Merge pull request #138 from pommedeterresautee/master
new parameters, refactoring...
This commit is contained in:
commit
9a2ad91b48
@ -37,11 +37,15 @@
|
||||
#'
|
||||
xgb.dump <- function(model = NULL, fname = NULL, fmap = "", with.stats=FALSE) {
|
||||
if (class(model) != "xgb.Booster") {
|
||||
stop("xgb.dump: first argument must be type xgb.Booster")
|
||||
stop("model: argument must be type xgb.Booster")
|
||||
}
|
||||
if (!class(fname) %in% c("character", "NULL")) {
|
||||
stop("xgb.dump: second argument must be type character when provided")
|
||||
if (!(class(fname) %in% c("character", "NULL") && length(fname) <= 1)) {
|
||||
stop("fname: argument must be type character (when provided)")
|
||||
}
|
||||
if (!(class(fmap) %in% c("character", "NULL") && length(fname) <= 1)) {
|
||||
stop("fmap: argument must be type character (when provided)")
|
||||
}
|
||||
|
||||
result <- .Call("XGBoosterDumpModel_R", model, fmap, as.integer(with.stats), PACKAGE = "xgboost")
|
||||
|
||||
if(is.null(fname)) {
|
||||
|
||||
@ -9,6 +9,7 @@
|
||||
#' @importFrom magrittr %>%
|
||||
#' @param feature_names names of each feature as a character vector. Can be extracted from a sparse matrix (see example). If model dump already contains feature names, this argument should be \code{NULL}.
|
||||
#' @param filename_dump the path to the text file storing the model. Model dump must include the gain per feature and per tree (\code{with.stats = T} in function \code{xgb.dump}).
|
||||
#' @param model generated by the \code{xgb.train} function. Avoid the creation of a dump file.
|
||||
#'
|
||||
#' @return A \code{data.table} of the features used in the model with their average gain (and their weight for boosted tree model) in the model.
|
||||
#'
|
||||
@ -38,24 +39,34 @@
|
||||
#'
|
||||
#' bst <- xgboost(data = train$data, label = train$label, max.depth = 2,
|
||||
#' eta = 1, nround = 2,objective = "binary:logistic")
|
||||
#' xgb.dump(bst, 'xgb.model.dump', with.stats = T)
|
||||
#'
|
||||
#' #agaricus.test$data@@Dimnames[[2]] represents the column names of the sparse matrix.
|
||||
#' xgb.importance(agaricus.test$data@@Dimnames[[2]], 'xgb.model.dump')
|
||||
#' xgb.importance(agaricus.test$data@@Dimnames[[2]], model = bst)
|
||||
#'
|
||||
#' @export
|
||||
xgb.importance <- function(feature_names = NULL, filename_dump = NULL){
|
||||
xgb.importance <- function(feature_names = NULL, filename_dump = NULL, model = NULL){
|
||||
if (!class(feature_names) %in% c("character", "NULL")) {
|
||||
stop("feature_names: Has to be a vector of character or NULL if the model dump already contains feature name. Look at this function documentation to see where to get feature names.")
|
||||
}
|
||||
if (class(filename_dump) != "character" || !file.exists(filename_dump)) {
|
||||
|
||||
if (!(class(filename_dump) %in% c("character", "NULL") && length(filename_dump) <= 1)) {
|
||||
stop("filename_dump: Has to be a path to the model dump file.")
|
||||
}
|
||||
text <- readLines(filename_dump)
|
||||
|
||||
if (!class(model) %in% c("xgb.Booster", "NULL")) {
|
||||
stop("model: Has to be an object of class xgb.Booster model generaged by the xgb.train function.")
|
||||
}
|
||||
|
||||
if(is.null(model)){
|
||||
text <- readLines(filename_dump)
|
||||
} else {
|
||||
text <- xgb.dump(model = model, with.stats = T)
|
||||
}
|
||||
|
||||
if(text[2] == "bias:"){
|
||||
result <- linearDump(feature_names, text)
|
||||
result <- readLines(filename_dump) %>% linearDump(feature_names, .)
|
||||
} else {
|
||||
result <- treeDump(feature_names, text)
|
||||
result <- treeDump(feature_names, text = text)
|
||||
}
|
||||
result
|
||||
}
|
||||
|
||||
@ -16,6 +16,8 @@
|
||||
#' @importFrom stringr str_trim
|
||||
#' @param feature_names names of each feature as a character vector. Can be extracted from a sparse matrix (see example). If model dump already contains feature names, this argument should be \code{NULL}.
|
||||
#' @param filename_dump the path to the text file storing the model. Model dump must include the gain per feature and per tree (parameter \code{with.stats = T} in function \code{xgb.dump}).
|
||||
#' @param model dump generated by the \code{xgb.train} function. Avoid the creation of a dump file.
|
||||
#' @param text dump generated by the \code{xgb.dump} function. Avoid the creation of a dump file. Model dump must include the gain per feature and per tree (parameter \code{with.stats = T} in function \code{xgb.dump}).
|
||||
#' @param n_first_tree limit the plot to the n first trees. If \code{NULL}, all trees of the model are plotted. Performance can be low for huge models.
|
||||
#'
|
||||
#' @return A \code{data.table} of the features used in the model with their gain, cover and few other thing.
|
||||
@ -49,29 +51,37 @@
|
||||
#' xgb.dump(bst, 'xgb.model.dump', with.stats = T)
|
||||
#'
|
||||
#' #agaricus.test$data@@Dimnames[[2]] represents the column names of the sparse matrix.
|
||||
#' xgb.model.dt.tree(agaricus.train$data@@Dimnames[[2]], 'xgb.model.dump')
|
||||
#' xgb.model.dt.tree(agaricus.train$data@@Dimnames[[2]], filename_dump = 'xgb.model.dump')
|
||||
#'
|
||||
#' @export
|
||||
xgb.model.dt.tree <- function(feature_names = NULL, filename_dump = NULL, text = NULL, n_first_tree = NULL){
|
||||
xgb.model.dt.tree <- function(feature_names = NULL, filename_dump = NULL, model = NULL, text = NULL, n_first_tree = NULL){
|
||||
|
||||
if (!class(feature_names) %in% c("character", "NULL")) {
|
||||
stop("feature_names: Has to be a vector of character or NULL if the model dump already contains feature name. Look at this function documentation to see where to get feature names.")
|
||||
}
|
||||
if (!class(filename_dump) %in% c("character", "NULL")) {
|
||||
stop("filename_dump: Has to be a character vector representing the path to the model dump file.")
|
||||
} else if (class(filename_dump) == "character" && !file.exists(filename_dump)) {
|
||||
if (!(class(filename_dump) %in% c("character", "NULL") && length(filename_dump) <= 1)) {
|
||||
stop("filename_dump: Has to be a character vector of size 1 representing the path to the model dump file.")
|
||||
} else if (!is.null(filename_dump) && !file.exists(filename_dump)) {
|
||||
stop("filename_dump: path to the model doesn't exist.")
|
||||
} else if(is.null(filename_dump) & is.null(text)){
|
||||
stop("filename_dump: no path and no string version of the model dump have been provided.")
|
||||
} else if(is.null(filename_dump) && is.null(model) && is.null(text)){
|
||||
stop("filename_dump & model & text: no path to dump model, no model, no text dump, have been provided.")
|
||||
}
|
||||
if (!class(text) %in% c("character", "NULL")) {
|
||||
|
||||
if (!class(model) %in% c("xgb.Booster", "NULL")) {
|
||||
stop("model: Has to be an object of class xgb.Booster model generaged by the xgb.train function.")
|
||||
}
|
||||
|
||||
if (!class(text) %in% c("character", "NULL")) {
|
||||
stop("text: Has to be a vector of character or NULL if a path to the model dump has already been provided.")
|
||||
}
|
||||
|
||||
if (!class(n_first_tree) %in% c("numeric", "NULL") | length(n_first_tree) > 1) {
|
||||
stop("n_first_tree: Has to be a numeric vector of size 1.")
|
||||
}
|
||||
|
||||
if(is.null(text)){
|
||||
if(!is.null(model)){
|
||||
text = xgb.dump(model = model, with.stats = T)
|
||||
} else if(!is.null(filename_dump)){
|
||||
text <- readLines(filename_dump) %>% str_trim(side = "both")
|
||||
}
|
||||
|
||||
|
||||
@ -17,9 +17,12 @@
|
||||
#' @importFrom stringr str_trim
|
||||
#' @importFrom DiagrammeR DiagrammeR
|
||||
#' @param feature_names names of each feature as a character vector. Can be extracted from a sparse matrix (see example). If model dump already contains feature names, this argument should be \code{NULL}.
|
||||
#' @param filename_dump the path to the text file storing the model. Model dump must include the gain per feature and per tree (parameter \code{with.stats = T} in function \code{xgb.dump}).
|
||||
#' @param filename_dump the path to the text file storing the model. Model dump must include the gain per feature and per tree (parameter \code{with.stats = T} in function \code{xgb.dump}). Possible to provide a model directly (see \code{model} argument).
|
||||
#' @param model generated by the \code{xgb.train} function. Avoid the creation of a dump file.
|
||||
#' @param n_first_tree limit the plot to the n first trees. If \code{NULL}, all trees of the model are plotted. Performance can be low for huge models.
|
||||
#' @param style a \code{character} vector storing a css style to customize the appearance of nodes. Look at the \href{https://github.com/knsv/mermaid/wiki}{Mermaid wiki} for more information.
|
||||
#' @param CSSstyle a \code{character} vector storing a css style to customize the appearance of nodes. Look at the \href{https://github.com/knsv/mermaid/wiki}{Mermaid wiki} for more information.
|
||||
#' @param width the width of the diagram in pixels.
|
||||
#' @param height the height of the diagram in pixels.
|
||||
#'
|
||||
#' @return A \code{DiagrammeR} of the model.
|
||||
#'
|
||||
@ -45,33 +48,41 @@
|
||||
#'
|
||||
#' bst <- xgboost(data = train$data, label = train$label, max.depth = 2,
|
||||
#' eta = 1, nround = 2,objective = "binary:logistic")
|
||||
#' xgb.dump(bst, 'xgb.model.dump', with.stats = T)
|
||||
#'
|
||||
#' #agaricus.test$data@@Dimnames[[2]] represents the column names of the sparse matrix.
|
||||
#' xgb.plot.tree(agaricus.train$data@@Dimnames[[2]], 'xgb.model.dump')
|
||||
#' xgb.plot.tree(agaricus.train$data@@Dimnames[[2]], model = bst)
|
||||
#'
|
||||
#' @export
|
||||
xgb.plot.tree <- function(feature_names = NULL, filename_dump = NULL, n_first_tree = NULL, styles = NULL){
|
||||
#'
|
||||
xgb.plot.tree <- function(feature_names = NULL, filename_dump = NULL, model = NULL, n_first_tree = NULL, CSSstyle = NULL, width = NULL, height = NULL){
|
||||
|
||||
if (!class(styles) %in% c("character", "NULL") | length(styles) > 1) {
|
||||
if (!(class(CSSstyle) %in% c("character", "NULL") && length(CSSstyle) <= 1)) {
|
||||
stop("style: Has to be a character vector of size 1.")
|
||||
}
|
||||
|
||||
if (!class(model) %in% c("xgb.Booster", "NULL")) {
|
||||
stop("model: Has to be an object of class xgb.Booster model generaged by the xgb.train function.")
|
||||
}
|
||||
|
||||
allTrees <- xgb.model.dt.tree(feature_names, filename_dump, n_first_tree)
|
||||
if(is.null(model)){
|
||||
allTrees <- xgb.model.dt.tree(feature_names = feature_names, filename_dump = filename_dump, n_first_tree = n_first_tree)
|
||||
} else {
|
||||
allTrees <- xgb.model.dt.tree(feature_names = feature_names, model = model, n_first_tree = n_first_tree)
|
||||
}
|
||||
|
||||
allTrees[Feature!="Leaf" ,yesPath:= paste(ID,"(", Feature, "<br/>Cover: ", Cover, "<br/>Gain: ", Quality, ")-->|< ", Split, "|", Yes, ">", Yes.Feature, "]", sep = "")]
|
||||
|
||||
allTrees[Feature!="Leaf" ,noPath:= paste(ID,"(", Feature, ")-->|>= ", Split, "|", No, ">", No.Feature, "]", sep = "")]
|
||||
|
||||
|
||||
if(is.null(styles)){
|
||||
styles <- "classDef greenNode fill:#A2EB86, stroke:#04C4AB, stroke-width:2px;classDef redNode fill:#FFA070, stroke:#FF5E5E, stroke-width:2px"
|
||||
if(is.null(CSSstyle)){
|
||||
CSSstyle <- "classDef greenNode fill:#A2EB86, stroke:#04C4AB, stroke-width:2px;classDef redNode fill:#FFA070, stroke:#FF5E5E, stroke-width:2px"
|
||||
}
|
||||
|
||||
yes <- allTrees[Feature!="Leaf", c(Yes)] %>% paste(collapse = ",") %>% paste("class ", ., " greenNode", sep = "")
|
||||
|
||||
no <- allTrees[Feature!="Leaf", c(No)] %>% paste(collapse = ",") %>% paste("class ", ., " redNode", sep = "")
|
||||
|
||||
path <- allTrees[Feature!="Leaf", c(yesPath, noPath)] %>% .[order(.)] %>% paste(sep = "", collapse = ";") %>% paste("graph LR", .,collapse = "", sep = ";") %>% paste(styles, yes, no, sep = ";")
|
||||
DiagrammeR(path)
|
||||
path <- allTrees[Feature!="Leaf", c(yesPath, noPath)] %>% .[order(.)] %>% paste(sep = "", collapse = ";") %>% paste("graph LR", .,collapse = "", sep = ";") %>% paste(CSSstyle, yes, no, sep = ";")
|
||||
DiagrammeR(path, width, height)
|
||||
}
|
||||
|
||||
@ -4,12 +4,14 @@
|
||||
\alias{xgb.importance}
|
||||
\title{Show importance of features in a model}
|
||||
\usage{
|
||||
xgb.importance(feature_names = NULL, filename_dump = NULL)
|
||||
xgb.importance(feature_names = NULL, filename_dump = NULL, model = NULL)
|
||||
}
|
||||
\arguments{
|
||||
\item{feature_names}{names of each feature as a character vector. Can be extracted from a sparse matrix (see example). If model dump already contains feature names, this argument should be \code{NULL}.}
|
||||
|
||||
\item{filename_dump}{the path to the text file storing the model. Model dump must include the gain per feature and per tree (\code{with.stats = T} in function \code{xgb.dump}).}
|
||||
|
||||
\item{model}{generated by the \code{xgb.train} function. Avoid the creation of a dump file.}
|
||||
}
|
||||
\value{
|
||||
A \code{data.table} of the features used in the model with their average gain (and their weight for boosted tree model) in the model.
|
||||
@ -43,9 +45,8 @@ test <- agaricus.test
|
||||
|
||||
bst <- xgboost(data = train$data, label = train$label, max.depth = 2,
|
||||
eta = 1, nround = 2,objective = "binary:logistic")
|
||||
xgb.dump(bst, 'xgb.model.dump', with.stats = T)
|
||||
|
||||
#agaricus.test$data@Dimnames[[2]] represents the column names of the sparse matrix.
|
||||
xgb.importance(agaricus.test$data@Dimnames[[2]], 'xgb.model.dump')
|
||||
xgb.importance(agaricus.test$data@Dimnames[[2]], model = bst)
|
||||
}
|
||||
|
||||
|
||||
@ -4,14 +4,18 @@
|
||||
\alias{xgb.model.dt.tree}
|
||||
\title{Convert tree model dump to data.table}
|
||||
\usage{
|
||||
xgb.model.dt.tree(feature_names = NULL, filename_dump = NULL, text = NULL,
|
||||
n_first_tree = NULL)
|
||||
xgb.model.dt.tree(feature_names = NULL, filename_dump = NULL,
|
||||
model = NULL, text = NULL, n_first_tree = NULL)
|
||||
}
|
||||
\arguments{
|
||||
\item{feature_names}{names of each feature as a character vector. Can be extracted from a sparse matrix (see example). If model dump already contains feature names, this argument should be \code{NULL}.}
|
||||
|
||||
\item{filename_dump}{the path to the text file storing the model. Model dump must include the gain per feature and per tree (parameter \code{with.stats = T} in function \code{xgb.dump}).}
|
||||
|
||||
\item{model}{dump generated by the \code{xgb.train} function. Avoid the creation of a dump file.}
|
||||
|
||||
\item{text}{dump generated by the \code{xgb.dump} function. Avoid the creation of a dump file. Model dump must include the gain per feature and per tree (parameter \code{with.stats = T} in function \code{xgb.dump}).}
|
||||
|
||||
\item{n_first_tree}{limit the plot to the n first trees. If \code{NULL}, all trees of the model are plotted. Performance can be low for huge models.}
|
||||
}
|
||||
\value{
|
||||
@ -49,6 +53,6 @@ bst <- xgboost(data = train$data, label = train$label, max.depth = 2,
|
||||
xgb.dump(bst, 'xgb.model.dump', with.stats = T)
|
||||
|
||||
#agaricus.test$data@Dimnames[[2]] represents the column names of the sparse matrix.
|
||||
xgb.model.dt.tree(agaricus.train$data@Dimnames[[2]], 'xgb.model.dump')
|
||||
xgb.model.dt.tree(agaricus.train$data@Dimnames[[2]], filename_dump = 'xgb.model.dump')
|
||||
}
|
||||
|
||||
|
||||
@ -4,17 +4,19 @@
|
||||
\alias{xgb.plot.tree}
|
||||
\title{Plot a boosted tree model}
|
||||
\usage{
|
||||
xgb.plot.tree(feature_names = NULL, filename_dump = NULL,
|
||||
n_first_tree = NULL, styles = NULL)
|
||||
xgb.plot.tree(feature_names = NULL, filename_dump = NULL, model = NULL,
|
||||
n_first_tree = NULL, CSSstyle = NULL)
|
||||
}
|
||||
\arguments{
|
||||
\item{feature_names}{names of each feature as a character vector. Can be extracted from a sparse matrix (see example). If model dump already contains feature names, this argument should be \code{NULL}.}
|
||||
|
||||
\item{filename_dump}{the path to the text file storing the model. Model dump must include the gain per feature and per tree (parameter \code{with.stats = T} in function \code{xgb.dump}).}
|
||||
\item{filename_dump}{the path to the text file storing the model. Model dump must include the gain per feature and per tree (parameter \code{with.stats = T} in function \code{xgb.dump}). Possible to provide a model directly (see \code{model} argument).}
|
||||
|
||||
\item{model}{generated by the \code{xgb.train} function. Avoid the creation of a dump file.}
|
||||
|
||||
\item{n_first_tree}{limit the plot to the n first trees. If \code{NULL}, all trees of the model are plotted. Performance can be low for huge models.}
|
||||
|
||||
\item{style}{a \code{character} vector storing a css style to customize the appearance of nodes. Look at the \href{https://github.com/knsv/mermaid/wiki}{Mermaid wiki} for more information.}
|
||||
\item{CSSstyle}{a \code{character} vector storing a css style to customize the appearance of nodes. Look at the \href{https://github.com/knsv/mermaid/wiki}{Mermaid wiki} for more information.}
|
||||
}
|
||||
\value{
|
||||
A \code{DiagrammeR} of the model.
|
||||
@ -44,9 +46,8 @@ train <- agaricus.train
|
||||
|
||||
bst <- xgboost(data = train$data, label = train$label, max.depth = 2,
|
||||
eta = 1, nround = 2,objective = "binary:logistic")
|
||||
xgb.dump(bst, 'xgb.model.dump', with.stats = T)
|
||||
|
||||
#agaricus.test$data@Dimnames[[2]] represents the column names of the sparse matrix.
|
||||
xgb.plot.tree(agaricus.train$data@Dimnames[[2]], 'xgb.model.dump')
|
||||
xgb.plot.tree(agaricus.train$data@Dimnames[[2]], model = bst)
|
||||
}
|
||||
|
||||
|
||||
@ -3,6 +3,7 @@
|
||||
#include <utility>
|
||||
#include <cstring>
|
||||
#include <cstdio>
|
||||
#include <sstream>
|
||||
#include "xgboost_R.h"
|
||||
#include "wrapper/xgboost_wrapper.h"
|
||||
#include "src/utils/utils.h"
|
||||
@ -280,11 +281,10 @@ extern "C" {
|
||||
asInteger(with_stats),
|
||||
&olen);
|
||||
SEXP out = PROTECT(allocVector(STRSXP, olen));
|
||||
char buffer [2000];
|
||||
for (size_t i = 0; i < olen; ++i) {
|
||||
memset(buffer, 0, sizeof buffer);
|
||||
sprintf (buffer, "booster[%u]:\n%s", static_cast<unsigned>(i), res[i]);
|
||||
SET_STRING_ELT(out, i, mkChar(buffer));
|
||||
stringstream stream;
|
||||
stream << "booster["<<i<<"]\n" << res[i];
|
||||
SET_STRING_ELT(out, i, mkChar(stream.str().c_str()));
|
||||
}
|
||||
_WrapperEnd();
|
||||
UNPROTECT(1);
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user