Data interface ready

This commit is contained in:
tqchen 2015-11-27 10:25:33 -08:00
parent d530e0c14f
commit 7ff91fe5f9
4 changed files with 284 additions and 215 deletions

View File

@ -1,7 +1,7 @@
/*!
* Copyright (c) 2015 by Contributors
* \file base.h
* \brief defines configuration macros of xgboost
* \brief defines configuration macros of xgboost.
*/
#ifndef XGBOOST_BASE_H_
#define XGBOOST_BASE_H_
@ -9,7 +9,85 @@
#include <dmlc/base.h>
namespace xgboost {
/*!
* \brief unsigned interger type used in boost,
* used for feature index and row index.
*/
typedef uint32_t bst_uint;
/*! \brief float type, used for storing statistics */
typedef float bst_float;
const float rt_eps = 1e-5f;
// min gap between feature values to allow a split happen
const float rt_2eps = rt_eps * 2.0f;
/*! \brief read-only sparse instance batch in CSR format */
struct SparseBatch {
/*! \brief an entry of sparse vector */
struct Entry {
/*! \brief feature index */
bst_uint index;
/*! \brief feature value */
bst_float fvalue;
/*! \brief default constructor */
Entry() {}
/*!
* \brief constructor with index and value
* \param index The feature or row index.
* \param fvalue THe feature value.
*/
Entry(bst_uint index, bst_float fvalue) : index(index), fvalue(fvalue) {}
/*! \brief reversely compare feature values */
inline static bool CmpValue(const Entry &a, const Entry &b) {
return a.fvalue < b.fvalue;
}
};
/*! \brief an instance of sparse vector in the batch */
struct Inst {
/*! \brief pointer to the elements*/
const Entry *data;
/*! \brief length of the instance */
bst_uint length;
/*! \brief constructor */
Inst(const Entry *data, bst_uint length) : data(data), length(length) {}
/*! \brief get i-th pair in the sparse vector*/
inline const Entry& operator[](size_t i) const {
return data[i];
}
};
/*! \brief batch size */
size_t size;
};
/*! \brief read-only row batch, used to access row continuously */
struct RowBatch : public SparseBatch {
/*! \brief the offset of rowid of this batch */
size_t base_rowid;
/*! \brief array[size+1], row pointer of each of the elements */
const size_t *ind_ptr;
/*! \brief array[ind_ptr.back()], content of the sparse element */
const Entry *data_ptr;
/*! \brief get i-th row from the batch */
inline Inst operator[](size_t i) const {
return Inst(data_ptr + ind_ptr[i], static_cast<bst_uint>(ind_ptr[i+1] - ind_ptr[i]));
}
};
/*!
* \brief read-only column batch, used to access columns,
* the columns are not required to be continuous
*/
struct ColBatch : public SparseBatch {
/*! \brief column index of each columns in the data */
const bst_uint *col_index;
/*! \brief pointer to the column data */
const Inst *col_data;
/*! \brief get i-th column from the batch */
inline Inst operator[](size_t i) const {
return col_data[i];
}
};
} // namespace xgboost
#endif // XGBOOST_BASE_H_

View File

@ -1,8 +1,212 @@
/*!
* Copyright (c) 2014 by Contributors
* \file data.h
* \brief the input data structure for gradient boosting
* \brief The input data structure for gradient boosting.
* \author Tianqi Chen
*/
#ifndef XGBOOST_DATA_H_
#define XGBOOST_DATA_H_
#include <dmlc/base.h>
#include <dmlc/data.h>
#include <memory>
#include "./base.h"
namespace xgboost {
// forward declare learner.
class Learner;
/*! \brief data type accepted by xgboost interface */
enum DataType {
kFloat32 = 1,
kDouble = 2,
kUInt32 = 3,
kUInt64 = 4
};
/*!
* \brief Meta information about dataset, always sit in memory.
*/
struct MetaInfo {
/*! \brief number of rows in the data */
size_t num_row;
/*! \brief number of columns in the data */
size_t num_col;
/*! \brief label of each instance */
std::vector<bst_float> labels;
/*!
* \brief specified root index of each instance,
* can be used for multi task setting
*/
std::vector<bst_uint> root_index;
/*!
* \brief the index of begin and end of a group
* needed when the learning task is ranking.
*/
std::vector<bst_uint> group_ptr;
/*! \brief weights of each instance, optional */
std::vector<bst_float> weights;
/*!
* \brief initialized margins,
* if specified, xgboost will start from this init margin
* can be used to specify initial prediction to boost from.
*/
std::vector<bst_float> base_margin;
/*! \brief version flag, used to check version of this info */
static const int kVersion = 0;
/*! \brief default constructor */
MetaInfo() : num_row(0), num_col(0) {}
/*!
* \brief Get weight of each instances.
* \param i Instance index.
* \return The weight.
*/
inline float GetWeight(size_t i) const {
return weights.size() != 0 ? weights[i] : 1.0f;
}
/*!
* \brief Get the root index of i-th instance.
* \param i Instance index.
* \return The pre-defined root index of i-th instance.
*/
inline unsigned GetRoot(size_t i) const {
return root_index.size() != 0 ? root_index[i] : 0U;
}
/*! \brief clear all the information */
void Clear();
/*!
* \brief Load the Meta info from binary stream.
* \param fi The input stream
*/
void LoadBinary(dmlc::Stream *fi);
/*!
* \brief Save the Meta info to binary stream
* \param fo The output stream.
*/
void SaveBinary(dmlc::Stream *fo) const;
/*!
* \brief Set information in the meta info.
* \param key The key of the information.
* \param dptr The data pointer of the source array.
* \param dtype The type of the source data.
* \param num Number of elements in the source array.
*/
void SetInfo(const char* key, const void* dptr, DataType dtype, size_t num);
/*!
* \brief Get information from meta info.
* \param key The key of the information.
* \param dptr The output data pointer of the source array.
* \param dtype The output data type of the information array.
* \param num Number of elements in the array.
*/
void GetInfo(const char* key, const void** dptr, DataType* dtype, size_t* num) const;
};
/*!
* \brief This is data structure that user can pass to DMatrix::Create
* to create a DMatrix for training, user can create this data structure
* for customized Data Loading on single machine.
*/
struct DataSource {
/*!
* \brief Used to initialize the meta information of DMatrix
* The created DMatrix can change its own info later.
*/
MetaInfo info;
/*!
* \brief Used for row based iteration of DMatrix,
*/
std::unique_ptr<dmlc::DataIter<RowBatch> > row_iter;
};
/*!
* \brief Internal data structured used by XGBoost during training.
* There are two ways to create a customized DMatrix that reads in user defined-format.
*
* - Define a new dmlc::Parser and register by DMLC_REGISTER_DATA_PARSER;
* This works best for user defined data input source, such as data-base, filesystem.
* - Provdie a DataSource, that can be passed to DMatrix::Create
* This can be used to re-use inmemory data structure into DMatrix.
*/
class DMatrix {
public:
/*! \brief meta information that is always stored in DMatrix */
MetaInfo info;
/*!
* \brief get the row iterator, reset to beginning position
* \note Only either RowIterator or column Iterator can be active.
*/
virtual dmlc::DataIter<RowBatch>* RowIterator() = 0;
/*!\brief get column iterator, reset to the beginning position */
virtual dmlc::DataIter<ColBatch>* ColIterator() = 0;
/*!
* \brief get the column iterator associated with subset of column features.
* \param fset is the list of column index set that must be contained in the returning Column iterator
* \return the column iterator, initialized so that it reads the elements in fset
*/
virtual dmlc::DataIter<ColBatch>* ColIterator(const std::vector<bst_uint>& fset) = 0;
/*!
* \brief check if column access is supported, if not, initialize column access.
* \param enabled whether certain feature should be included in column access.
* \param subsample subsample ratio when generating column access.
* \param max_row_perbatch auxilary information, maximum row used in each column batch.
* this is a hint information that can be ignored by the implementation.
*/
virtual void InitColAccess(const std::vector<bool>& enabled,
float subsample,
size_t max_row_perbatch) = 0;
// the following are column meta data, should be able to answer them fast.
/*! \return whether column access is enabled */
virtual bool HaveColAccess() const = 0;
/*! \brief get number of non-missing entries in column */
virtual size_t GetColSize(size_t cidx) const = 0;
/*! \brief get column density */
virtual float GetColDensity(size_t cidx) const = 0;
/*! \return reference of buffered rowset, in column access */
virtual const std::vector<bst_uint> &buffered_rowset() const = 0;
/*! \brief virtual destructor */
virtual ~DMatrix() {}
/*!
* \brief Save DMatrix to local file.
* The saved file only works for non-sharded dataset(single machine training).
* \param fname The file name to be saved.
* \return The created DMatrix.
*/
virtual void SaveToLocalFile(const char* fname);
/*!
* \brief Load DMatrix from URI.
* \param uri The URI of input.
* \param silent Whether print information during loading.
* \param load_row_split Flag to read in part of rows, divided among the workers in distributed mode.
* \return The created DMatrix.
*/
static DMatrix* Load(const char* uri,
bool silent,
bool load_row_split);
/*!
* \brief create a new DMatrix, by wrapping a row_iterator, and meta info.
* \param source The source iterator of the data, the create function takes ownership of the source.
* \param info The meta information in the DMatrix, need to move ownership to DMatrix.
* \param cache_prefix The path to prefix of temporary cache file of the DMatrix when used in external memory mode.
* This can be nullptr for common cases, and in-memory mode will be used.
* \return a Created DMatrix.
*/
static DMatrix* Create(DataSource&& source,
const char* cache_prefix=nullptr);
/*!
* \brief Create a DMatrix by loaidng data from parser.
* Parser can later be deleted after the DMatrix i created.
* \param parser The input data parser
* \param cache_prefix The path to prefix of temporary cache file of the DMatrix when used in external memory mode.
* This can be nullptr for common cases, and in-memory mode will be used.
* \sa dmlc::Parser
* \note dmlc-core provides efficient distributed data parser for libsvm format.
* User can create and register customized parser to load their own format using DMLC_REGISTER_DATA_PARSER.
* See "dmlc-core/include/dmlc/data.h" for detail.
* \return A created DMatrix.
*/
static DMatrix* Create(dmlc::Parser<uint32_t>* parser,
const char* cache_prefix=nullptr);
};
} // namespace xgboost
#endif // XGBOOST_DATA_H_

View File

@ -1,166 +0,0 @@
/*!
* Copyright (c) 2014 by Contributors
* \file data.h
* \brief the input data structure for gradient boosting
* \author Tianqi Chen
*/
#ifndef XGBOOST_DATA_H_
#define XGBOOST_DATA_H_
#include <cstdio>
#include <vector>
#include "utils/utils.h"
#include "utils/iterator.h"
namespace xgboost {
/*!
* \brief unsigned integer type used in boost,
* used for feature index and row index
*/
typedef unsigned bst_uint;
/*! \brief float type, used for storing statistics */
typedef float bst_float;
const float rt_eps = 1e-5f;
// min gap between feature values to allow a split happen
const float rt_2eps = rt_eps * 2.0f;
/*! \brief gradient statistics pair usually needed in gradient boosting */
struct bst_gpair {
/*! \brief gradient statistics */
bst_float grad;
/*! \brief second order gradient statistics */
bst_float hess;
bst_gpair(void) {}
bst_gpair(bst_float grad, bst_float hess) : grad(grad), hess(hess) {}
};
/*!
* \brief extra information that might be needed by gbm and tree module
* this information is not necessarily present, and can be empty
*/
struct BoosterInfo {
/*! \brief number of rows in the data */
size_t num_row;
/*! \brief number of columns in the data */
size_t num_col;
/*!
* \brief specified root index of each instance,
* can be used for multi task setting
*/
std::vector<unsigned> root_index;
/*! \brief set fold indicator */
std::vector<unsigned> fold_index;
/*! \brief number of rows, number of columns */
BoosterInfo(void) : num_row(0), num_col(0) {
}
/*! \brief get root of i-th instance */
inline unsigned GetRoot(size_t i) const {
return root_index.size() == 0 ? 0 : root_index[i];
}
};
/*! \brief read-only sparse instance batch in CSR format */
struct SparseBatch {
/*! \brief an entry of sparse vector */
struct Entry {
/*! \brief feature index */
bst_uint index;
/*! \brief feature value */
bst_float fvalue;
// default constructor
Entry(void) {}
Entry(bst_uint index, bst_float fvalue) : index(index), fvalue(fvalue) {}
/*! \brief reversely compare feature values */
inline static bool CmpValue(const Entry &a, const Entry &b) {
return a.fvalue < b.fvalue;
}
};
/*! \brief an instance of sparse vector in the batch */
struct Inst {
/*! \brief pointer to the elements*/
const Entry *data;
/*! \brief length of the instance */
bst_uint length;
/*! \brief constructor */
Inst(const Entry *data, bst_uint length) : data(data), length(length) {}
/*! \brief get i-th pair in the sparse vector*/
inline const Entry& operator[](size_t i) const {
return data[i];
}
};
/*! \brief batch size */
size_t size;
};
/*! \brief read-only row batch, used to access row continuously */
struct RowBatch : public SparseBatch {
/*! \brief the offset of rowid of this batch */
size_t base_rowid;
/*! \brief array[size+1], row pointer of each of the elements */
const size_t *ind_ptr;
/*! \brief array[ind_ptr.back()], content of the sparse element */
const Entry *data_ptr;
/*! \brief get i-th row from the batch */
inline Inst operator[](size_t i) const {
return Inst(data_ptr + ind_ptr[i], static_cast<bst_uint>(ind_ptr[i+1] - ind_ptr[i]));
}
};
/*!
* \brief read-only column batch, used to access columns,
* the columns are not required to be continuous
*/
struct ColBatch : public SparseBatch {
/*! \brief column index of each columns in the data */
const bst_uint *col_index;
/*! \brief pointer to the column data */
const Inst *col_data;
/*! \brief get i-th column from the batch */
inline Inst operator[](size_t i) const {
return col_data[i];
}
};
/**
* \brief interface of feature matrix, needed for tree construction
* this interface defines two ways to access features:
* row access is defined by iterator of RowBatch
* col access is optional, checked by HaveColAccess, and defined by iterator of ColBatch
*/
class IFMatrix {
public:
// the interface only need to guarantee row iter
// column iter is active, when ColIterator is called, row_iter can be disabled
/*! \brief get the row iterator associated with FMatrix */
virtual utils::IIterator<RowBatch> *RowIterator(void) = 0;
/*!\brief get column iterator */
virtual utils::IIterator<ColBatch> *ColIterator(void) = 0;
/*!
* \brief get the column iterator associated with FMatrix with subset of column features
* \param fset is the list of column index set that must be contained in the returning Column iterator
* \return the column iterator, initialized so that it reads the elements in fset
*/
virtual utils::IIterator<ColBatch> *ColIterator(const std::vector<bst_uint> &fset) = 0;
/*!
* \brief check if column access is supported, if not, initialize column access
* \param enabled whether certain feature should be included in column access
* \param subsample subsample ratio when generating column access
* \param max_row_perbatch auxiliary information, maximum row used in each column batch
* this is a hint information that can be ignored by the implementation
*/
virtual void InitColAccess(const std::vector<bool> &enabled,
float subsample,
size_t max_row_perbatch) = 0;
// the following are column meta data, should be able to answer them fast
/*! \return whether column access is enabled */
virtual bool HaveColAccess(void) const = 0;
/*! \return number of columns in the FMatrix */
virtual size_t NumCol(void) const = 0;
/*! \brief get number of non-missing entries in column */
virtual size_t GetColSize(size_t cidx) const = 0;
/*! \brief get column density */
virtual float GetColDensity(size_t cidx) const = 0;
/*! \brief reference of buffered rowset */
virtual const std::vector<bst_uint> &buffered_rowset(void) const = 0;
// virtual destructor
virtual ~IFMatrix(void){}
};
} // namespace xgboost
#endif // XGBOOST_DATA_H_

View File

@ -1,47 +0,0 @@
/*!
* Copyright 2014 by Contributors
* \file io.h
* \brief handles input data format of xgboost
* I/O module handles a specific DMatrix format
* \author Tianqi Chen
*/
#ifndef XGBOOST_IO_IO_H_
#define XGBOOST_IO_IO_H_
#include "../data.h"
#include "../learner/dmatrix.h"
namespace xgboost {
/*! \brief namespace related to data format */
namespace io {
/*! \brief DMatrix object that I/O module support save/load */
typedef learner::DMatrix DataMatrix;
/*!
* \brief load DataMatrix from stream
* \param fname file name to be loaded
* \param silent whether print message during loading
* \param savebuffer whether temporal buffer the file if the file is in text format
* \param loadsplit whether we only load a split of input files
* such that each worker node get a split of the data
* \param cache_file name of cache_file, used by external memory version
* can be NULL, if cache_file is specified, this will be the temporal
* space that can be re-used to store intermediate data
* \return a loaded DMatrix
*/
DataMatrix* LoadDataMatrix(const char *fname,
bool silent,
bool savebuffer,
bool loadsplit,
const char *cache_file = NULL);
/*!
* \brief save DataMatrix into stream,
* note: the saved dmatrix format may not be in exactly same as input
* SaveDMatrix will choose the best way to materialize the dmatrix.
* \param dmat the dmatrix to be saved
* \param fname file name to be saved
* \param silent whether print message during saving
*/
void SaveDataMatrix(const DataMatrix &dmat, const char *fname, bool silent = false);
} // namespace io
} // namespace xgboost
#endif // XGBOOST_IO_IO_H_