
.. versionadded:: 1.3.0
Parameters
----------
metric :
Extra user defined metric.
rank :
Which worker should be used for printing the result.
period :
How many epoches between printing.
show_stdv :
Used in cv to show standard deviation. Users should not specify it.
'''
def __init__(self, rank: int = 0, period: int = 1, show_stdv: bool = False) -> None:
self.printer_rank = rank
self.show_stdv = show_stdv
self.period = period
assert period > 0
# last error message, useful when early stopping and period are used together.
self._latest: Optional[str] = None
super().__init__()
def _fmt_metric(
self, data: str, metric: str, score: float, std: Optional[float]
) -> str:
if std is not None and self.show_stdv:
msg = f"\t{data + '-' + metric}:{score:.5f}+{std:.5f}"
else:
msg = f"\t{data + '-' + metric}:{score:.5f}"
return msg
def after_iteration(self, model: _Model, epoch: int,
evals_log: TrainingCallback.EvalsLog) -> bool:
if not evals_log:
return False
msg: str = f'[{epoch}]'
if collective.get_rank() == self.printer_rank:
for data, metric in evals_log.items():
for metric_name, log in metric.items():
stdv: Optional[float] = None
if isinstance(log[-1], tuple):
score = log[-1][0]
stdv = log[-1][1]
else:
score = log[-1]
msg += self._fmt_metric(data, metric_name, score, stdv)
msg += '\n'
if (epoch % self.period) == 0 or self.period == 1:
collective.communicator_print(msg)
self._latest = None
else:
# There is skipped message
self._latest = msg
return False
def after_training(self, model: _Model) -> _Model:
if collective.get_rank() == self.printer_rank and self._latest is not None:
collective.communicator_print(self._latest)
return model
class TrainingCheckPoint(TrainingCallback):
'''Checkpointing operation.
.. versionadded:: 1.3.0
Parameters
----------
directory :
Output model directory.
name :
pattern of output model file. Models will be saved as name_0.json, name_1.json,
name_2.json ....
as_pickle :
When set to True, all training parameters will be saved in pickle format, instead
of saving only the model.
iterations :
Interval of checkpointing. Checkpointing is slow so setting a larger number can
reduce performance hit.
'''
def __init__(
self,
directory: Union[str, os.PathLike],
name: str = 'model',
as_pickle: bool = False,
iterations: int = 100
) -> None:
self._path = os.fspath(directory)
self._name = name
self._as_pickle = as_pickle
self._iterations = iterations
self._epoch = 0
super().__init__()
def after_iteration(self, model: _Model, epoch: int,
evals_log: TrainingCallback.EvalsLog) -> bool:
if self._epoch == self._iterations:
path = os.path.join(self._path, self._name + '_' + str(epoch) +
('.pkl' if self._as_pickle else '.json'))
self._epoch = 0
if collective.get_rank() == 0:
if self._as_pickle:
with open(path, 'wb') as fd:
pickle.dump(model, fd)
else:
model.save_model(path)
self._epoch += 1
return False