[TREE] Refactor to new logging

This commit is contained in:
tqchen 2016-01-01 02:21:23 -08:00
parent 05115adbff
commit 844e8a153d
3 changed files with 181 additions and 226 deletions

View File

@ -1,25 +1,22 @@
/*!
* Copyright 2014 by Contributors
* \file model.h
* \file tree_model.h
* \brief model structure for tree
* \author Tianqi Chen
*/
#ifndef XGBOOST_TREE_MODEL_H_
#define XGBOOST_TREE_MODEL_H_
#include <string>
#include <cstring>
#include <sstream>
#include <dmlc/io.h>
#include <dmlc/logging.h>
#include <dmlc/parameter.h>
#include <limits>
#include <algorithm>
#include <vector>
#include <cmath>
#include "../utils/io.h"
#include "../utils/fmap.h"
#include "../utils/utils.h"
#include <cstring>
#include <algorithm>
#include "./base.h"
namespace xgboost {
namespace tree {
/*!
* \brief template class of TreeModel
* \tparam TSplitCond data type to indicate split condition
@ -33,7 +30,7 @@ class TreeModel {
/*! \brief auxiliary statistics of node to help tree building */
typedef TSplitCond SplitCond;
/*! \brief parameters of the tree */
struct Param{
struct TreeParam {
/*! \brief number of start root */
int num_roots;
/*! \brief total number of nodes */
@ -52,73 +49,68 @@ class TreeModel {
/*! \brief reserved part */
int reserved[31];
/*! \brief constructor */
Param(void) {
max_depth = 0;
size_leaf_vector = 0;
std::memset(reserved, 0, sizeof(reserved));
}
/*!
* \brief set parameters from outside
* \param name name of the parameter
* \param val value of the parameter
*/
inline void SetParam(const char *name, const char *val) {
using namespace std;
if (!strcmp("num_roots", name)) num_roots = atoi(val);
if (!strcmp("num_feature", name)) num_feature = atoi(val);
if (!strcmp("size_leaf_vector", name)) size_leaf_vector = atoi(val);
TreeParam() {
// assert compact alignment
static_assert(sizeof(TreeParam) == (31 + 6) * sizeof(int),
"TreeParam: 64 bit align");
std::memset(this, 0, sizeof(TreeParam));
num_nodes = num_roots = 1;
}
};
/*! \brief tree node */
class Node {
public:
Node(void) : sindex_(0) {}
Node() : sindex_(0) {
// assert compact alignment
static_assert(sizeof(Node) == 4 * sizeof(int) + sizeof(Info),
"Node: 64 bit align");
}
/*! \brief index of left child */
inline int cleft(void) const {
inline int cleft() const {
return this->cleft_;
}
/*! \brief index of right child */
inline int cright(void) const {
inline int cright() const {
return this->cright_;
}
/*! \brief index of default child when feature is missing */
inline int cdefault(void) const {
inline int cdefault() const {
return this->default_left() ? this->cleft() : this->cright();
}
/*! \brief feature index of split condition */
inline unsigned split_index(void) const {
inline unsigned split_index() const {
return sindex_ & ((1U << 31) - 1U);
}
/*! \brief when feature is unknown, whether goes to left child */
inline bool default_left(void) const {
inline bool default_left() const {
return (sindex_ >> 31) != 0;
}
/*! \brief whether current node is leaf node */
inline bool is_leaf(void) const {
inline bool is_leaf() const {
return cleft_ == -1;
}
/*! \brief get leaf value of leaf node */
inline float leaf_value(void) const {
inline float leaf_value() const {
return (this->info_).leaf_value;
}
/*! \brief get split condition of the node */
inline TSplitCond split_cond(void) const {
inline TSplitCond split_cond() const {
return (this->info_).split_cond;
}
/*! \brief get parent of the node */
inline int parent(void) const {
inline int parent() const {
return parent_ & ((1U << 31) - 1);
}
/*! \brief whether current node is left child */
inline bool is_left_child(void) const {
inline bool is_left_child() const {
return (parent_ & (1U << 31)) != 0;
}
/*! \brief whether this node is deleted */
inline bool is_deleted(void) const {
inline bool is_deleted() const {
return sindex_ == std::numeric_limits<unsigned>::max();
}
/*! \brief whether current node is root */
inline bool is_root(void) const {
inline bool is_root() const {
return parent_ == -1;
}
/*!
@ -152,7 +144,7 @@ class TreeModel {
this->cright_ = right;
}
/*! \brief mark that this node is deleted */
inline void mark_delete(void) {
inline void mark_delete() {
this->sindex_ = std::numeric_limits<unsigned>::max();
}
@ -193,7 +185,7 @@ class TreeModel {
std::vector<bst_float> leaf_vector;
// allocate a new node,
// !!!!!! NOTE: may cause BUG here, nodes.resize
inline int AllocNode(void) {
inline int AllocNode() {
if (param.num_deleted != 0) {
int nd = deleted_nodes.back();
deleted_nodes.pop_back();
@ -201,8 +193,8 @@ class TreeModel {
return nd;
}
int nd = param.num_nodes++;
utils::Check(param.num_nodes < std::numeric_limits<int>::max(),
"number of nodes in the tree exceed 2^31");
CHECK_LT(param.num_nodes, std::numeric_limits<int>::max())
<< "number of nodes in the tree exceed 2^31";
nodes.resize(param.num_nodes);
stats.resize(param.num_nodes);
leaf_vector.resize(param.num_nodes * param.size_leaf_vector);
@ -210,7 +202,7 @@ class TreeModel {
}
// delete a tree node, keep the parent field to allow trace back
inline void DeleteNode(int nid) {
utils::Assert(nid >= param.num_roots, "can not delete root");
CHECK_GE(nid, param.num_roots);
deleted_nodes.push_back(nid);
nodes[nid].mark_delete();
++param.num_deleted;
@ -223,10 +215,8 @@ class TreeModel {
* \param new leaf value
*/
inline void ChangeToLeaf(int rid, float value) {
utils::Assert(nodes[nodes[rid].cleft() ].is_leaf(),
"can not delete a non termial child");
utils::Assert(nodes[nodes[rid].cright()].is_leaf(),
"can not delete a non termial child");
CHECK(nodes[nodes[rid].cleft() ].is_leaf());
CHECK(nodes[nodes[rid].cright()].is_leaf());
this->DeleteNode(nodes[rid].cleft());
this->DeleteNode(nodes[rid].cright());
nodes[rid].set_leaf(value);
@ -249,38 +239,38 @@ class TreeModel {
public:
/*! \brief model parameter */
Param param;
TreeParam param;
/*! \brief constructor */
TreeModel(void) {
TreeModel() {
param.num_nodes = 1;
param.num_roots = 1;
param.num_deleted = 0;
nodes.resize(1);
}
/*! \brief get node given nid */
inline Node &operator[](int nid) {
inline Node& operator[](int nid) {
return nodes[nid];
}
/*! \brief get node given nid */
inline const Node &operator[](int nid) const {
inline const Node& operator[](int nid) const {
return nodes[nid];
}
/*! \brief get node statistics given nid */
inline NodeStat &stat(int nid) {
inline NodeStat& stat(int nid) {
return stats[nid];
}
/*! \brief get leaf vector given nid */
inline bst_float* leafvec(int nid) {
if (leaf_vector.size() == 0) return NULL;
return &leaf_vector[nid * param.size_leaf_vector];
if (leaf_vector.size() == 0) return nullptr;
return& leaf_vector[nid * param.size_leaf_vector];
}
/*! \brief get leaf vector given nid */
inline const bst_float* leafvec(int nid) const {
if (leaf_vector.size() == 0) return NULL;
return &leaf_vector[nid * param.size_leaf_vector];
if (leaf_vector.size() == 0) return nullptr;
return& leaf_vector[nid * param.size_leaf_vector];
}
/*! \brief initialize the model */
inline void InitModel(void) {
inline void InitModel() {
param.num_nodes = param.num_roots;
nodes.resize(param.num_nodes);
stats.resize(param.num_nodes);
@ -294,41 +284,37 @@ class TreeModel {
* \brief load model from stream
* \param fi input stream
*/
inline void LoadModel(utils::IStream &fi) { // NOLINT(*)
utils::Check(fi.Read(&param, sizeof(Param)) > 0,
"TreeModel: wrong format");
nodes.resize(param.num_nodes); stats.resize(param.num_nodes);
utils::Assert(param.num_nodes != 0, "invalid model");
utils::Check(fi.Read(BeginPtr(nodes), sizeof(Node) * nodes.size()) > 0,
"TreeModel: wrong format");
utils::Check(fi.Read(BeginPtr(stats), sizeof(NodeStat) * stats.size()) > 0,
"TreeModel: wrong format");
inline void LoadModel(dmlc::Stream* fi) {
CHECK_EQ(fi->Read(&param, sizeof(TreeParam)), sizeof(TreeParam));
nodes.resize(param.num_nodes);
stats.resize(param.num_nodes);
CHECK_NE(param.num_nodes, 0);
CHECK_EQ(fi->Read(dmlc::BeginPtr(nodes), sizeof(Node) * nodes.size()),
sizeof(Node) * nodes.size());
CHECK_EQ(fi->Read(dmlc::BeginPtr(stats), sizeof(NodeStat) * stats.size()),
sizeof(NodeStat) * stats.size());
if (param.size_leaf_vector != 0) {
utils::Check(fi.Read(&leaf_vector), "TreeModel: wrong format");
CHECK(fi->Read(&leaf_vector));
}
// chg deleted nodes
deleted_nodes.resize(0);
for (int i = param.num_roots; i < param.num_nodes; ++i) {
if (nodes[i].is_deleted()) deleted_nodes.push_back(i);
}
utils::Assert(static_cast<int>(deleted_nodes.size()) == param.num_deleted,
"number of deleted nodes do not match, num_deleted=%d, dnsize=%lu, num_nodes=%d",
param.num_deleted, deleted_nodes.size(), param.num_nodes);
CHECK_EQ(static_cast<int>(deleted_nodes.size()), param.num_deleted);
}
/*!
* \brief save model to stream
* \param fo output stream
*/
inline void SaveModel(utils::IStream &fo) const { // NOLINT(*)
utils::Assert(param.num_nodes == static_cast<int>(nodes.size()),
"TreeModel::SaveModel");
utils::Assert(param.num_nodes == static_cast<int>(stats.size()),
"TreeModel::SaveModel");
fo.Write(&param, sizeof(Param));
utils::Assert(param.num_nodes != 0, "invalid model");
fo.Write(BeginPtr(nodes), sizeof(Node) * nodes.size());
fo.Write(BeginPtr(stats), sizeof(NodeStat) * nodes.size());
if (param.size_leaf_vector != 0) fo.Write(leaf_vector);
inline void SaveModel(dmlc::Stream* fo) const {
CHECK_EQ(param.num_nodes, static_cast<int>(nodes.size()));
CHECK_EQ(param.num_nodes, static_cast<int>(stats.size()));
fo->Write(&param, sizeof(TreeParam));
CHECK_NE(param.num_nodes, 0);
fo->Write(BeginPtr(nodes), sizeof(Node) * nodes.size());
fo->Write(BeginPtr(stats), sizeof(NodeStat) * nodes.size());
if (param.size_leaf_vector != 0) fo->Write(leaf_vector);
}
/*!
* \brief add child nodes to node
@ -376,7 +362,7 @@ class TreeModel {
/*!
* \brief get maximum depth
*/
inline int MaxDepth(void) {
inline int MaxDepth() {
int maxd = 0;
for (int i = 0; i < param.num_roots; ++i) {
maxd = std::max(maxd, MaxDepth(i));
@ -384,80 +370,9 @@ class TreeModel {
return maxd;
}
/*! \brief number of extra nodes besides the root */
inline int num_extra_nodes(void) const {
inline int num_extra_nodes() const {
return param.num_nodes - param.num_roots - param.num_deleted;
}
/*!
* \brief dump model to text string
* \param fmap feature map of feature types
* \param with_stats whether dump out statistics as well
* \return the string of dumped model
*/
inline std::string DumpModel(const utils::FeatMap& fmap, bool with_stats) {
std::stringstream fo("");
for (int i = 0; i < param.num_roots; ++i) {
this->Dump(i, fo, fmap, 0, with_stats);
}
return fo.str();
}
private:
void Dump(int nid, std::stringstream &fo, // NOLINT(*)
const utils::FeatMap& fmap, int depth, bool with_stats) {
for (int i = 0; i < depth; ++i) {
fo << '\t';
}
if (nodes[nid].is_leaf()) {
fo << nid << ":leaf=" << nodes[nid].leaf_value();
if (with_stats) {
stat(nid).Print(fo, true);
}
fo << '\n';
} else {
// right then left,
TSplitCond cond = nodes[nid].split_cond();
const unsigned split_index = nodes[nid].split_index();
if (split_index < fmap.size()) {
switch (fmap.type(split_index)) {
case utils::FeatMap::kIndicator: {
int nyes = nodes[nid].default_left() ?
nodes[nid].cright() : nodes[nid].cleft();
fo << nid << ":[" << fmap.name(split_index) << "] yes=" << nyes
<< ",no=" << nodes[nid].cdefault();
break;
}
case utils::FeatMap::kInteger: {
fo << nid << ":[" << fmap.name(split_index) << "<"
<< int(float(cond)+1.0f)
<< "] yes=" << nodes[nid].cleft()
<< ",no=" << nodes[nid].cright()
<< ",missing=" << nodes[nid].cdefault();
break;
}
case utils::FeatMap::kFloat:
case utils::FeatMap::kQuantitive: {
fo << nid << ":[" << fmap.name(split_index) << "<"<< float(cond)
<< "] yes=" << nodes[nid].cleft()
<< ",no=" << nodes[nid].cright()
<< ",missing=" << nodes[nid].cdefault();
break;
}
default: utils::Error("unknown fmap type");
}
} else {
fo << nid << ":[f" << split_index << "<"<< float(cond)
<< "] yes=" << nodes[nid].cleft()
<< ",no=" << nodes[nid].cright()
<< ",missing=" << nodes[nid].cdefault();
}
if (with_stats) {
stat(nid).Print(fo, false);
}
fo << '\n';
this->Dump(nodes[nid].cleft(), fo, fmap, depth+1, with_stats);
this->Dump(nodes[nid].cright(), fo, fmap, depth+1, with_stats);
}
}
};
/*! \brief node statistics used in regression tree */
@ -469,63 +384,59 @@ struct RTreeNodeStat {
/*! \brief weight of current node */
float base_weight;
/*! \brief number of child that is leaf node known up to now */
int leaf_child_cnt;
/*! \brief print information of current stats to fo */
inline void Print(std::stringstream &fo, bool is_leaf) const { // NOLINT(*)
if (!is_leaf) {
fo << ",gain=" << loss_chg << ",cover=" << sum_hess;
} else {
fo << ",cover=" << sum_hess;
}
}
int leaf_child_cnt;
};
/*! \brief define regression tree to be the most common tree model */
class RegTree: public TreeModel<bst_float, RTreeNodeStat>{
/*!
* \brief define regression tree to be the most common tree model.
* This is the data structure used in xgboost's major tree models.
*/
class RegTree: public TreeModel<bst_float, RTreeNodeStat> {
public:
/*!
* \brief dense feature vector that can be taken by RegTree
* to do traverse efficiently
* and can be construct from sparse feature vector
* and can be construct from sparse feature vector.
*/
struct FVec {
public:
/*!
* \brief initialize the vector with size vector
* \param size The size of the feature vector.
*/
inline void Init(size_t size);
/*!
* \brief fill the vector with sparse vector
* \param inst The sparse instance to fil.
*/
inline void Fill(const RowBatch::Inst& inst);
/*!
* \brief drop the trace after fill, must be called after fill.
* \param inst The sparse instanc to drop.
*/
inline void Drop(const RowBatch::Inst& inst);
/*!
* \brief get ith value
* \param i feature index.
* \return the i-th feature value
*/
inline float fvalue(size_t i) const;
/*!
* \brief check whether i-th entry is missing
* \param i feature index.
* \return whether i-th value is missing.
*/
inline bool is_missing(size_t i) const;
private:
/*!
* \brief a union value of value and flag
* when flag == -1, this indicate the value is missing
* when flag == -1, this indicate the value is missing
*/
union Entry{
union Entry {
float fvalue;
int flag;
};
std::vector<Entry> data;
/*! \brief initialize the vector with size vector */
inline void Init(size_t size) {
Entry e; e.flag = -1;
data.resize(size);
std::fill(data.begin(), data.end(), e);
}
/*! \brief fill the vector with sparse vector */
inline void Fill(const RowBatch::Inst &inst) {
for (bst_uint i = 0; i < inst.length; ++i) {
if (inst[i].index >= data.size()) continue;
data[inst[i].index].fvalue = inst[i].fvalue;
}
}
/*! \brief drop the trace after fill, must be called after fill */
inline void Drop(const RowBatch::Inst &inst) {
for (bst_uint i = 0; i < inst.length; ++i) {
if (inst[i].index >= data.size()) continue;
data[inst[i].index].flag = -1;
}
}
/*! \brief get ith value */
inline float fvalue(size_t i) const {
return data[i].fvalue;
}
/*! \brief check whether i-th entry is missing */
inline bool is_missing(size_t i) const {
return data[i].flag == -1;
}
};
/*!
* \brief get the leaf index
@ -533,41 +444,80 @@ class RegTree: public TreeModel<bst_float, RTreeNodeStat>{
* \param root_id starting root index of the instance
* \return the leaf index of the given feature
*/
inline int GetLeafIndex(const FVec &feat, unsigned root_id = 0) const {
// start from groups that belongs to current data
int pid = static_cast<int>(root_id);
// traverse tree
while (!(*this)[ pid ].is_leaf()) {
unsigned split_index = (*this)[pid].split_index();
pid = this->GetNext(pid, feat.fvalue(split_index), feat.is_missing(split_index));
}
return pid;
}
inline int GetLeafIndex(const FVec& feat, unsigned root_id = 0) const;
/*!
* \brief get the prediction of regression tree, only accepts dense feature vector
* \param feats dense feature vector, if the feature is missing the field is set to NaN
* \param root_id starting root index of the instance
* \return the leaf index of the given feature
*/
inline float Predict(const FVec &feat, unsigned root_id = 0) const {
int pid = this->GetLeafIndex(feat, root_id);
return (*this)[pid].leaf_value();
}
/*! \brief get next position of the tree given current pid */
inline int GetNext(int pid, float fvalue, bool is_unknown) const {
float split_value = (*this)[pid].split_cond();
if (is_unknown) {
return (*this)[pid].cdefault();
} else {
if (fvalue < split_value) {
return (*this)[pid].cleft();
} else {
return (*this)[pid].cright();
}
}
}
inline float Predict(const FVec& feat, unsigned root_id = 0) const;
/*!
* \brief get next position of the tree given current pid
* \param pid Current node id.
* \param fvalue feature value if not missing.
* \param is_unknown Whether current required feature is missing.
*/
inline int GetNext(int pid, float fvalue, bool is_unknown) const;
};
} // namespace tree
// implementations of inline functions
// do not need to read if only use the model
inline void RegTree::FVec::Init(size_t size) {
Entry e; e.flag = -1;
data.resize(size);
std::fill(data.begin(), data.end(), e);
}
inline void RegTree::FVec::Fill(const RowBatch::Inst& inst) {
for (bst_uint i = 0; i < inst.length; ++i) {
if (inst[i].index >= data.size()) continue;
data[inst[i].index].fvalue = inst[i].fvalue;
}
}
inline void RegTree::FVec::Drop(const RowBatch::Inst& inst) {
for (bst_uint i = 0; i < inst.length; ++i) {
if (inst[i].index >= data.size()) continue;
data[inst[i].index].flag = -1;
}
}
inline float RegTree::FVec::fvalue(size_t i) const {
return data[i].fvalue;
}
inline bool RegTree::FVec::is_missing(size_t i) const {
return data[i].flag == -1;
}
inline int RegTree::GetLeafIndex(const RegTree::FVec& feat, unsigned root_id) const {
int pid = static_cast<int>(root_id);
while (!(*this)[pid].is_leaf()) {
unsigned split_index = (*this)[pid].split_index();
pid = this->GetNext(pid, feat.fvalue(split_index), feat.is_missing(split_index));
}
return pid;
}
inline float RegTree::Predict(const RegTree::FVec& feat, unsigned root_id) const {
int pid = this->GetLeafIndex(feat, root_id);
return (*this)[pid].leaf_value();
}
/*! \brief get next position of the tree given current pid */
inline int RegTree::GetNext(int pid, float fvalue, bool is_unknown) const {
float split_value = (*this)[pid].split_cond();
if (is_unknown) {
return (*this)[pid].cdefault();
} else {
if (fvalue < split_value) {
return (*this)[pid].cleft();
} else {
return (*this)[pid].cright();
}
}
}
} // namespace xgboost
#endif // XGBOOST_TREE_MODEL_H_

View File

@ -111,4 +111,4 @@ struct ParallelGroupBuilder {
};
} // namespace common
} // namespace xgboost
#endif // XGBOOST_UTILS_GROUP_DATA_H_
#endif // XGBOOST_COMMON_GROUP_DATA_H_

View File

@ -5,6 +5,7 @@
*/
#include <xgboost/objective.h>
#include <xgboost/metric.h>
#include <xgboost/tree_model.h>
namespace dmlc {
DMLC_REGISTRY_ENABLE(::xgboost::ObjFunctionReg);
@ -40,5 +41,9 @@ Metric* Metric::Create(const char* name) {
return (e->body)(buf.substr(pos + 1, buf.length()).c_str());
}
}
void test() {
RegTree tree;
}
} // namespace xgboost