initial merge
This commit is contained in:
commit
7fbc561e17
18
.gitattributes
vendored
Normal file
18
.gitattributes
vendored
Normal file
@ -0,0 +1,18 @@
|
||||
* text=auto
|
||||
|
||||
*.c text eol=lf
|
||||
*.h text eol=lf
|
||||
*.cc text eol=lf
|
||||
*.cuh text eol=lf
|
||||
*.cu text eol=lf
|
||||
*.py text eol=lf
|
||||
*.txt text eol=lf
|
||||
*.R text eol=lf
|
||||
*.scala text eol=lf
|
||||
*.java text eol=lf
|
||||
|
||||
*.sh text eol=lf
|
||||
|
||||
*.rst text eol=lf
|
||||
*.md text eol=lf
|
||||
*.csv text eol=lf
|
||||
37
.github/workflows/main.yml
vendored
37
.github/workflows/main.yml
vendored
@ -156,40 +156,3 @@ jobs:
|
||||
xgboost \
|
||||
cpp \
|
||||
include src python-package
|
||||
|
||||
sphinx:
|
||||
runs-on: ubuntu-latest
|
||||
name: Build docs using Sphinx
|
||||
steps:
|
||||
- uses: actions/checkout@e2f20e631ae6d7dd3b768f56a5d2af784dd54791 # v2.5.0
|
||||
with:
|
||||
submodules: 'true'
|
||||
- uses: actions/setup-python@7f80679172b057fc5e90d70d197929d454754a5a # v4.3.0
|
||||
with:
|
||||
python-version: "3.8"
|
||||
architecture: 'x64'
|
||||
- name: Install system packages
|
||||
run: |
|
||||
sudo apt-get install -y --no-install-recommends graphviz doxygen ninja-build
|
||||
python -m pip install wheel setuptools awscli
|
||||
python -m pip install -r doc/requirements.txt
|
||||
- name: Extract branch name
|
||||
shell: bash
|
||||
run: echo "##[set-output name=branch;]$(echo ${GITHUB_REF#refs/heads/})"
|
||||
id: extract_branch
|
||||
if: github.ref == 'refs/heads/master' || contains(github.ref, 'refs/heads/release_')
|
||||
- name: Run Sphinx
|
||||
run: |
|
||||
make -C doc html
|
||||
env:
|
||||
SPHINX_GIT_BRANCH: ${{ steps.extract_branch.outputs.branch }}
|
||||
READTHEDOCS: "True"
|
||||
|
||||
- name: Publish
|
||||
run: |
|
||||
tar cvjf ${{ steps.extract_branch.outputs.branch }}.tar.bz2 doxygen/doc_doxygen/
|
||||
python -m awscli s3 cp ./${{ steps.extract_branch.outputs.branch }}.tar.bz2 s3://xgboost-docs/doxygen/ --acl public-read
|
||||
if: github.ref == 'refs/heads/master' || contains(github.ref, 'refs/heads/release_')
|
||||
env:
|
||||
AWS_ACCESS_KEY_ID: ${{ secrets.AWS_ACCESS_KEY_ID_IAM_S3_UPLOADER }}
|
||||
AWS_SECRET_ACCESS_KEY: ${{ secrets.AWS_SECRET_ACCESS_KEY_IAM_S3_UPLOADER }}
|
||||
|
||||
@ -1,4 +1,4 @@
|
||||
<img src=https://raw.githubusercontent.com/dmlc/dmlc.github.io/master/img/logo-m/xgboost.png width=135/> eXtreme Gradient Boosting
|
||||
<img src="https://xgboost.ai/images/logo/xgboost-logo.svg" width=135/> eXtreme Gradient Boosting
|
||||
===========
|
||||
[](https://xgboost-ci.net/blue/organizations/jenkins/xgboost/activity)
|
||||
[](https://github.com/dmlc/xgboost/actions)
|
||||
|
||||
@ -7,6 +7,12 @@ The demo is adopted from scikit-learn:
|
||||
https://scikit-learn.org/stable/auto_examples/ensemble/plot_random_forest_regression_multioutput.html#sphx-glr-auto-examples-ensemble-plot-random-forest-regression-multioutput-py
|
||||
|
||||
See :doc:`/tutorials/multioutput` for more information.
|
||||
|
||||
.. note::
|
||||
|
||||
The feature is experimental. For the `multi_output_tree` strategy, many features are
|
||||
missing.
|
||||
|
||||
"""
|
||||
|
||||
import argparse
|
||||
@ -40,11 +46,18 @@ def gen_circle() -> Tuple[np.ndarray, np.ndarray]:
|
||||
return X, y
|
||||
|
||||
|
||||
def rmse_model(plot_result: bool):
|
||||
def rmse_model(plot_result: bool, strategy: str):
|
||||
"""Draw a circle with 2-dim coordinate as target variables."""
|
||||
X, y = gen_circle()
|
||||
# Train a regressor on it
|
||||
reg = xgb.XGBRegressor(tree_method="hist", n_estimators=64)
|
||||
reg = xgb.XGBRegressor(
|
||||
tree_method="hist",
|
||||
n_estimators=128,
|
||||
n_jobs=16,
|
||||
max_depth=8,
|
||||
multi_strategy=strategy,
|
||||
subsample=0.6,
|
||||
)
|
||||
reg.fit(X, y, eval_set=[(X, y)])
|
||||
|
||||
y_predt = reg.predict(X)
|
||||
@ -52,7 +65,7 @@ def rmse_model(plot_result: bool):
|
||||
plot_predt(y, y_predt, "multi")
|
||||
|
||||
|
||||
def custom_rmse_model(plot_result: bool) -> None:
|
||||
def custom_rmse_model(plot_result: bool, strategy: str) -> None:
|
||||
"""Train using Python implementation of Squared Error."""
|
||||
|
||||
# As the experimental support status, custom objective doesn't support matrix as
|
||||
@ -88,9 +101,10 @@ def custom_rmse_model(plot_result: bool) -> None:
|
||||
{
|
||||
"tree_method": "hist",
|
||||
"num_target": y.shape[1],
|
||||
"multi_strategy": strategy,
|
||||
},
|
||||
dtrain=Xy,
|
||||
num_boost_round=100,
|
||||
num_boost_round=128,
|
||||
obj=squared_log,
|
||||
evals=[(Xy, "Train")],
|
||||
evals_result=results,
|
||||
@ -107,6 +121,16 @@ if __name__ == "__main__":
|
||||
parser.add_argument("--plot", choices=[0, 1], type=int, default=1)
|
||||
args = parser.parse_args()
|
||||
# Train with builtin RMSE objective
|
||||
rmse_model(args.plot == 1)
|
||||
# - One model per output.
|
||||
rmse_model(args.plot == 1, "one_output_per_tree")
|
||||
|
||||
# - One model for all outputs, this is still working in progress, many features are
|
||||
# missing.
|
||||
rmse_model(args.plot == 1, "multi_output_tree")
|
||||
|
||||
# Train with custom objective.
|
||||
custom_rmse_model(args.plot == 1)
|
||||
# - One model per output.
|
||||
custom_rmse_model(args.plot == 1, "one_output_per_tree")
|
||||
# - One model for all outputs, this is still working in progress, many features are
|
||||
# missing.
|
||||
custom_rmse_model(args.plot == 1, "multi_output_tree")
|
||||
|
||||
@ -2,6 +2,9 @@
|
||||
Collection of examples for using sklearn interface
|
||||
==================================================
|
||||
|
||||
For an introduction to XGBoost's scikit-learn estimator interface, see
|
||||
:doc:`/python/sklearn_estimator`.
|
||||
|
||||
Created on 1 Apr 2015
|
||||
|
||||
@author: Jamie Hall
|
||||
|
||||
@ -8,5 +8,5 @@ As a result it's changing quite often and we don't maintain its stability. Alon
|
||||
plugin system (see ``plugin/example`` in XGBoost's source tree), users can utilize some
|
||||
existing c++ headers for gaining more access to the internal of XGBoost.
|
||||
|
||||
* `C++ interface documentation (latest master branch) <https://xgboost.readthedocs.io/en/latest/dev/files.html>`_
|
||||
* `C++ interface documentation (latest master branch) <./dev/files.html>`_
|
||||
* `C++ interface documentation (last stable release) <https://xgboost.readthedocs.io/en/stable/dev/files.html>`_
|
||||
|
||||
@ -10,7 +10,7 @@ simply look at function comments in ``include/xgboost/c_api.h``. The reference i
|
||||
to sphinx with the help of breathe, which doesn't contain links to examples but might be
|
||||
easier to read. For the original doxygen pages please visit:
|
||||
|
||||
* `C API documentation (latest master branch) <https://xgboost.readthedocs.io/en/latest/dev/c__api_8h.html>`_
|
||||
* `C API documentation (latest master branch) <./dev/c__api_8h.html>`_
|
||||
* `C API documentation (last stable release) <https://xgboost.readthedocs.io/en/stable/dev/c__api_8h.html>`_
|
||||
|
||||
***************
|
||||
|
||||
185
doc/conf.py
185
doc/conf.py
@ -13,53 +13,106 @@
|
||||
# serve to show the default.
|
||||
import os
|
||||
import re
|
||||
import shutil
|
||||
import subprocess
|
||||
import sys
|
||||
import tarfile
|
||||
import urllib.request
|
||||
import warnings
|
||||
from subprocess import call
|
||||
from urllib.error import HTTPError
|
||||
|
||||
from sh.contrib import git
|
||||
|
||||
git_branch = os.getenv('SPHINX_GIT_BRANCH', default=None)
|
||||
CURR_PATH = os.path.dirname(os.path.abspath(os.path.expanduser(__file__)))
|
||||
PROJECT_ROOT = os.path.normpath(os.path.join(CURR_PATH, os.path.pardir))
|
||||
TMP_DIR = os.path.join(CURR_PATH, "tmp")
|
||||
DOX_DIR = "doxygen"
|
||||
|
||||
|
||||
def run_doxygen():
|
||||
"""Run the doxygen make command in the designated folder."""
|
||||
curdir = os.path.normpath(os.path.abspath(os.path.curdir))
|
||||
if os.path.exists(TMP_DIR):
|
||||
print(f"Delete directory {TMP_DIR}")
|
||||
shutil.rmtree(TMP_DIR)
|
||||
else:
|
||||
print(f"Create directory {TMP_DIR}")
|
||||
os.mkdir(TMP_DIR)
|
||||
try:
|
||||
os.chdir(PROJECT_ROOT)
|
||||
if not os.path.exists(DOX_DIR):
|
||||
os.mkdir(DOX_DIR)
|
||||
os.chdir(os.path.join(PROJECT_ROOT, DOX_DIR))
|
||||
print(
|
||||
"Build doxygen at {}".format(
|
||||
os.path.join(PROJECT_ROOT, DOX_DIR, "doc_doxygen")
|
||||
)
|
||||
)
|
||||
subprocess.check_call(["cmake", "..", "-DBUILD_C_DOC=ON", "-GNinja"])
|
||||
subprocess.check_call(["ninja", "doc_doxygen"])
|
||||
|
||||
src = os.path.join(PROJECT_ROOT, DOX_DIR, "doc_doxygen", "html")
|
||||
dest = os.path.join(TMP_DIR, "dev")
|
||||
print(f"Copy directory {src} -> {dest}")
|
||||
shutil.copytree(src, dest)
|
||||
except OSError as e:
|
||||
sys.stderr.write("doxygen execution failed: %s" % e)
|
||||
finally:
|
||||
os.chdir(curdir)
|
||||
|
||||
|
||||
def is_readthedocs_build():
|
||||
if os.environ.get("READTHEDOCS", None) == "True":
|
||||
return True
|
||||
warnings.warn(
|
||||
"Skipping Doxygen build... You won't have documentation for C/C++ functions. "
|
||||
"Set environment variable READTHEDOCS=True if you want to build Doxygen. "
|
||||
"(If you do opt in, make sure to install Doxygen, Graphviz, CMake, and C++ compiler "
|
||||
"on your system.)"
|
||||
)
|
||||
return False
|
||||
|
||||
|
||||
if is_readthedocs_build():
|
||||
run_doxygen()
|
||||
|
||||
|
||||
git_branch = os.getenv("SPHINX_GIT_BRANCH", default=None)
|
||||
if not git_branch:
|
||||
# If SPHINX_GIT_BRANCH environment variable is not given, run git
|
||||
# to determine branch name
|
||||
git_branch = [
|
||||
re.sub(r'origin/', '', x.lstrip(' ')) for x in str(
|
||||
git.branch('-r', '--contains', 'HEAD')).rstrip('\n').split('\n')
|
||||
re.sub(r"origin/", "", x.lstrip(" "))
|
||||
for x in str(git.branch("-r", "--contains", "HEAD")).rstrip("\n").split("\n")
|
||||
]
|
||||
git_branch = [x for x in git_branch if 'HEAD' not in x]
|
||||
git_branch = [x for x in git_branch if "HEAD" not in x]
|
||||
else:
|
||||
git_branch = [git_branch]
|
||||
print('git_branch = {}'.format(git_branch[0]))
|
||||
print("git_branch = {}".format(git_branch[0]))
|
||||
|
||||
try:
|
||||
filename, _ = urllib.request.urlretrieve(
|
||||
'https://s3-us-west-2.amazonaws.com/xgboost-docs/{}.tar.bz2'.format(
|
||||
git_branch[0]))
|
||||
call(
|
||||
'if [ -d tmp ]; then rm -rf tmp; fi; mkdir -p tmp/jvm; cd tmp/jvm; tar xvf {}'
|
||||
.format(filename),
|
||||
shell=True)
|
||||
f"https://s3-us-west-2.amazonaws.com/xgboost-docs/{git_branch[0]}.tar.bz2"
|
||||
)
|
||||
if not os.path.exists(TMP_DIR):
|
||||
print(f"Create directory {TMP_DIR}")
|
||||
os.mkdir(TMP_DIR)
|
||||
jvm_doc_dir = os.path.join(TMP_DIR, "jvm")
|
||||
if os.path.exists(jvm_doc_dir):
|
||||
print(f"Delete directory {jvm_doc_dir}")
|
||||
shutil.rmtree(jvm_doc_dir)
|
||||
print(f"Create directory {jvm_doc_dir}")
|
||||
os.mkdir(jvm_doc_dir)
|
||||
|
||||
with tarfile.open(filename, "r:bz2") as t:
|
||||
t.extractall(jvm_doc_dir)
|
||||
except HTTPError:
|
||||
print('JVM doc not found. Skipping...')
|
||||
try:
|
||||
filename, _ = urllib.request.urlretrieve(
|
||||
'https://s3-us-west-2.amazonaws.com/xgboost-docs/doxygen/{}.tar.bz2'.
|
||||
format(git_branch[0]))
|
||||
call(
|
||||
'mkdir -p tmp/dev; cd tmp/dev; tar xvf {}; mv doc_doxygen/html/* .; rm -rf doc_doxygen'
|
||||
.format(filename),
|
||||
shell=True)
|
||||
except HTTPError:
|
||||
print('C API doc not found. Skipping...')
|
||||
print("JVM doc not found. Skipping...")
|
||||
|
||||
# If extensions (or modules to document with autodoc) are in another directory,
|
||||
# add these directories to sys.path here. If the directory is relative to the
|
||||
# documentation root, use os.path.abspath to make it absolute, like shown here.
|
||||
CURR_PATH = os.path.dirname(os.path.abspath(os.path.expanduser(__file__)))
|
||||
PROJECT_ROOT = os.path.normpath(os.path.join(CURR_PATH, os.path.pardir))
|
||||
libpath = os.path.join(PROJECT_ROOT, "python-package/")
|
||||
sys.path.insert(0, libpath)
|
||||
sys.path.insert(0, CURR_PATH)
|
||||
@ -82,50 +135,56 @@ release = xgboost.__version__
|
||||
# Add any Sphinx extension module names here, as strings. They can be
|
||||
# extensions coming with Sphinx (named 'sphinx.ext.*') or your custom ones
|
||||
extensions = [
|
||||
'matplotlib.sphinxext.plot_directive',
|
||||
'sphinx.ext.autodoc',
|
||||
'sphinx.ext.napoleon',
|
||||
'sphinx.ext.mathjax',
|
||||
'sphinx.ext.intersphinx',
|
||||
"matplotlib.sphinxext.plot_directive",
|
||||
"sphinxcontrib.jquery",
|
||||
"sphinx.ext.autodoc",
|
||||
"sphinx.ext.napoleon",
|
||||
"sphinx.ext.mathjax",
|
||||
"sphinx.ext.intersphinx",
|
||||
"sphinx_gallery.gen_gallery",
|
||||
'breathe',
|
||||
'recommonmark'
|
||||
"breathe",
|
||||
"recommonmark",
|
||||
]
|
||||
|
||||
sphinx_gallery_conf = {
|
||||
# path to your example scripts
|
||||
"examples_dirs": ["../demo/guide-python", "../demo/dask", "../demo/aft_survival"],
|
||||
# path to where to save gallery generated output
|
||||
"gallery_dirs": ["python/examples", "python/dask-examples", "python/survival-examples"],
|
||||
"gallery_dirs": [
|
||||
"python/examples",
|
||||
"python/dask-examples",
|
||||
"python/survival-examples",
|
||||
],
|
||||
"matplotlib_animations": True,
|
||||
}
|
||||
|
||||
autodoc_typehints = "description"
|
||||
|
||||
graphviz_output_format = 'png'
|
||||
plot_formats = [('svg', 300), ('png', 100), ('hires.png', 300)]
|
||||
graphviz_output_format = "png"
|
||||
plot_formats = [("svg", 300), ("png", 100), ("hires.png", 300)]
|
||||
plot_html_show_source_link = False
|
||||
plot_html_show_formats = False
|
||||
|
||||
# Breathe extension variables
|
||||
DOX_DIR = "doxygen"
|
||||
breathe_projects = {}
|
||||
if is_readthedocs_build():
|
||||
breathe_projects = {
|
||||
"xgboost": os.path.join(PROJECT_ROOT, DOX_DIR, "doc_doxygen/xml")
|
||||
}
|
||||
breathe_default_project = "xgboost"
|
||||
|
||||
# Add any paths that contain templates here, relative to this directory.
|
||||
templates_path = ['_templates']
|
||||
templates_path = ["_templates"]
|
||||
|
||||
# The suffix(es) of source filenames.
|
||||
# You can specify multiple suffix as a list of string:
|
||||
source_suffix = ['.rst', '.md']
|
||||
source_suffix = [".rst", ".md"]
|
||||
|
||||
# The encoding of source files.
|
||||
# source_encoding = 'utf-8-sig'
|
||||
|
||||
# The master toctree document.
|
||||
master_doc = 'index'
|
||||
master_doc = "index"
|
||||
|
||||
# The language for content autogenerated by Sphinx. Refer to documentation
|
||||
# for a list of supported languages.
|
||||
@ -134,7 +193,7 @@ master_doc = 'index'
|
||||
# Usually you set "language" from the command line for these cases.
|
||||
language = "en"
|
||||
|
||||
autoclass_content = 'both'
|
||||
autoclass_content = "both"
|
||||
|
||||
# There are two options for replacing |today|: either, you set today to some
|
||||
# non-false value, then it is used:
|
||||
@ -144,8 +203,10 @@ autoclass_content = 'both'
|
||||
|
||||
# List of patterns, relative to source directory, that match files and
|
||||
# directories to ignore when looking for source files.
|
||||
exclude_patterns = ['_build']
|
||||
html_extra_path = ['./tmp']
|
||||
exclude_patterns = ["_build"]
|
||||
html_extra_path = []
|
||||
if is_readthedocs_build():
|
||||
html_extra_path = [TMP_DIR]
|
||||
|
||||
# The reST default role (used for this markup: `text`) to use for all
|
||||
# documents.
|
||||
@ -163,7 +224,7 @@ html_extra_path = ['./tmp']
|
||||
# show_authors = False
|
||||
|
||||
# The name of the Pygments (syntax highlighting) style to use.
|
||||
pygments_style = 'sphinx'
|
||||
pygments_style = "sphinx"
|
||||
|
||||
# A list of ignored prefixes for module index sorting.
|
||||
# modindex_common_prefix = []
|
||||
@ -186,27 +247,24 @@ html_logo = "https://raw.githubusercontent.com/dmlc/dmlc.github.io/master/img/lo
|
||||
|
||||
html_css_files = ["css/custom.css"]
|
||||
|
||||
html_sidebars = {
|
||||
'**': ['logo-text.html', 'globaltoc.html', 'searchbox.html']
|
||||
}
|
||||
html_sidebars = {"**": ["logo-text.html", "globaltoc.html", "searchbox.html"]}
|
||||
|
||||
# Add any paths that contain custom static files (such as style sheets) here,
|
||||
# relative to this directory. They are copied after the builtin static files,
|
||||
# so a file named "default.css" will overwrite the builtin "default.css".
|
||||
html_static_path = ['_static']
|
||||
html_static_path = ["_static"]
|
||||
|
||||
# Output file base name for HTML help builder.
|
||||
htmlhelp_basename = project + 'doc'
|
||||
htmlhelp_basename = project + "doc"
|
||||
|
||||
# -- Options for LaTeX output ---------------------------------------------
|
||||
latex_elements = {
|
||||
}
|
||||
latex_elements = {}
|
||||
|
||||
# Grouping the document tree into LaTeX files. List of tuples
|
||||
# (source start file, target name, title,
|
||||
# author, documentclass [howto, manual, or own class]).
|
||||
latex_documents = [
|
||||
(master_doc, '%s.tex' % project, project, author, 'manual'),
|
||||
(master_doc, "%s.tex" % project, project, author, "manual"),
|
||||
]
|
||||
|
||||
intersphinx_mapping = {
|
||||
@ -221,30 +279,5 @@ intersphinx_mapping = {
|
||||
}
|
||||
|
||||
|
||||
# hook for doxygen
|
||||
def run_doxygen():
|
||||
"""Run the doxygen make command in the designated folder."""
|
||||
curdir = os.path.normpath(os.path.abspath(os.path.curdir))
|
||||
try:
|
||||
os.chdir(PROJECT_ROOT)
|
||||
if not os.path.exists(DOX_DIR):
|
||||
os.mkdir(DOX_DIR)
|
||||
os.chdir(os.path.join(PROJECT_ROOT, DOX_DIR))
|
||||
subprocess.check_call(["cmake", "..", "-DBUILD_C_DOC=ON", "-GNinja"])
|
||||
subprocess.check_call(["ninja", "doc_doxygen"])
|
||||
except OSError as e:
|
||||
sys.stderr.write("doxygen execution failed: %s" % e)
|
||||
finally:
|
||||
os.chdir(curdir)
|
||||
|
||||
|
||||
def generate_doxygen_xml(app):
|
||||
"""Run the doxygen make commands if we're on the ReadTheDocs server"""
|
||||
read_the_docs_build = os.environ.get('READTHEDOCS', None) == 'True'
|
||||
if read_the_docs_build:
|
||||
run_doxygen()
|
||||
|
||||
|
||||
def setup(app):
|
||||
app.add_css_file('custom.css')
|
||||
app.connect("builder-inited", generate_doxygen_xml)
|
||||
app.add_css_file("custom.css")
|
||||
|
||||
@ -226,6 +226,18 @@ Parameters for Tree Booster
|
||||
list is a group of indices of features that are allowed to interact with each other.
|
||||
See :doc:`/tutorials/feature_interaction_constraint` for more information.
|
||||
|
||||
* ``multi_strategy``, [default = ``one_output_per_tree``]
|
||||
|
||||
.. versionadded:: 2.0.0
|
||||
|
||||
.. note:: This parameter is working-in-progress.
|
||||
|
||||
- The strategy used for training multi-target models, including multi-target regression
|
||||
and multi-class classification. See :doc:`/tutorials/multioutput` for more information.
|
||||
|
||||
- ``one_output_per_tree``: One model for each target.
|
||||
- ``multi_output_tree``: Use multi-target trees.
|
||||
|
||||
.. _cat-param:
|
||||
|
||||
Parameters for Categorical Feature
|
||||
@ -408,8 +420,17 @@ Specify the learning task and the corresponding learning objective. The objectiv
|
||||
|
||||
- ``ndcg``: `Normalized Discounted Cumulative Gain <http://en.wikipedia.org/wiki/NDCG>`_
|
||||
- ``map``: `Mean Average Precision <http://en.wikipedia.org/wiki/Mean_average_precision#Mean_average_precision>`_
|
||||
- ``ndcg@n``, ``map@n``: 'n' can be assigned as an integer to cut off the top positions in the lists for evaluation.
|
||||
- ``ndcg-``, ``map-``, ``ndcg@n-``, ``map@n-``: In XGBoost, NDCG and MAP will evaluate the score of a list without any positive samples as 1. By adding "-" in the evaluation metric XGBoost will evaluate these score as 0 to be consistent under some conditions.
|
||||
|
||||
The `average precision` is defined as:
|
||||
|
||||
.. math::
|
||||
|
||||
AP@l = \frac{1}{min{(l, N)}}\sum^l_{k=1}P@k \cdot I_{(k)}
|
||||
|
||||
where :math:`I_{(k)}` is an indicator function that equals to :math:`1` when the document at :math:`k` is relevant and :math:`0` otherwise. The :math:`P@k` is the precision at :math:`k`, and :math:`N` is the total number of relevant documents. Lastly, the `mean average precision` is defined as the weighted average across all queries.
|
||||
|
||||
- ``ndcg@n``, ``map@n``: :math:`n` can be assigned as an integer to cut off the top positions in the lists for evaluation.
|
||||
- ``ndcg-``, ``map-``, ``ndcg@n-``, ``map@n-``: In XGBoost, the NDCG and MAP evaluate the score of a list without any positive samples as :math:`1`. By appending "-" to the evaluation metric name, we can ask XGBoost to evaluate these scores as :math:`0` to be consistent under some conditions.
|
||||
- ``poisson-nloglik``: negative log-likelihood for Poisson regression
|
||||
- ``gamma-nloglik``: negative log-likelihood for gamma regression
|
||||
- ``cox-nloglik``: negative partial log-likelihood for Cox proportional hazards regression
|
||||
|
||||
@ -10,6 +10,7 @@ Contents
|
||||
|
||||
.. toctree::
|
||||
python_intro
|
||||
sklearn_estimator
|
||||
python_api
|
||||
callbacks
|
||||
model
|
||||
|
||||
@ -41,6 +41,7 @@ Learning API
|
||||
|
||||
Scikit-Learn API
|
||||
----------------
|
||||
|
||||
.. automodule:: xgboost.sklearn
|
||||
.. autoclass:: xgboost.XGBRegressor
|
||||
:members:
|
||||
|
||||
@ -305,7 +305,8 @@ Scikit-Learn interface
|
||||
----------------------
|
||||
|
||||
XGBoost provides an easy to use scikit-learn interface for some pre-defined models
|
||||
including regression, classification and ranking.
|
||||
including regression, classification and ranking. See :doc:`/python/sklearn_estimator`
|
||||
for more info.
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
|
||||
162
doc/python/sklearn_estimator.rst
Normal file
162
doc/python/sklearn_estimator.rst
Normal file
@ -0,0 +1,162 @@
|
||||
##########################################
|
||||
Using the Scikit-Learn Estimator Interface
|
||||
##########################################
|
||||
|
||||
**Contents**
|
||||
|
||||
.. contents::
|
||||
:backlinks: none
|
||||
:local:
|
||||
|
||||
********
|
||||
Overview
|
||||
********
|
||||
|
||||
In addition to the native interface, XGBoost features a sklearn estimator interface that
|
||||
conforms to `sklearn estimator guideline
|
||||
<https://scikit-learn.org/stable/developers/develop.html#rolling-your-own-estimator>`__. It
|
||||
supports regression, classification, and learning to rank. Survival training for the
|
||||
sklearn estimator interface is still working in progress.
|
||||
|
||||
You can find some some quick start examples at
|
||||
:ref:`sphx_glr_python_examples_sklearn_examples.py`. The main advantage of using sklearn
|
||||
interface is that it works with most of the utilites provided by sklearn like
|
||||
:py:func:`sklearn.model_selection.cross_validate`. Also, many other libraries recognize
|
||||
the sklearn estimator interface thanks to its popularity.
|
||||
|
||||
With the sklearn estimator interface, we can train a classification model with only a
|
||||
couple lines of Python code. Here's an example for training a classification model:
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
from sklearn.datasets import load_breast_cancer
|
||||
from sklearn.model_selection import train_test_split
|
||||
|
||||
import xgboost as xgb
|
||||
|
||||
X, y = load_breast_cancer(return_X_y=True)
|
||||
X_train, X_test, y_train, y_test = train_test_split(X, y, stratify=y, random_state=94)
|
||||
|
||||
# Use "hist" for constructing the trees, with early stopping enabled.
|
||||
clf = xgb.XGBClassifier(tree_method="hist", early_stopping_rounds=2)
|
||||
# Fit the model, test sets are used for early stopping.
|
||||
clf.fit(X_train, y_train, eval_set=[(X_test, y_test)])
|
||||
# Save model into JSON format.
|
||||
clf.save_model("clf.json")
|
||||
|
||||
|
||||
The ``tree_method`` parameter specifies the method to use for constructing the trees, and
|
||||
the early_stopping_rounds parameter enables early stopping. Early stopping can help
|
||||
prevent overfitting and save time during training.
|
||||
|
||||
**************
|
||||
Early Stopping
|
||||
**************
|
||||
|
||||
As demonstrated in the previous example, early stopping can be enabled by the parameter
|
||||
``early_stopping_rounds``. Alternatively, there's a callback function that can be used
|
||||
:py:class:`xgboost.callback.EarlyStopping` to specify more details about the behavior of
|
||||
early stopping, including whether XGBoost should return the best model instead of the full
|
||||
stack of trees:
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
early_stop = xgb.callback.EarlyStopping(
|
||||
rounds=2, metric_name='logloss', data_name='Validation_0', save_best=True
|
||||
)
|
||||
clf = xgb.XGBClassifier(tree_method="hist", callbacks=[early_stop])
|
||||
clf.fit(X_train, y_train, eval_set=[(X_test, y_test)])
|
||||
|
||||
At present, XGBoost doesn't implement data spliting logic within the estimator and relies
|
||||
on the ``eval_set`` parameter of the :py:meth:`xgboost.XGBModel.fit` method. If you want
|
||||
to use early stopping to prevent overfitting, you'll need to manually split your data into
|
||||
training and testing sets using the :py:func:`sklearn.model_selection.train_test_split`
|
||||
function from the `sklearn` library. Some other machine learning algorithms, like those in
|
||||
`sklearn`, include early stopping as part of the estimator and may work with cross
|
||||
validation. However, using early stopping during cross validation may not be a perfect
|
||||
approach because it changes the model's number of trees for each validation fold, leading
|
||||
to different model. A better approach is to retrain the model after cross validation using
|
||||
the best hyperparameters along with early stopping. If you want to experiment with idea of
|
||||
using cross validation with early stopping, here is a snippet to begin with:
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
from sklearn.base import clone
|
||||
from sklearn.datasets import load_breast_cancer
|
||||
from sklearn.model_selection import StratifiedKFold, cross_validate
|
||||
|
||||
import xgboost as xgb
|
||||
|
||||
X, y = load_breast_cancer(return_X_y=True)
|
||||
|
||||
|
||||
def fit_and_score(estimator, X_train, X_test, y_train, y_test):
|
||||
"""Fit the estimator on the train set and score it on both sets"""
|
||||
estimator.fit(X_train, y_train, eval_set=[(X_test, y_test)])
|
||||
|
||||
train_score = estimator.score(X_train, y_train)
|
||||
test_score = estimator.score(X_test, y_test)
|
||||
|
||||
return estimator, train_score, test_score
|
||||
|
||||
|
||||
cv = StratifiedKFold(n_splits=5, shuffle=True, random_state=94)
|
||||
|
||||
clf = xgb.XGBClassifier(tree_method="hist", early_stopping_rounds=3)
|
||||
|
||||
resutls = {}
|
||||
|
||||
for train, test in cv.split(X, y):
|
||||
X_train = X[train]
|
||||
X_test = X[test]
|
||||
y_train = y[train]
|
||||
y_test = y[test]
|
||||
est, train_score, test_score = fit_and_score(
|
||||
clone(clf), X_train, X_test, y_train, y_test
|
||||
)
|
||||
resutls[est] = (train_score, test_score)
|
||||
|
||||
|
||||
***********************************
|
||||
Obtaining the native booster object
|
||||
***********************************
|
||||
|
||||
The sklearn estimator interface primarily facilitates training and doesn't implement all
|
||||
features available in XGBoost. For instance, in order to have cached predictions,
|
||||
:py:class:`xgboost.DMatrix` needs to be used with :py:meth:`xgboost.Booster.predict`. One
|
||||
can obtain the booster object from the sklearn interface using
|
||||
:py:meth:`xgboost.XGBModel.get_booster`:
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
booster = clf.get_booster()
|
||||
print(booster.num_boosted_rounds())
|
||||
|
||||
|
||||
**********
|
||||
Prediction
|
||||
**********
|
||||
|
||||
When early stopping is enabled, prediction functions including the
|
||||
:py:meth:`xgboost.XGBModel.predict`, :py:meth:`xgboost.XGBModel.score`, and
|
||||
:py:meth:`xgboost.XGBModel.apply` methods will use the best model automatically. Meaning
|
||||
the :py:attr:`xgboost.XGBModel.best_iteration` is used to specify the range of trees used
|
||||
in prediction.
|
||||
|
||||
To have cached results for incremental prediction, please use the
|
||||
:py:meth:`xgboost.Booster.predict` method instead.
|
||||
|
||||
|
||||
**************************
|
||||
Number of parallel threads
|
||||
**************************
|
||||
|
||||
When working with XGBoost and other sklearn tools, you can specify how many threads you
|
||||
want to use by using the ``n_jobs`` parameter. By default, XGBoost uses all the available
|
||||
threads on your computer, which can lead to some interesting consequences when combined
|
||||
with other sklearn functions like :py:func:`sklearn.model_selection.cross_validate`. If
|
||||
both XGBoost and sklearn are set to use all threads, your computer may start to slow down
|
||||
significantly due to something called "thread thrashing". To avoid this, you can simply
|
||||
set the ``n_jobs`` parameter for XGBoost to `None` (which uses all threads) and the
|
||||
``n_jobs`` parameter for sklearn to `1`. This way, both programs will be able to work
|
||||
together smoothly without causing any unnecessary computer strain.
|
||||
@ -134,7 +134,7 @@ c. Assertion technique: It works both in C/ C++. If expression evaluates to 0 (f
|
||||
// do something with booster
|
||||
|
||||
//free the memory
|
||||
XGBoosterFree(booster)
|
||||
XGBoosterFree(booster);
|
||||
|
||||
DMatrixHandle DMatrixHandle_param;
|
||||
|
||||
@ -156,7 +156,7 @@ c. Assertion technique: It works both in C/ C++. If expression evaluates to 0 (f
|
||||
.. code-block:: c
|
||||
|
||||
BoosterHandle booster;
|
||||
XGBoosterSetParam(booster, "paramter_name", "0.1");
|
||||
XGBoosterSetParam(booster, "parameter_name", "0.1");
|
||||
|
||||
|
||||
**************************************************************
|
||||
|
||||
@ -190,9 +190,9 @@ Scikit-Learn wrapper object:
|
||||
booster = cls.get_booster()
|
||||
|
||||
|
||||
**********************
|
||||
Scikit-Learn interface
|
||||
**********************
|
||||
********************************
|
||||
Scikit-Learn Estimator Interface
|
||||
********************************
|
||||
|
||||
As mentioned previously, there's another interface that mimics the scikit-learn estimators
|
||||
with higher level of of abstraction. The interface is easier to use compared to the
|
||||
@ -488,13 +488,14 @@ with dask and optuna.
|
||||
Troubleshooting
|
||||
***************
|
||||
|
||||
.. versionadded:: 1.6.0
|
||||
|
||||
In some environments XGBoost might fail to resolve the IP address of the scheduler, a
|
||||
- In some environments XGBoost might fail to resolve the IP address of the scheduler, a
|
||||
symptom is user receiving ``OSError: [Errno 99] Cannot assign requested address`` error
|
||||
during training. A quick workaround is to specify the address explicitly. To do that
|
||||
dask config is used:
|
||||
|
||||
.. versionadded:: 1.6.0
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
import dask
|
||||
@ -511,10 +512,20 @@ dask config is used:
|
||||
reg = dxgb.DaskXGBRegressor()
|
||||
|
||||
|
||||
Please note that XGBoost requires a different port than dask. By default, on a unix-like
|
||||
- Please note that XGBoost requires a different port than dask. By default, on a unix-like
|
||||
system XGBoost uses the port 0 to find available ports, which may fail if a user is
|
||||
running in a restricted docker environment. In this case, please open additional ports in
|
||||
the container and specify it as in the above snippet.
|
||||
running in a restricted docker environment. In this case, please open additional ports
|
||||
in the container and specify it as in the above snippet.
|
||||
|
||||
- If you encounter a NCCL system error while training with GPU enabled, which usually
|
||||
includes the error message `NCCL failure: unhandled system error`, you can specify its
|
||||
network configuration using one of the environment variables listed in the `NCCL
|
||||
document <https://docs.nvidia.com/deeplearning/nccl/user-guide/docs/env.html>`__ such as
|
||||
the ``NCCL_SOCKET_IFNAME``. In addition, you can use ``NCCL_DEBUG`` to obtain debug
|
||||
logs.
|
||||
|
||||
- MIG (Multi-Instance GPU) is not yet supported by NCCL. You will receive an error message
|
||||
that includes `Multiple processes within a communication group ...` upon initialization.
|
||||
|
||||
************
|
||||
IPv6 Support
|
||||
@ -564,6 +575,69 @@ computations, one can explicitly wait for results of input data before construct
|
||||
Also dask's `diagnostics dashboard <https://distributed.dask.org/en/latest/web.html>`_ can be used to
|
||||
monitor what operations are currently being performed.
|
||||
|
||||
*******************
|
||||
Reproducible Result
|
||||
*******************
|
||||
|
||||
In a single node mode, we can always expect the same training result between runs as along
|
||||
as the underlying platforms are the same. However, it's difficult to obtain reproducible
|
||||
result in a distributed environment, since the tasks might get different machine
|
||||
allocation or have different amount of available resources during different
|
||||
sessions. There are heuristics and guidelines on how to achieve it but no proven method
|
||||
for guaranteeing such deterministic behavior. The Dask interface in XGBoost tries to
|
||||
provide reproducible result with best effort. This section highlights some known criteria
|
||||
and try to share some insights into the issue.
|
||||
|
||||
There are primarily two different tasks for XGBoost the carry out, training and
|
||||
inference. Inference is reproducible given the same software and hardware along with the
|
||||
same run-time configurations. The remaining of this section will focus on training.
|
||||
|
||||
Many of the challenges come from the fact that we are using approximation algorithms, The
|
||||
sketching algorithm used to find histogram bins is an approximation to the exact quantile
|
||||
algorithm, the `AUC` metric in a distributed environment is an approximation to the exact
|
||||
`AUC` score, and floating-point number is an approximation to real number. Floating-point
|
||||
is an issue as its summation is not associative, meaning :math:`(a + b) + c` does not
|
||||
necessarily equal to :math:`a + (b + c)`, even though this property holds true for real
|
||||
number. As a result, whenever we change the order of a summation, the result can
|
||||
differ. This imposes the requirement that, in order to have reproducible output from
|
||||
XGBoost, the entire pipeline needs to be reproducible.
|
||||
|
||||
- The software stack is the same for each runs. This goes without saying. XGBoost might
|
||||
generate different outputs between different versions. This is expected as we might
|
||||
change the default value of hyper-parameter, or the parallel strategy that generates
|
||||
different floating-point result. We guarantee the correctness the algorithms, but there
|
||||
are lots of wiggle room for the final output. The situation is similar for many
|
||||
dependencies, for instance, the random number generator might differ from platform to
|
||||
platform.
|
||||
|
||||
- The hardware stack is the same for each runs. This includes the number of workers, and
|
||||
the amount of available resources on each worker. XGBoost can generate different results
|
||||
using different number of workers. This is caused by the approximation issue mentioned
|
||||
previously.
|
||||
|
||||
- Similar to the hardware constraint, the network topology is also a factor in final
|
||||
output. If we change topology the workers might be ordered differently, leading to
|
||||
different ordering of floating-point operations.
|
||||
|
||||
- The random seed used in various place of the pipeline.
|
||||
|
||||
- The partitioning of data needs to be reproducible. This is related to the available
|
||||
resources on each worker. Dask might partition the data differently for each run
|
||||
according to its own scheduling policy. For instance, if there are some additional tasks
|
||||
in the cluster while you are running the second training session for XGBoost, some of
|
||||
the workers might have constrained memory and Dask may not push the training data for
|
||||
XGBoost to that worker. This change in data partitioning can lead to different output
|
||||
models. If you are using a shared Dask cluster, then the result is likely to vary
|
||||
between runs.
|
||||
|
||||
- The operations performed on dataframes need to be reproducible. There are some
|
||||
operations like `DataFrame.merge` not being deterministic on parallel hardwares like GPU
|
||||
where the order of the index might differ from run to run.
|
||||
|
||||
It's expected to have different results when training the model in a distributed
|
||||
environment than training the model using a single node due to aforementioned criteria.
|
||||
|
||||
|
||||
************
|
||||
Memory Usage
|
||||
************
|
||||
|
||||
@ -11,7 +11,11 @@ can be simultaneously classified as both sci-fi and comedy. For detailed explan
|
||||
terminologies related to different multi-output models please refer to the
|
||||
:doc:`scikit-learn user guide <sklearn:modules/multiclass>`.
|
||||
|
||||
Internally, XGBoost builds one model for each target similar to sklearn meta estimators,
|
||||
**********************************
|
||||
Training with One-Model-Per-Target
|
||||
**********************************
|
||||
|
||||
By default, XGBoost builds one model for each target similar to sklearn meta estimators,
|
||||
with the added benefit of reusing data and other integrated features like SHAP. For a
|
||||
worked example of regression, see
|
||||
:ref:`sphx_glr_python_examples_multioutput_regression.py`. For multi-label classification,
|
||||
@ -36,3 +40,26 @@ dense matrix for labels.
|
||||
|
||||
|
||||
The feature is still under development with limited support from objectives and metrics.
|
||||
|
||||
*************************
|
||||
Training with Vector Leaf
|
||||
*************************
|
||||
|
||||
.. versionadded:: 2.0
|
||||
|
||||
.. note::
|
||||
|
||||
This is still working-in-progress, and many features are missing.
|
||||
|
||||
XGBoost can optionally build multi-output trees with the size of leaf equals to the number
|
||||
of targets when the tree method `hist` is used. The behavior can be controlled by the
|
||||
``multi_strategy`` training parameter, which can take the value `one_output_per_tree` (the
|
||||
default) for building one model per-target or `multi_output_tree` for building
|
||||
multi-output trees.
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
clf = xgb.XGBClassifier(tree_method="hist", multi_strategy="multi_output_tree")
|
||||
|
||||
See :ref:`sphx_glr_python_examples_multioutput_regression.py` for a worked example with
|
||||
regression.
|
||||
|
||||
@ -116,6 +116,18 @@ class DMatrixCache {
|
||||
* \param cache_size Maximum size of the cache.
|
||||
*/
|
||||
explicit DMatrixCache(std::size_t cache_size) : max_size_{cache_size} {}
|
||||
|
||||
DMatrixCache& operator=(DMatrixCache&& that) {
|
||||
CHECK(lock_.try_lock());
|
||||
lock_.unlock();
|
||||
CHECK(that.lock_.try_lock());
|
||||
that.lock_.unlock();
|
||||
std::swap(this->container_, that.container_);
|
||||
std::swap(this->queue_, that.queue_);
|
||||
std::swap(this->max_size_, that.max_size_);
|
||||
return *this;
|
||||
}
|
||||
|
||||
/**
|
||||
* \brief Cache a new DMatrix if it's not in the cache already.
|
||||
*
|
||||
@ -149,6 +161,26 @@ class DMatrixCache {
|
||||
}
|
||||
return container_.at(key).value;
|
||||
}
|
||||
/**
|
||||
* \brief Re-initialize the item in cache.
|
||||
*
|
||||
* Since the shared_ptr is used to hold the item, any reference that lives outside of
|
||||
* the cache can no-longer be reached from the cache.
|
||||
*
|
||||
* We use reset instead of erase to avoid walking through the whole cache for renewing
|
||||
* a single item. (the cache is FIFO, needs to maintain the order).
|
||||
*/
|
||||
template <typename... Args>
|
||||
std::shared_ptr<CacheT> ResetItem(std::shared_ptr<DMatrix> m, Args const&... args) {
|
||||
std::lock_guard<std::mutex> guard{lock_};
|
||||
CheckConsistent();
|
||||
auto key = Key{m.get(), std::this_thread::get_id()};
|
||||
auto it = container_.find(key);
|
||||
CHECK(it != container_.cend());
|
||||
it->second = {m, std::make_shared<CacheT>(args...)};
|
||||
CheckConsistent();
|
||||
return it->second.value;
|
||||
}
|
||||
/**
|
||||
* \brief Get a const reference to the underlying hash map. Clear expired caches before
|
||||
* returning.
|
||||
|
||||
@ -171,6 +171,15 @@ class MetaInfo {
|
||||
*/
|
||||
void Extend(MetaInfo const& that, bool accumulate_rows, bool check_column);
|
||||
|
||||
/**
|
||||
* @brief Synchronize the number of columns across all workers.
|
||||
*
|
||||
* Normally we just need to find the maximum number of columns across all workers, but
|
||||
* in vertical federated learning, since each worker loads its own list of columns,
|
||||
* we need to sum them.
|
||||
*/
|
||||
void SynchronizeNumberOfColumns();
|
||||
|
||||
private:
|
||||
void SetInfoFromHost(Context const& ctx, StringView key, Json arr);
|
||||
void SetInfoFromCUDA(Context const& ctx, StringView key, Json arr);
|
||||
@ -325,6 +334,10 @@ class SparsePage {
|
||||
* \brief Check wether the column index is sorted.
|
||||
*/
|
||||
bool IsIndicesSorted(int32_t n_threads) const;
|
||||
/**
|
||||
* \brief Reindex the column index with an offset.
|
||||
*/
|
||||
void Reindex(uint64_t feature_offset, int32_t n_threads);
|
||||
|
||||
void SortRows(int32_t n_threads);
|
||||
|
||||
@ -563,13 +576,14 @@ class DMatrix {
|
||||
* \param missing Values to count as missing.
|
||||
* \param nthread Number of threads for construction.
|
||||
* \param cache_prefix (Optional) The cache prefix for external memory.
|
||||
* \param page_size (Optional) Size of the page.
|
||||
* \param data_split_mode (Optional) Data split mode.
|
||||
*
|
||||
* \return a Created DMatrix.
|
||||
*/
|
||||
template <typename AdapterT>
|
||||
static DMatrix* Create(AdapterT* adapter, float missing, int nthread,
|
||||
const std::string& cache_prefix = "");
|
||||
const std::string& cache_prefix = "",
|
||||
DataSplitMode data_split_mode = DataSplitMode::kRow);
|
||||
|
||||
/**
|
||||
* \brief Create a new Quantile based DMatrix used for histogram based algorithm.
|
||||
|
||||
@ -9,7 +9,6 @@
|
||||
#define XGBOOST_GBM_H_
|
||||
|
||||
#include <dmlc/registry.h>
|
||||
#include <dmlc/any.h>
|
||||
#include <xgboost/base.h>
|
||||
#include <xgboost/data.h>
|
||||
#include <xgboost/host_device_vector.h>
|
||||
|
||||
@ -1,5 +1,5 @@
|
||||
/*!
|
||||
* Copyright (c) by Contributors 2019-2022
|
||||
/**
|
||||
* Copyright 2019-2023, XGBoost Contributors
|
||||
*/
|
||||
#ifndef XGBOOST_JSON_IO_H_
|
||||
#define XGBOOST_JSON_IO_H_
|
||||
@ -17,44 +17,26 @@
|
||||
#include <vector>
|
||||
|
||||
namespace xgboost {
|
||||
namespace detail {
|
||||
// Whether char is signed is undefined, as a result we might or might not need
|
||||
// static_cast and std::to_string.
|
||||
template <typename Char, std::enable_if_t<std::is_signed<Char>::value>* = nullptr>
|
||||
std::string CharToStr(Char c) {
|
||||
static_assert(std::is_same<Char, char>::value);
|
||||
return std::string{c};
|
||||
}
|
||||
|
||||
template <typename Char, std::enable_if_t<!std::is_signed<Char>::value>* = nullptr>
|
||||
std::string CharToStr(Char c) {
|
||||
static_assert(std::is_same<Char, char>::value);
|
||||
return (c <= static_cast<char>(127) ? std::string{c} : std::to_string(c));
|
||||
}
|
||||
} // namespace detail
|
||||
|
||||
/*
|
||||
/**
|
||||
* \brief A json reader, currently error checking and utf-8 is not fully supported.
|
||||
*/
|
||||
class JsonReader {
|
||||
public:
|
||||
using Char = std::int8_t;
|
||||
|
||||
protected:
|
||||
size_t constexpr static kMaxNumLength =
|
||||
std::numeric_limits<double>::max_digits10 + 1;
|
||||
size_t constexpr static kMaxNumLength = std::numeric_limits<double>::max_digits10 + 1;
|
||||
|
||||
struct SourceLocation {
|
||||
private:
|
||||
size_t pos_ { 0 }; // current position in raw_str_
|
||||
std::size_t pos_{0}; // current position in raw_str_
|
||||
|
||||
public:
|
||||
SourceLocation() = default;
|
||||
size_t Pos() const { return pos_; }
|
||||
|
||||
void Forward() {
|
||||
pos_++;
|
||||
}
|
||||
void Forward(uint32_t n) {
|
||||
pos_ += n;
|
||||
}
|
||||
void Forward() { pos_++; }
|
||||
void Forward(uint32_t n) { pos_ += n; }
|
||||
} cursor_;
|
||||
|
||||
StringView raw_str_;
|
||||
@ -62,7 +44,7 @@ class JsonReader {
|
||||
protected:
|
||||
void SkipSpaces();
|
||||
|
||||
char GetNextChar() {
|
||||
Char GetNextChar() {
|
||||
if (XGBOOST_EXPECT((cursor_.Pos() == raw_str_.size()), false)) {
|
||||
return -1;
|
||||
}
|
||||
@ -71,24 +53,24 @@ class JsonReader {
|
||||
return ch;
|
||||
}
|
||||
|
||||
char PeekNextChar() {
|
||||
Char PeekNextChar() {
|
||||
if (cursor_.Pos() == raw_str_.size()) {
|
||||
return -1;
|
||||
}
|
||||
char ch = raw_str_[cursor_.Pos()];
|
||||
Char ch = raw_str_[cursor_.Pos()];
|
||||
return ch;
|
||||
}
|
||||
|
||||
/* \brief Skip spaces and consume next character. */
|
||||
char GetNextNonSpaceChar() {
|
||||
Char GetNextNonSpaceChar() {
|
||||
SkipSpaces();
|
||||
return GetNextChar();
|
||||
}
|
||||
/* \brief Consume next character without first skipping empty space, throw when the next
|
||||
* character is not the expected one.
|
||||
*/
|
||||
char GetConsecutiveChar(char expected_char) {
|
||||
char result = GetNextChar();
|
||||
Char GetConsecutiveChar(char expected_char) {
|
||||
Char result = GetNextChar();
|
||||
if (XGBOOST_EXPECT(result != expected_char, false)) { Expect(expected_char, result); }
|
||||
return result;
|
||||
}
|
||||
@ -96,7 +78,7 @@ class JsonReader {
|
||||
void Error(std::string msg) const;
|
||||
|
||||
// Report expected character
|
||||
void Expect(char c, char got) {
|
||||
void Expect(Char c, Char got) {
|
||||
std::string msg = "Expecting: \"";
|
||||
msg += c;
|
||||
msg += "\", got: \"";
|
||||
@ -105,7 +87,7 @@ class JsonReader {
|
||||
} else if (got == 0) {
|
||||
msg += "\\0\"";
|
||||
} else {
|
||||
msg += detail::CharToStr(got) + " \"";
|
||||
msg += std::to_string(got) + " \"";
|
||||
}
|
||||
Error(msg);
|
||||
}
|
||||
|
||||
@ -286,8 +286,8 @@ struct LearnerModelParamLegacy;
|
||||
* \brief Strategy for building multi-target models.
|
||||
*/
|
||||
enum class MultiStrategy : std::int32_t {
|
||||
kComposite = 0,
|
||||
kMonolithic = 1,
|
||||
kOneOutputPerTree = 0,
|
||||
kMultiOutputTree = 1,
|
||||
};
|
||||
|
||||
/**
|
||||
@ -317,7 +317,7 @@ struct LearnerModelParam {
|
||||
/**
|
||||
* \brief Strategy for building multi-target models.
|
||||
*/
|
||||
MultiStrategy multi_strategy{MultiStrategy::kComposite};
|
||||
MultiStrategy multi_strategy{MultiStrategy::kOneOutputPerTree};
|
||||
|
||||
LearnerModelParam() = default;
|
||||
// As the old `LearnerModelParamLegacy` is still used by binary IO, we keep
|
||||
@ -338,7 +338,7 @@ struct LearnerModelParam {
|
||||
|
||||
void Copy(LearnerModelParam const& that);
|
||||
[[nodiscard]] bool IsVectorLeaf() const noexcept {
|
||||
return multi_strategy == MultiStrategy::kMonolithic;
|
||||
return multi_strategy == MultiStrategy::kMultiOutputTree;
|
||||
}
|
||||
[[nodiscard]] bst_target_t OutputLength() const noexcept { return this->num_output_group; }
|
||||
[[nodiscard]] bst_target_t LeafLength() const noexcept {
|
||||
|
||||
@ -30,11 +30,11 @@
|
||||
|
||||
// decouple it from xgboost.
|
||||
#ifndef LINALG_HD
|
||||
#if defined(__CUDA__) || defined(__NVCC__) || defined(__HIP_PLATFORM_AMD__)
|
||||
#if defined(__CUDA__) || defined(__NVCC__)
|
||||
#define LINALG_HD __host__ __device__
|
||||
#else
|
||||
#define LINALG_HD
|
||||
#endif // defined (__CUDA__) || defined(__NVCC__) || defined(__HIP_PLATFORM_AMD__)
|
||||
#endif // defined (__CUDA__) || defined(__NVCC__)
|
||||
#endif // LINALG_HD
|
||||
|
||||
namespace xgboost::linalg {
|
||||
@ -118,9 +118,9 @@ using IndexToTag = std::conditional_t<std::is_integral<RemoveCRType<S>>::value,
|
||||
|
||||
template <int32_t n, typename Fn>
|
||||
LINALG_HD constexpr auto UnrollLoop(Fn fn) {
|
||||
#if defined(__CUDA_ARCH__) || defined(__HIP_PLATFORM_AMD__)
|
||||
#if defined __CUDA_ARCH__
|
||||
#pragma unroll n
|
||||
#endif // defined __CUDA_ARCH__ || defined(__HIP_PLATFORM_AMD__)
|
||||
#endif // defined __CUDA_ARCH__
|
||||
for (int32_t i = 0; i < n; ++i) {
|
||||
fn(i);
|
||||
}
|
||||
@ -136,7 +136,7 @@ int32_t NativePopc(T v) {
|
||||
inline LINALG_HD int Popc(uint32_t v) {
|
||||
#if defined(__CUDA_ARCH__)
|
||||
return __popc(v);
|
||||
#elif defined(__GNUC__) || defined(__clang__) || defined(__HIP_PLATFORM_AMD__)
|
||||
#elif defined(__GNUC__) || defined(__clang__)
|
||||
return __builtin_popcount(v);
|
||||
#elif defined(_MSC_VER)
|
||||
return __popcnt(v);
|
||||
@ -148,7 +148,7 @@ inline LINALG_HD int Popc(uint32_t v) {
|
||||
inline LINALG_HD int Popc(uint64_t v) {
|
||||
#if defined(__CUDA_ARCH__)
|
||||
return __popcll(v);
|
||||
#elif defined(__GNUC__) || defined(__clang__) || defined(__HIP_PLATFORM_AMD__)
|
||||
#elif defined(__GNUC__) || defined(__clang__)
|
||||
return __builtin_popcountll(v);
|
||||
#elif defined(_MSC_VER) && _defined(_M_X64)
|
||||
return __popcnt64(v);
|
||||
@ -530,17 +530,17 @@ class TensorView {
|
||||
/**
|
||||
* \brief Number of items in the tensor.
|
||||
*/
|
||||
LINALG_HD std::size_t Size() const { return size_; }
|
||||
[[nodiscard]] LINALG_HD std::size_t Size() const { return size_; }
|
||||
/**
|
||||
* \brief Whether this is a contiguous array, both C and F contiguous returns true.
|
||||
*/
|
||||
LINALG_HD bool Contiguous() const {
|
||||
[[nodiscard]] LINALG_HD bool Contiguous() const {
|
||||
return data_.size() == this->Size() || this->CContiguous() || this->FContiguous();
|
||||
}
|
||||
/**
|
||||
* \brief Whether it's a c-contiguous array.
|
||||
*/
|
||||
LINALG_HD bool CContiguous() const {
|
||||
[[nodiscard]] LINALG_HD bool CContiguous() const {
|
||||
StrideT stride;
|
||||
static_assert(std::is_same<decltype(stride), decltype(stride_)>::value);
|
||||
// It's contiguous if the stride can be calculated from shape.
|
||||
@ -550,7 +550,7 @@ class TensorView {
|
||||
/**
|
||||
* \brief Whether it's a f-contiguous array.
|
||||
*/
|
||||
LINALG_HD bool FContiguous() const {
|
||||
[[nodiscard]] LINALG_HD bool FContiguous() const {
|
||||
StrideT stride;
|
||||
static_assert(std::is_same<decltype(stride), decltype(stride_)>::value);
|
||||
// It's contiguous if the stride can be calculated from shape.
|
||||
|
||||
@ -29,11 +29,6 @@
|
||||
namespace xgboost {
|
||||
class Json;
|
||||
|
||||
#if defined(XGBOOST_USE_HIP)
|
||||
#define XGBOOST_NODISCARD
|
||||
#else
|
||||
#define XGBOOST_NODISCARD [[nodiscard]]
|
||||
#endif
|
||||
// FIXME(trivialfis): Once binary IO is gone, make this parameter internal as it should
|
||||
// not be configured by users.
|
||||
/*! \brief meta parameters of the tree */
|
||||
@ -64,7 +59,7 @@ struct TreeParam : public dmlc::Parameter<TreeParam> {
|
||||
|
||||
// Swap byte order for all fields. Useful for transporting models between machines with different
|
||||
// endianness (big endian vs little endian)
|
||||
XGBOOST_NODISCARD TreeParam ByteSwap() const {
|
||||
[[nodiscard]] TreeParam ByteSwap() const {
|
||||
TreeParam x = *this;
|
||||
dmlc::ByteSwap(&x.deprecated_num_roots, sizeof(x.deprecated_num_roots), 1);
|
||||
dmlc::ByteSwap(&x.num_nodes, sizeof(x.num_nodes), 1);
|
||||
@ -117,7 +112,7 @@ struct RTreeNodeStat {
|
||||
}
|
||||
// Swap byte order for all fields. Useful for transporting models between machines with different
|
||||
// endianness (big endian vs little endian)
|
||||
XGBOOST_NODISCARD RTreeNodeStat ByteSwap() const {
|
||||
[[nodiscard]] RTreeNodeStat ByteSwap() const {
|
||||
RTreeNodeStat x = *this;
|
||||
dmlc::ByteSwap(&x.loss_chg, sizeof(x.loss_chg), 1);
|
||||
dmlc::ByteSwap(&x.sum_hess, sizeof(x.sum_hess), 1);
|
||||
@ -183,51 +178,33 @@ class RegTree : public Model {
|
||||
}
|
||||
|
||||
/*! \brief index of left child */
|
||||
XGBOOST_DEVICE XGBOOST_NODISCARD int LeftChild() const {
|
||||
return this->cleft_;
|
||||
}
|
||||
[[nodiscard]] XGBOOST_DEVICE int LeftChild() const { return this->cleft_; }
|
||||
/*! \brief index of right child */
|
||||
XGBOOST_DEVICE XGBOOST_NODISCARD int RightChild() const {
|
||||
return this->cright_;
|
||||
}
|
||||
[[nodiscard]] XGBOOST_DEVICE int RightChild() const { return this->cright_; }
|
||||
/*! \brief index of default child when feature is missing */
|
||||
XGBOOST_DEVICE XGBOOST_NODISCARD int DefaultChild() const {
|
||||
[[nodiscard]] XGBOOST_DEVICE int DefaultChild() const {
|
||||
return this->DefaultLeft() ? this->LeftChild() : this->RightChild();
|
||||
}
|
||||
/*! \brief feature index of split condition */
|
||||
XGBOOST_DEVICE XGBOOST_NODISCARD unsigned SplitIndex() const {
|
||||
[[nodiscard]] XGBOOST_DEVICE unsigned SplitIndex() const {
|
||||
return sindex_ & ((1U << 31) - 1U);
|
||||
}
|
||||
/*! \brief when feature is unknown, whether goes to left child */
|
||||
XGBOOST_DEVICE XGBOOST_NODISCARD bool DefaultLeft() const {
|
||||
return (sindex_ >> 31) != 0;
|
||||
}
|
||||
[[nodiscard]] XGBOOST_DEVICE bool DefaultLeft() const { return (sindex_ >> 31) != 0; }
|
||||
/*! \brief whether current node is leaf node */
|
||||
XGBOOST_DEVICE XGBOOST_NODISCARD bool IsLeaf() const {
|
||||
return cleft_ == kInvalidNodeId;
|
||||
}
|
||||
[[nodiscard]] XGBOOST_DEVICE bool IsLeaf() const { return cleft_ == kInvalidNodeId; }
|
||||
/*! \return get leaf value of leaf node */
|
||||
XGBOOST_DEVICE XGBOOST_NODISCARD float LeafValue() const {
|
||||
return (this->info_).leaf_value;
|
||||
}
|
||||
[[nodiscard]] XGBOOST_DEVICE float LeafValue() const { return (this->info_).leaf_value; }
|
||||
/*! \return get split condition of the node */
|
||||
XGBOOST_DEVICE XGBOOST_NODISCARD SplitCondT SplitCond() const {
|
||||
return (this->info_).split_cond;
|
||||
}
|
||||
[[nodiscard]] XGBOOST_DEVICE SplitCondT SplitCond() const { return (this->info_).split_cond; }
|
||||
/*! \brief get parent of the node */
|
||||
XGBOOST_DEVICE XGBOOST_NODISCARD int Parent() const {
|
||||
return parent_ & ((1U << 31) - 1);
|
||||
}
|
||||
[[nodiscard]] XGBOOST_DEVICE int Parent() const { return parent_ & ((1U << 31) - 1); }
|
||||
/*! \brief whether current node is left child */
|
||||
XGBOOST_DEVICE XGBOOST_NODISCARD bool IsLeftChild() const {
|
||||
return (parent_ & (1U << 31)) != 0;
|
||||
}
|
||||
[[nodiscard]] XGBOOST_DEVICE bool IsLeftChild() const { return (parent_ & (1U << 31)) != 0; }
|
||||
/*! \brief whether this node is deleted */
|
||||
XGBOOST_DEVICE XGBOOST_NODISCARD bool IsDeleted() const {
|
||||
return sindex_ == kDeletedNodeMarker;
|
||||
}
|
||||
[[nodiscard]] XGBOOST_DEVICE bool IsDeleted() const { return sindex_ == kDeletedNodeMarker; }
|
||||
/*! \brief whether current node is root */
|
||||
XGBOOST_DEVICE XGBOOST_NODISCARD bool IsRoot() const { return parent_ == kInvalidNodeId; }
|
||||
[[nodiscard]] XGBOOST_DEVICE bool IsRoot() const { return parent_ == kInvalidNodeId; }
|
||||
/*!
|
||||
* \brief set the left child
|
||||
* \param nid node id to right child
|
||||
@ -284,7 +261,7 @@ class RegTree : public Model {
|
||||
info_.leaf_value == b.info_.leaf_value;
|
||||
}
|
||||
|
||||
XGBOOST_NODISCARD Node ByteSwap() const {
|
||||
[[nodiscard]] Node ByteSwap() const {
|
||||
Node x = *this;
|
||||
dmlc::ByteSwap(&x.parent_, sizeof(x.parent_), 1);
|
||||
dmlc::ByteSwap(&x.cleft_, sizeof(x.cleft_), 1);
|
||||
@ -342,15 +319,13 @@ class RegTree : public Model {
|
||||
this->ChangeToLeaf(rid, value);
|
||||
}
|
||||
|
||||
/*! \brief model parameter */
|
||||
TreeParam param;
|
||||
RegTree() {
|
||||
param.Init(Args{});
|
||||
nodes_.resize(param.num_nodes);
|
||||
stats_.resize(param.num_nodes);
|
||||
split_types_.resize(param.num_nodes, FeatureType::kNumerical);
|
||||
split_categories_segments_.resize(param.num_nodes);
|
||||
for (int i = 0; i < param.num_nodes; i++) {
|
||||
param_.Init(Args{});
|
||||
nodes_.resize(param_.num_nodes);
|
||||
stats_.resize(param_.num_nodes);
|
||||
split_types_.resize(param_.num_nodes, FeatureType::kNumerical);
|
||||
split_categories_segments_.resize(param_.num_nodes);
|
||||
for (int i = 0; i < param_.num_nodes; i++) {
|
||||
nodes_[i].SetLeaf(0.0f);
|
||||
nodes_[i].SetParent(kInvalidNodeId);
|
||||
}
|
||||
@ -359,10 +334,10 @@ class RegTree : public Model {
|
||||
* \brief Constructor that initializes the tree model with shape.
|
||||
*/
|
||||
explicit RegTree(bst_target_t n_targets, bst_feature_t n_features) : RegTree{} {
|
||||
param.num_feature = n_features;
|
||||
param.size_leaf_vector = n_targets;
|
||||
param_.num_feature = n_features;
|
||||
param_.size_leaf_vector = n_targets;
|
||||
if (n_targets > 1) {
|
||||
this->p_mt_tree_.reset(new MultiTargetTree{¶m});
|
||||
this->p_mt_tree_.reset(new MultiTargetTree{¶m_});
|
||||
}
|
||||
}
|
||||
|
||||
@ -376,17 +351,17 @@ class RegTree : public Model {
|
||||
}
|
||||
|
||||
/*! \brief get const reference to nodes */
|
||||
XGBOOST_NODISCARD const std::vector<Node>& GetNodes() const { return nodes_; }
|
||||
[[nodiscard]] const std::vector<Node>& GetNodes() const { return nodes_; }
|
||||
|
||||
/*! \brief get const reference to stats */
|
||||
XGBOOST_NODISCARD const std::vector<RTreeNodeStat>& GetStats() const { return stats_; }
|
||||
[[nodiscard]] const std::vector<RTreeNodeStat>& GetStats() const { return stats_; }
|
||||
|
||||
/*! \brief get node statistics given nid */
|
||||
RTreeNodeStat& Stat(int nid) {
|
||||
return stats_[nid];
|
||||
}
|
||||
/*! \brief get node statistics given nid */
|
||||
XGBOOST_NODISCARD const RTreeNodeStat& Stat(int nid) const {
|
||||
[[nodiscard]] const RTreeNodeStat& Stat(int nid) const {
|
||||
return stats_[nid];
|
||||
}
|
||||
|
||||
@ -406,7 +381,7 @@ class RegTree : public Model {
|
||||
|
||||
bool operator==(const RegTree& b) const {
|
||||
return nodes_ == b.nodes_ && stats_ == b.stats_ &&
|
||||
deleted_nodes_ == b.deleted_nodes_ && param == b.param;
|
||||
deleted_nodes_ == b.deleted_nodes_ && param_ == b.param_;
|
||||
}
|
||||
/* \brief Iterate through all nodes in this tree.
|
||||
*
|
||||
@ -439,7 +414,7 @@ class RegTree : public Model {
|
||||
*
|
||||
* \param b The other tree.
|
||||
*/
|
||||
XGBOOST_NODISCARD bool Equal(const RegTree& b) const;
|
||||
[[nodiscard]] bool Equal(const RegTree& b) const;
|
||||
|
||||
/**
|
||||
* \brief Expands a leaf node into two additional leaf nodes.
|
||||
@ -464,7 +439,9 @@ class RegTree : public Model {
|
||||
bst_float loss_change, float sum_hess, float left_sum,
|
||||
float right_sum,
|
||||
bst_node_t leaf_right_child = kInvalidNodeId);
|
||||
|
||||
/**
|
||||
* \brief Expands a leaf node into two additional leaf nodes for a multi-target tree.
|
||||
*/
|
||||
void ExpandNode(bst_node_t nidx, bst_feature_t split_index, float split_cond, bool default_left,
|
||||
linalg::VectorView<float const> base_weight,
|
||||
linalg::VectorView<float const> left_weight,
|
||||
@ -490,25 +467,54 @@ class RegTree : public Model {
|
||||
bst_float base_weight, bst_float left_leaf_weight,
|
||||
bst_float right_leaf_weight, bst_float loss_change, float sum_hess,
|
||||
float left_sum, float right_sum);
|
||||
|
||||
XGBOOST_NODISCARD bool HasCategoricalSplit() const {
|
||||
return !split_categories_.empty();
|
||||
}
|
||||
/**
|
||||
* \brief Whether this tree has categorical split.
|
||||
*/
|
||||
[[nodiscard]] bool HasCategoricalSplit() const { return !split_categories_.empty(); }
|
||||
/**
|
||||
* \brief Whether this is a multi-target tree.
|
||||
*/
|
||||
XGBOOST_NODISCARD bool IsMultiTarget() const { return static_cast<bool>(p_mt_tree_); }
|
||||
XGBOOST_NODISCARD bst_target_t NumTargets() const { return param.size_leaf_vector; }
|
||||
XGBOOST_NODISCARD auto GetMultiTargetTree() const {
|
||||
[[nodiscard]] bool IsMultiTarget() const { return static_cast<bool>(p_mt_tree_); }
|
||||
/**
|
||||
* \brief The size of leaf weight.
|
||||
*/
|
||||
[[nodiscard]] bst_target_t NumTargets() const { return param_.size_leaf_vector; }
|
||||
/**
|
||||
* \brief Get the underlying implementaiton of multi-target tree.
|
||||
*/
|
||||
[[nodiscard]] auto GetMultiTargetTree() const {
|
||||
CHECK(IsMultiTarget());
|
||||
return p_mt_tree_.get();
|
||||
}
|
||||
/**
|
||||
* \brief Get the number of features.
|
||||
*/
|
||||
[[nodiscard]] bst_feature_t NumFeatures() const noexcept { return param_.num_feature; }
|
||||
/**
|
||||
* \brief Get the total number of nodes including deleted ones in this tree.
|
||||
*/
|
||||
[[nodiscard]] bst_node_t NumNodes() const noexcept { return param_.num_nodes; }
|
||||
/**
|
||||
* \brief Get the total number of valid nodes in this tree.
|
||||
*/
|
||||
[[nodiscard]] bst_node_t NumValidNodes() const noexcept {
|
||||
return param_.num_nodes - param_.num_deleted;
|
||||
}
|
||||
/**
|
||||
* \brief number of extra nodes besides the root
|
||||
*/
|
||||
[[nodiscard]] bst_node_t NumExtraNodes() const noexcept {
|
||||
return param_.num_nodes - 1 - param_.num_deleted;
|
||||
}
|
||||
/* \brief Count number of leaves in tree. */
|
||||
[[nodiscard]] bst_node_t GetNumLeaves() const;
|
||||
[[nodiscard]] bst_node_t GetNumSplitNodes() const;
|
||||
|
||||
/*!
|
||||
* \brief get current depth
|
||||
* \param nid node id
|
||||
*/
|
||||
XGBOOST_NODISCARD std::int32_t GetDepth(bst_node_t nid) const {
|
||||
[[nodiscard]] std::int32_t GetDepth(bst_node_t nid) const {
|
||||
if (IsMultiTarget()) {
|
||||
return this->p_mt_tree_->Depth(nid);
|
||||
}
|
||||
@ -519,6 +525,9 @@ class RegTree : public Model {
|
||||
}
|
||||
return depth;
|
||||
}
|
||||
/**
|
||||
* \brief Set the leaf weight for a multi-target tree.
|
||||
*/
|
||||
void SetLeaf(bst_node_t nidx, linalg::VectorView<float const> weight) {
|
||||
CHECK(IsMultiTarget());
|
||||
return this->p_mt_tree_->SetLeaf(nidx, weight);
|
||||
@ -528,27 +537,15 @@ class RegTree : public Model {
|
||||
* \brief get maximum depth
|
||||
* \param nid node id
|
||||
*/
|
||||
XGBOOST_NODISCARD int MaxDepth(int nid) const {
|
||||
[[nodiscard]] int MaxDepth(int nid) const {
|
||||
if (nodes_[nid].IsLeaf()) return 0;
|
||||
return std::max(MaxDepth(nodes_[nid].LeftChild())+1,
|
||||
MaxDepth(nodes_[nid].RightChild())+1);
|
||||
return std::max(MaxDepth(nodes_[nid].LeftChild()) + 1, MaxDepth(nodes_[nid].RightChild()) + 1);
|
||||
}
|
||||
|
||||
/*!
|
||||
* \brief get maximum depth
|
||||
*/
|
||||
int MaxDepth() {
|
||||
return MaxDepth(0);
|
||||
}
|
||||
|
||||
/*! \brief number of extra nodes besides the root */
|
||||
XGBOOST_NODISCARD int NumExtraNodes() const {
|
||||
return param.num_nodes - 1 - param.num_deleted;
|
||||
}
|
||||
|
||||
/* \brief Count number of leaves in tree. */
|
||||
XGBOOST_NODISCARD bst_node_t GetNumLeaves() const;
|
||||
XGBOOST_NODISCARD bst_node_t GetNumSplitNodes() const;
|
||||
int MaxDepth() { return MaxDepth(0); }
|
||||
|
||||
/*!
|
||||
* \brief dense feature vector that can be taken by RegTree
|
||||
@ -575,20 +572,20 @@ class RegTree : public Model {
|
||||
* \brief returns the size of the feature vector
|
||||
* \return the size of the feature vector
|
||||
*/
|
||||
XGBOOST_NODISCARD size_t Size() const;
|
||||
[[nodiscard]] size_t Size() const;
|
||||
/*!
|
||||
* \brief get ith value
|
||||
* \param i feature index.
|
||||
* \return the i-th feature value
|
||||
*/
|
||||
XGBOOST_NODISCARD bst_float GetFvalue(size_t i) const;
|
||||
[[nodiscard]] bst_float GetFvalue(size_t i) const;
|
||||
/*!
|
||||
* \brief check whether i-th entry is missing
|
||||
* \param i feature index.
|
||||
* \return whether i-th value is missing.
|
||||
*/
|
||||
XGBOOST_NODISCARD bool IsMissing(size_t i) const;
|
||||
XGBOOST_NODISCARD bool HasMissing() const;
|
||||
[[nodiscard]] bool IsMissing(size_t i) const;
|
||||
[[nodiscard]] bool HasMissing() const;
|
||||
|
||||
|
||||
private:
|
||||
@ -619,34 +616,34 @@ class RegTree : public Model {
|
||||
* \param format the format to dump the model in
|
||||
* \return the string of dumped model
|
||||
*/
|
||||
XGBOOST_NODISCARD std::string DumpModel(const FeatureMap& fmap, bool with_stats,
|
||||
[[nodiscard]] std::string DumpModel(const FeatureMap& fmap, bool with_stats,
|
||||
std::string format) const;
|
||||
/*!
|
||||
* \brief Get split type for a node.
|
||||
* \param nidx Index of node.
|
||||
* \return The type of this split. For leaf node it's always kNumerical.
|
||||
*/
|
||||
XGBOOST_NODISCARD FeatureType NodeSplitType(bst_node_t nidx) const { return split_types_.at(nidx); }
|
||||
[[nodiscard]] FeatureType NodeSplitType(bst_node_t nidx) const { return split_types_.at(nidx); }
|
||||
/*!
|
||||
* \brief Get split types for all nodes.
|
||||
*/
|
||||
XGBOOST_NODISCARD std::vector<FeatureType> const& GetSplitTypes() const {
|
||||
[[nodiscard]] std::vector<FeatureType> const& GetSplitTypes() const {
|
||||
return split_types_;
|
||||
}
|
||||
XGBOOST_NODISCARD common::Span<uint32_t const> GetSplitCategories() const {
|
||||
[[nodiscard]] common::Span<uint32_t const> GetSplitCategories() const {
|
||||
return split_categories_;
|
||||
}
|
||||
/*!
|
||||
* \brief Get the bit storage for categories
|
||||
*/
|
||||
XGBOOST_NODISCARD common::Span<uint32_t const> NodeCats(bst_node_t nidx) const {
|
||||
[[nodiscard]] common::Span<uint32_t const> NodeCats(bst_node_t nidx) const {
|
||||
auto node_ptr = GetCategoriesMatrix().node_ptr;
|
||||
auto categories = GetCategoriesMatrix().categories;
|
||||
auto segment = node_ptr[nidx];
|
||||
auto node_cats = categories.subspan(segment.beg, segment.size);
|
||||
return node_cats;
|
||||
}
|
||||
XGBOOST_NODISCARD auto const& GetSplitCategoriesPtr() const { return split_categories_segments_; }
|
||||
[[nodiscard]] auto const& GetSplitCategoriesPtr() const { return split_categories_segments_; }
|
||||
|
||||
/**
|
||||
* \brief CSR-like matrix for categorical splits.
|
||||
@ -665,7 +662,7 @@ class RegTree : public Model {
|
||||
common::Span<Segment const> node_ptr;
|
||||
};
|
||||
|
||||
XGBOOST_NODISCARD CategoricalSplitMatrix GetCategoriesMatrix() const {
|
||||
[[nodiscard]] CategoricalSplitMatrix GetCategoriesMatrix() const {
|
||||
CategoricalSplitMatrix view;
|
||||
view.split_type = common::Span<FeatureType const>(this->GetSplitTypes());
|
||||
view.categories = this->GetSplitCategories();
|
||||
@ -673,55 +670,55 @@ class RegTree : public Model {
|
||||
return view;
|
||||
}
|
||||
|
||||
XGBOOST_NODISCARD bst_feature_t SplitIndex(bst_node_t nidx) const {
|
||||
[[nodiscard]] bst_feature_t SplitIndex(bst_node_t nidx) const {
|
||||
if (IsMultiTarget()) {
|
||||
return this->p_mt_tree_->SplitIndex(nidx);
|
||||
}
|
||||
return (*this)[nidx].SplitIndex();
|
||||
}
|
||||
XGBOOST_NODISCARD float SplitCond(bst_node_t nidx) const {
|
||||
[[nodiscard]] float SplitCond(bst_node_t nidx) const {
|
||||
if (IsMultiTarget()) {
|
||||
return this->p_mt_tree_->SplitCond(nidx);
|
||||
}
|
||||
return (*this)[nidx].SplitCond();
|
||||
}
|
||||
XGBOOST_NODISCARD bool DefaultLeft(bst_node_t nidx) const {
|
||||
[[nodiscard]] bool DefaultLeft(bst_node_t nidx) const {
|
||||
if (IsMultiTarget()) {
|
||||
return this->p_mt_tree_->DefaultLeft(nidx);
|
||||
}
|
||||
return (*this)[nidx].DefaultLeft();
|
||||
}
|
||||
XGBOOST_NODISCARD bool IsRoot(bst_node_t nidx) const {
|
||||
[[nodiscard]] bool IsRoot(bst_node_t nidx) const {
|
||||
if (IsMultiTarget()) {
|
||||
return nidx == kRoot;
|
||||
}
|
||||
return (*this)[nidx].IsRoot();
|
||||
}
|
||||
XGBOOST_NODISCARD bool IsLeaf(bst_node_t nidx) const {
|
||||
[[nodiscard]] bool IsLeaf(bst_node_t nidx) const {
|
||||
if (IsMultiTarget()) {
|
||||
return this->p_mt_tree_->IsLeaf(nidx);
|
||||
}
|
||||
return (*this)[nidx].IsLeaf();
|
||||
}
|
||||
XGBOOST_NODISCARD bst_node_t Parent(bst_node_t nidx) const {
|
||||
[[nodiscard]] bst_node_t Parent(bst_node_t nidx) const {
|
||||
if (IsMultiTarget()) {
|
||||
return this->p_mt_tree_->Parent(nidx);
|
||||
}
|
||||
return (*this)[nidx].Parent();
|
||||
}
|
||||
XGBOOST_NODISCARD bst_node_t LeftChild(bst_node_t nidx) const {
|
||||
[[nodiscard]] bst_node_t LeftChild(bst_node_t nidx) const {
|
||||
if (IsMultiTarget()) {
|
||||
return this->p_mt_tree_->LeftChild(nidx);
|
||||
}
|
||||
return (*this)[nidx].LeftChild();
|
||||
}
|
||||
XGBOOST_NODISCARD bst_node_t RightChild(bst_node_t nidx) const {
|
||||
[[nodiscard]] bst_node_t RightChild(bst_node_t nidx) const {
|
||||
if (IsMultiTarget()) {
|
||||
return this->p_mt_tree_->RightChild(nidx);
|
||||
}
|
||||
return (*this)[nidx].RightChild();
|
||||
}
|
||||
XGBOOST_NODISCARD bool IsLeftChild(bst_node_t nidx) const {
|
||||
[[nodiscard]] bool IsLeftChild(bst_node_t nidx) const {
|
||||
if (IsMultiTarget()) {
|
||||
CHECK_NE(nidx, kRoot);
|
||||
auto p = this->p_mt_tree_->Parent(nidx);
|
||||
@ -729,7 +726,7 @@ class RegTree : public Model {
|
||||
}
|
||||
return (*this)[nidx].IsLeftChild();
|
||||
}
|
||||
XGBOOST_NODISCARD bst_node_t Size() const {
|
||||
[[nodiscard]] bst_node_t Size() const {
|
||||
if (IsMultiTarget()) {
|
||||
return this->p_mt_tree_->Size();
|
||||
}
|
||||
@ -740,6 +737,8 @@ class RegTree : public Model {
|
||||
template <bool typed>
|
||||
void LoadCategoricalSplit(Json const& in);
|
||||
void SaveCategoricalSplit(Json* p_out) const;
|
||||
/*! \brief model parameter */
|
||||
TreeParam param_;
|
||||
// vector of nodes
|
||||
std::vector<Node> nodes_;
|
||||
// free node space, used during training process
|
||||
@ -757,20 +756,20 @@ class RegTree : public Model {
|
||||
// allocate a new node,
|
||||
// !!!!!! NOTE: may cause BUG here, nodes.resize
|
||||
bst_node_t AllocNode() {
|
||||
if (param.num_deleted != 0) {
|
||||
if (param_.num_deleted != 0) {
|
||||
int nid = deleted_nodes_.back();
|
||||
deleted_nodes_.pop_back();
|
||||
nodes_[nid].Reuse();
|
||||
--param.num_deleted;
|
||||
--param_.num_deleted;
|
||||
return nid;
|
||||
}
|
||||
int nd = param.num_nodes++;
|
||||
CHECK_LT(param.num_nodes, std::numeric_limits<int>::max())
|
||||
int nd = param_.num_nodes++;
|
||||
CHECK_LT(param_.num_nodes, std::numeric_limits<int>::max())
|
||||
<< "number of nodes in the tree exceed 2^31";
|
||||
nodes_.resize(param.num_nodes);
|
||||
stats_.resize(param.num_nodes);
|
||||
split_types_.resize(param.num_nodes, FeatureType::kNumerical);
|
||||
split_categories_segments_.resize(param.num_nodes);
|
||||
nodes_.resize(param_.num_nodes);
|
||||
stats_.resize(param_.num_nodes);
|
||||
split_types_.resize(param_.num_nodes, FeatureType::kNumerical);
|
||||
split_categories_segments_.resize(param_.num_nodes);
|
||||
return nd;
|
||||
}
|
||||
// delete a tree node, keep the parent field to allow trace back
|
||||
@ -785,7 +784,7 @@ class RegTree : public Model {
|
||||
|
||||
deleted_nodes_.push_back(nid);
|
||||
nodes_[nid].MarkDelete();
|
||||
++param.num_deleted;
|
||||
++param_.num_deleted;
|
||||
}
|
||||
};
|
||||
|
||||
|
||||
@ -37,7 +37,7 @@
|
||||
<spark.version>3.1.1</spark.version>
|
||||
<scala.version>2.12.8</scala.version>
|
||||
<scala.binary.version>2.12</scala.binary.version>
|
||||
<hadoop.version>3.3.4</hadoop.version>
|
||||
<hadoop.version>3.3.5</hadoop.version>
|
||||
<maven.wagon.http.retryHandler.count>5</maven.wagon.http.retryHandler.count>
|
||||
<log.capi.invocation>OFF</log.capi.invocation>
|
||||
<use.cuda>OFF</use.cuda>
|
||||
@ -118,7 +118,7 @@
|
||||
<plugin>
|
||||
<groupId>org.apache.maven.plugins</groupId>
|
||||
<artifactId>maven-release-plugin</artifactId>
|
||||
<version>2.5.3</version>
|
||||
<version>3.0.0</version>
|
||||
<configuration>
|
||||
<autoVersionSubmodules>true</autoVersionSubmodules>
|
||||
<useReleaseProfile>false</useReleaseProfile>
|
||||
@ -427,7 +427,7 @@
|
||||
<plugin>
|
||||
<groupId>org.apache.maven.plugins</groupId>
|
||||
<artifactId>maven-surefire-plugin</artifactId>
|
||||
<version>2.22.2</version>
|
||||
<version>3.0.0</version>
|
||||
<configuration>
|
||||
<skipTests>false</skipTests>
|
||||
<useSystemClassLoader>false</useSystemClassLoader>
|
||||
|
||||
@ -51,7 +51,7 @@
|
||||
<dependency>
|
||||
<groupId>org.apache.hadoop</groupId>
|
||||
<artifactId>hadoop-common</artifactId>
|
||||
<version>3.3.4</version>
|
||||
<version>3.3.5</version>
|
||||
</dependency>
|
||||
</dependencies>
|
||||
|
||||
|
||||
@ -41,13 +41,13 @@
|
||||
<dependency>
|
||||
<groupId>com.typesafe.akka</groupId>
|
||||
<artifactId>akka-actor_${scala.binary.version}</artifactId>
|
||||
<version>2.7.0</version>
|
||||
<version>2.6.20</version>
|
||||
<scope>compile</scope>
|
||||
</dependency>
|
||||
<dependency>
|
||||
<groupId>com.typesafe.akka</groupId>
|
||||
<artifactId>akka-testkit_${scala.binary.version}</artifactId>
|
||||
<version>2.7.0</version>
|
||||
<version>2.6.20</version>
|
||||
<scope>test</scope>
|
||||
</dependency>
|
||||
<dependency>
|
||||
|
||||
@ -84,9 +84,10 @@ public class BoosterTest {
|
||||
};
|
||||
|
||||
try (Table tmpTable = Table.readCSV(schema, opts, new File(trainingDataPath))) {
|
||||
ColumnVector[] df = new ColumnVector[12];
|
||||
for (int i = 0; i < 12; ++i) {
|
||||
df[i] = tmpTable.getColumn(i);
|
||||
ColumnVector[] df = new ColumnVector[10];
|
||||
// exclude the first two columns, they are label bounds and contain inf.
|
||||
for (int i = 2; i < 12; ++i) {
|
||||
df[i - 2] = tmpTable.getColumn(i);
|
||||
}
|
||||
try (Table X = new Table(df);) {
|
||||
ColumnVector[] labels = new ColumnVector[1];
|
||||
|
||||
@ -21,7 +21,7 @@ import java.io.File
|
||||
import ml.dmlc.xgboost4j.scala.spark.{XGBoostClassificationModel, XGBoostClassifier}
|
||||
|
||||
import org.apache.spark.ml.feature.VectorAssembler
|
||||
import org.apache.spark.sql.functions.{col, udf}
|
||||
import org.apache.spark.sql.functions.{col, udf, when}
|
||||
import org.apache.spark.sql.types.{FloatType, StructField, StructType}
|
||||
|
||||
class GpuXGBoostClassifierSuite extends GpuTestSuite {
|
||||
@ -47,7 +47,8 @@ class GpuXGBoostClassifierSuite extends GpuTestSuite {
|
||||
"num_round" -> 10, "num_workers" -> 1, "tree_method" -> "gpu_hist",
|
||||
"features_cols" -> featureNames, "label_col" -> labelName)
|
||||
val Array(originalDf, testDf) = spark.read.option("header", "true").schema(schema)
|
||||
.csv(dataPath).randomSplit(Array(0.7, 0.3), seed = 1)
|
||||
.csv(dataPath).withColumn("f2", when(col("f2").isin(Float.PositiveInfinity), 0))
|
||||
.randomSplit(Array(0.7, 0.3), seed = 1)
|
||||
// Get a model
|
||||
val model = new XGBoostClassifier(xgbParam)
|
||||
.fit(originalDf)
|
||||
@ -64,7 +65,8 @@ class GpuXGBoostClassifierSuite extends GpuTestSuite {
|
||||
"num_round" -> 10, "num_workers" -> 1, "tree_method" -> "gpu_hist",
|
||||
"features_cols" -> featureNames, "label_col" -> labelName)
|
||||
val Array(originalDf, testDf) = spark.read.option("header", "true").schema(schema)
|
||||
.csv(dataPath).randomSplit(Array(0.7, 0.3), seed = 1)
|
||||
.csv(dataPath).withColumn("f2", when(col("f2").isin(Float.PositiveInfinity), 0))
|
||||
.randomSplit(Array(0.7, 0.3), seed = 1)
|
||||
val getWeightFromF1 = udf({ f1: Float => if (f1.toInt % 2 == 0) 1.0f else 0.001f })
|
||||
val dfWithWeight = originalDf.withColumn("weight", getWeightFromF1(col("f1")))
|
||||
|
||||
@ -87,7 +89,8 @@ class GpuXGBoostClassifierSuite extends GpuTestSuite {
|
||||
val xgbParam = Map("eta" -> 0.1f, "max_depth" -> 2, "objective" -> "binary:logistic",
|
||||
"num_round" -> 10, "num_workers" -> 1)
|
||||
val Array(rawInput, testDf) = spark.read.option("header", "true").schema(schema)
|
||||
.csv(dataPath).randomSplit(Array(0.7, 0.3), seed = 1)
|
||||
.csv(dataPath).withColumn("f2", when(col("f2").isin(Float.PositiveInfinity), 0))
|
||||
.randomSplit(Array(0.7, 0.3), seed = 1)
|
||||
|
||||
val classifier = new XGBoostClassifier(xgbParam)
|
||||
.setFeaturesCol(featureNames)
|
||||
@ -122,7 +125,8 @@ class GpuXGBoostClassifierSuite extends GpuTestSuite {
|
||||
val xgbParam = Map("eta" -> 0.1f, "max_depth" -> 2, "objective" -> "binary:logistic",
|
||||
"num_round" -> 10, "num_workers" -> 1)
|
||||
val Array(rawInput, _) = spark.read.option("header", "true").schema(schema)
|
||||
.csv(dataPath).randomSplit(Array(0.7, 0.3), seed = 1)
|
||||
.csv(dataPath).withColumn("f2", when(col("f2").isin(Float.PositiveInfinity), 0))
|
||||
.randomSplit(Array(0.7, 0.3), seed = 1)
|
||||
|
||||
val vectorAssembler = new VectorAssembler()
|
||||
.setHandleInvalid("keep")
|
||||
@ -144,7 +148,8 @@ class GpuXGBoostClassifierSuite extends GpuTestSuite {
|
||||
// transform on GPU
|
||||
withGpuSparkSession() { spark =>
|
||||
val Array(_, testDf) = spark.read.option("header", "true").schema(schema)
|
||||
.csv(dataPath).randomSplit(Array(0.7, 0.3), seed = 1)
|
||||
.csv(dataPath).withColumn("f2", when(col("f2").isin(Float.PositiveInfinity), 0))
|
||||
.randomSplit(Array(0.7, 0.3), seed = 1)
|
||||
|
||||
// Since CPU model does not know the information about the features cols that GPU transform
|
||||
// pipeline requires. End user needs to setFeaturesCol(features: Array[String]) in the model
|
||||
@ -174,7 +179,8 @@ class GpuXGBoostClassifierSuite extends GpuTestSuite {
|
||||
val xgbParam = Map("eta" -> 0.1f, "max_depth" -> 2, "objective" -> "binary:logistic",
|
||||
"num_round" -> 10, "num_workers" -> 1)
|
||||
val Array(rawInput, _) = spark.read.option("header", "true").schema(schema)
|
||||
.csv(dataPath).randomSplit(Array(0.7, 0.3), seed = 1)
|
||||
.csv(dataPath).withColumn("f2", when(col("f2").isin(Float.PositiveInfinity), 0))
|
||||
.randomSplit(Array(0.7, 0.3), seed = 1)
|
||||
|
||||
val classifier = new XGBoostClassifier(xgbParam)
|
||||
.setFeaturesCol(featureNames)
|
||||
@ -190,7 +196,8 @@ class GpuXGBoostClassifierSuite extends GpuTestSuite {
|
||||
// transform on CPU
|
||||
withCpuSparkSession() { spark =>
|
||||
val Array(_, rawInput) = spark.read.option("header", "true").schema(schema)
|
||||
.csv(dataPath).randomSplit(Array(0.7, 0.3), seed = 1)
|
||||
.csv(dataPath).withColumn("f2", when(col("f2").isin(Float.PositiveInfinity), 0))
|
||||
.randomSplit(Array(0.7, 0.3), seed = 1)
|
||||
|
||||
val featureColName = "feature_col"
|
||||
val vectorAssembler = new VectorAssembler()
|
||||
|
||||
@ -51,13 +51,13 @@ pom_template = """
|
||||
<dependency>
|
||||
<groupId>com.typesafe.akka</groupId>
|
||||
<artifactId>akka-actor_${{scala.binary.version}}</artifactId>
|
||||
<version>2.7.0</version>
|
||||
<version>2.6.20</version>
|
||||
<scope>compile</scope>
|
||||
</dependency>
|
||||
<dependency>
|
||||
<groupId>com.typesafe.akka</groupId>
|
||||
<artifactId>akka-testkit_${{scala.binary.version}}</artifactId>
|
||||
<version>2.7.0</version>
|
||||
<version>2.6.20</version>
|
||||
<scope>test</scope>
|
||||
</dependency>
|
||||
<dependency>
|
||||
|
||||
@ -34,13 +34,13 @@
|
||||
<dependency>
|
||||
<groupId>com.typesafe.akka</groupId>
|
||||
<artifactId>akka-actor_${scala.binary.version}</artifactId>
|
||||
<version>2.7.0</version>
|
||||
<version>2.6.20</version>
|
||||
<scope>compile</scope>
|
||||
</dependency>
|
||||
<dependency>
|
||||
<groupId>com.typesafe.akka</groupId>
|
||||
<artifactId>akka-testkit_${scala.binary.version}</artifactId>
|
||||
<version>2.7.0</version>
|
||||
<version>2.6.20</version>
|
||||
<scope>test</scope>
|
||||
</dependency>
|
||||
<dependency>
|
||||
|
||||
@ -1,23 +1,22 @@
|
||||
/*!
|
||||
* Copyright by Contributors 2017-2020
|
||||
*/
|
||||
#include <any> // for any
|
||||
#include <cstddef>
|
||||
#include <limits>
|
||||
#include <mutex>
|
||||
|
||||
#include "../../src/common/math.h"
|
||||
#include "../../src/data/adapter.h"
|
||||
#include "../../src/gbm/gbtree_model.h"
|
||||
#include "CL/sycl.hpp"
|
||||
#include "xgboost/base.h"
|
||||
#include "xgboost/data.h"
|
||||
#include "xgboost/host_device_vector.h"
|
||||
#include "xgboost/logging.h"
|
||||
#include "xgboost/predictor.h"
|
||||
#include "xgboost/tree_model.h"
|
||||
#include "xgboost/tree_updater.h"
|
||||
#include "xgboost/logging.h"
|
||||
#include "xgboost/host_device_vector.h"
|
||||
|
||||
#include "../../src/data/adapter.h"
|
||||
#include "../../src/common/math.h"
|
||||
#include "../../src/gbm/gbtree_model.h"
|
||||
|
||||
#include "CL/sycl.hpp"
|
||||
|
||||
namespace xgboost {
|
||||
namespace predictor {
|
||||
@ -396,9 +395,9 @@ class PredictorOneAPI : public Predictor {
|
||||
out_preds->Size() == dmat->Info().num_row_);
|
||||
}
|
||||
|
||||
void InplacePredict(dmlc::any const &x, const gbm::GBTreeModel &model,
|
||||
float missing, PredictionCacheEntry *out_preds,
|
||||
uint32_t tree_begin, unsigned tree_end) const override {
|
||||
void InplacePredict(std::any const& x, const gbm::GBTreeModel& model, float missing,
|
||||
PredictionCacheEntry* out_preds, uint32_t tree_begin,
|
||||
unsigned tree_end) const override {
|
||||
cpu_predictor->InplacePredict(x, model, missing, out_preds, tree_begin, tree_end);
|
||||
}
|
||||
|
||||
|
||||
@ -324,7 +324,7 @@ class EarlyStopping(TrainingCallback):
|
||||
|
||||
es = xgboost.callback.EarlyStopping(
|
||||
rounds=2,
|
||||
abs_tol=1e-3,
|
||||
min_delta=1e-3,
|
||||
save_best=True,
|
||||
maximize=False,
|
||||
data_name="validation_0",
|
||||
|
||||
@ -312,6 +312,19 @@ __model_doc = f"""
|
||||
needs to be set to have categorical feature support. See :doc:`Categorical Data
|
||||
</tutorials/categorical>` and :ref:`cat-param` for details.
|
||||
|
||||
multi_strategy : Optional[str]
|
||||
|
||||
.. versionadded:: 2.0.0
|
||||
|
||||
.. note:: This parameter is working-in-progress.
|
||||
|
||||
The strategy used for training multi-target models, including multi-target
|
||||
regression and multi-class classification. See :doc:`/tutorials/multioutput` for
|
||||
more information.
|
||||
|
||||
- ``one_output_per_tree``: One model for each target.
|
||||
- ``multi_output_tree``: Use multi-target trees.
|
||||
|
||||
eval_metric : Optional[Union[str, List[str], Callable]]
|
||||
|
||||
.. versionadded:: 1.6.0
|
||||
@ -355,16 +368,19 @@ __model_doc = f"""
|
||||
|
||||
.. versionadded:: 1.6.0
|
||||
|
||||
Activates early stopping. Validation metric needs to improve at least once in
|
||||
every **early_stopping_rounds** round(s) to continue training. Requires at least
|
||||
one item in **eval_set** in :py:meth:`fit`.
|
||||
- Activates early stopping. Validation metric needs to improve at least once in
|
||||
every **early_stopping_rounds** round(s) to continue training. Requires at
|
||||
least one item in **eval_set** in :py:meth:`fit`.
|
||||
|
||||
The method returns the model from the last iteration (not the best one). If
|
||||
there's more than one item in **eval_set**, the last entry will be used for early
|
||||
stopping. If there's more than one metric in **eval_metric**, the last metric
|
||||
will be used for early stopping.
|
||||
- The method returns the model from the last iteration, not the best one, use a
|
||||
callback :py:class:`xgboost.callback.EarlyStopping` if returning the best
|
||||
model is preferred.
|
||||
|
||||
If early stopping occurs, the model will have three additional fields:
|
||||
- If there's more than one item in **eval_set**, the last entry will be used for
|
||||
early stopping. If there's more than one metric in **eval_metric**, the last
|
||||
metric will be used for early stopping.
|
||||
|
||||
- If early stopping occurs, the model will have three additional fields:
|
||||
:py:attr:`best_score`, :py:attr:`best_iteration` and
|
||||
:py:attr:`best_ntree_limit`.
|
||||
|
||||
@ -466,7 +482,9 @@ Parameters
|
||||
doc.extend([get_doc(i) for i in items])
|
||||
if end_note:
|
||||
doc.append(end_note)
|
||||
full_doc = [header + "\n\n"]
|
||||
full_doc = [
|
||||
header + "\nSee :doc:`/python/sklearn_estimator` for more information.\n"
|
||||
]
|
||||
full_doc.extend(doc)
|
||||
cls.__doc__ = "".join(full_doc)
|
||||
return cls
|
||||
@ -624,6 +642,7 @@ class XGBModel(XGBModelBase):
|
||||
feature_types: Optional[FeatureTypes] = None,
|
||||
max_cat_to_onehot: Optional[int] = None,
|
||||
max_cat_threshold: Optional[int] = None,
|
||||
multi_strategy: Optional[str] = None,
|
||||
eval_metric: Optional[Union[str, List[str], Callable]] = None,
|
||||
early_stopping_rounds: Optional[int] = None,
|
||||
callbacks: Optional[List[TrainingCallback]] = None,
|
||||
@ -670,6 +689,7 @@ class XGBModel(XGBModelBase):
|
||||
self.feature_types = feature_types
|
||||
self.max_cat_to_onehot = max_cat_to_onehot
|
||||
self.max_cat_threshold = max_cat_threshold
|
||||
self.multi_strategy = multi_strategy
|
||||
self.eval_metric = eval_metric
|
||||
self.early_stopping_rounds = early_stopping_rounds
|
||||
self.callbacks = callbacks
|
||||
@ -1131,10 +1151,10 @@ class XGBModel(XGBModelBase):
|
||||
base_margin: Optional[ArrayLike] = None,
|
||||
iteration_range: Optional[Tuple[int, int]] = None,
|
||||
) -> ArrayLike:
|
||||
"""Predict with `X`. If the model is trained with early stopping, then `best_iteration`
|
||||
is used automatically. For tree models, when data is on GPU, like cupy array or
|
||||
cuDF dataframe and `predictor` is not specified, the prediction is run on GPU
|
||||
automatically, otherwise it will run on CPU.
|
||||
"""Predict with `X`. If the model is trained with early stopping, then
|
||||
:py:attr:`best_iteration` is used automatically. For tree models, when data is
|
||||
on GPU, like cupy array or cuDF dataframe and `predictor` is not specified, the
|
||||
prediction is run on GPU automatically, otherwise it will run on CPU.
|
||||
|
||||
.. note:: This function is only thread safe for `gbtree` and `dart`.
|
||||
|
||||
@ -1209,8 +1229,8 @@ class XGBModel(XGBModelBase):
|
||||
ntree_limit: int = 0,
|
||||
iteration_range: Optional[Tuple[int, int]] = None,
|
||||
) -> np.ndarray:
|
||||
"""Return the predicted leaf every tree for each sample. If the model is trained with
|
||||
early stopping, then `best_iteration` is used automatically.
|
||||
"""Return the predicted leaf every tree for each sample. If the model is trained
|
||||
with early stopping, then :py:attr:`best_iteration` is used automatically.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
@ -1620,7 +1640,9 @@ class XGBClassifier(XGBModel, XGBClassifierBase):
|
||||
base_margin: Optional[ArrayLike] = None,
|
||||
iteration_range: Optional[Tuple[int, int]] = None,
|
||||
) -> np.ndarray:
|
||||
"""Predict the probability of each `X` example being of a given class.
|
||||
"""Predict the probability of each `X` example being of a given class. If the
|
||||
model is trained with early stopping, then :py:attr:`best_iteration` is used
|
||||
automatically.
|
||||
|
||||
.. note:: This function is only thread safe for `gbtree` and `dart`.
|
||||
|
||||
@ -1646,6 +1668,7 @@ class XGBClassifier(XGBModel, XGBClassifierBase):
|
||||
prediction :
|
||||
a numpy array of shape array-like of shape (n_samples, n_classes) with the
|
||||
probability of each data example being of a given class.
|
||||
|
||||
"""
|
||||
# custom obj: Do nothing as we don't know what to do.
|
||||
# softprob: Do nothing, output is proba.
|
||||
@ -2107,11 +2130,13 @@ class XGBRanker(XGBModel, XGBRankerMixIn):
|
||||
return super().apply(X, ntree_limit, iteration_range)
|
||||
|
||||
def score(self, X: ArrayLike, y: ArrayLike) -> float:
|
||||
"""Evaluate score for data using the last evaluation metric.
|
||||
"""Evaluate score for data using the last evaluation metric. If the model is
|
||||
trained with early stopping, then :py:attr:`best_iteration` is used
|
||||
automatically.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
X : pd.DataFrame|cudf.DataFrame
|
||||
X : Union[pd.DataFrame, cudf.DataFrame]
|
||||
Feature matrix. A DataFrame with a special `qid` column.
|
||||
|
||||
y :
|
||||
|
||||
@ -10,7 +10,6 @@ import os
|
||||
import platform
|
||||
import socket
|
||||
import sys
|
||||
import zipfile
|
||||
from concurrent.futures import ThreadPoolExecutor
|
||||
from contextlib import contextmanager
|
||||
from io import StringIO
|
||||
@ -28,7 +27,6 @@ from typing import (
|
||||
TypedDict,
|
||||
Union,
|
||||
)
|
||||
from urllib import request
|
||||
|
||||
import numpy as np
|
||||
import pytest
|
||||
@ -37,6 +35,13 @@ from scipy import sparse
|
||||
import xgboost as xgb
|
||||
from xgboost.core import ArrayLike
|
||||
from xgboost.sklearn import SklObjective
|
||||
from xgboost.testing.data import (
|
||||
get_california_housing,
|
||||
get_cancer,
|
||||
get_digits,
|
||||
get_sparse,
|
||||
memory,
|
||||
)
|
||||
|
||||
hypothesis = pytest.importorskip("hypothesis")
|
||||
|
||||
@ -44,13 +49,8 @@ hypothesis = pytest.importorskip("hypothesis")
|
||||
from hypothesis import strategies
|
||||
from hypothesis.extra.numpy import arrays
|
||||
|
||||
joblib = pytest.importorskip("joblib")
|
||||
datasets = pytest.importorskip("sklearn.datasets")
|
||||
|
||||
Memory = joblib.Memory
|
||||
|
||||
memory = Memory("./cachedir", verbose=0)
|
||||
|
||||
PytestSkip = TypedDict("PytestSkip", {"condition": bool, "reason": str})
|
||||
|
||||
|
||||
@ -352,137 +352,6 @@ class TestDataset:
|
||||
return self.name
|
||||
|
||||
|
||||
@memory.cache
|
||||
def get_california_housing() -> Tuple[np.ndarray, np.ndarray]:
|
||||
data = datasets.fetch_california_housing()
|
||||
return data.data, data.target
|
||||
|
||||
|
||||
@memory.cache
|
||||
def get_digits() -> Tuple[np.ndarray, np.ndarray]:
|
||||
data = datasets.load_digits()
|
||||
return data.data, data.target
|
||||
|
||||
|
||||
@memory.cache
|
||||
def get_cancer() -> Tuple[np.ndarray, np.ndarray]:
|
||||
return datasets.load_breast_cancer(return_X_y=True)
|
||||
|
||||
|
||||
@memory.cache
|
||||
def get_sparse() -> Tuple[np.ndarray, np.ndarray]:
|
||||
rng = np.random.RandomState(199)
|
||||
n = 2000
|
||||
sparsity = 0.75
|
||||
X, y = datasets.make_regression(n, random_state=rng)
|
||||
flag = rng.binomial(1, sparsity, X.shape)
|
||||
for i in range(X.shape[0]):
|
||||
for j in range(X.shape[1]):
|
||||
if flag[i, j]:
|
||||
X[i, j] = np.nan
|
||||
return X, y
|
||||
|
||||
|
||||
@memory.cache
|
||||
def get_ames_housing() -> Tuple[np.ndarray, np.ndarray]:
|
||||
"""
|
||||
Number of samples: 1460
|
||||
Number of features: 20
|
||||
Number of categorical features: 10
|
||||
Number of numerical features: 10
|
||||
"""
|
||||
from sklearn.datasets import fetch_openml
|
||||
|
||||
X, y = fetch_openml(data_id=42165, as_frame=True, return_X_y=True)
|
||||
|
||||
categorical_columns_subset: List[str] = [
|
||||
"BldgType", # 5 cats, no nan
|
||||
"GarageFinish", # 3 cats, nan
|
||||
"LotConfig", # 5 cats, no nan
|
||||
"Functional", # 7 cats, no nan
|
||||
"MasVnrType", # 4 cats, nan
|
||||
"HouseStyle", # 8 cats, no nan
|
||||
"FireplaceQu", # 5 cats, nan
|
||||
"ExterCond", # 5 cats, no nan
|
||||
"ExterQual", # 4 cats, no nan
|
||||
"PoolQC", # 3 cats, nan
|
||||
]
|
||||
|
||||
numerical_columns_subset: List[str] = [
|
||||
"3SsnPorch",
|
||||
"Fireplaces",
|
||||
"BsmtHalfBath",
|
||||
"HalfBath",
|
||||
"GarageCars",
|
||||
"TotRmsAbvGrd",
|
||||
"BsmtFinSF1",
|
||||
"BsmtFinSF2",
|
||||
"GrLivArea",
|
||||
"ScreenPorch",
|
||||
]
|
||||
|
||||
X = X[categorical_columns_subset + numerical_columns_subset]
|
||||
X[categorical_columns_subset] = X[categorical_columns_subset].astype("category")
|
||||
return X, y
|
||||
|
||||
|
||||
@memory.cache
|
||||
def get_mq2008(
|
||||
dpath: str,
|
||||
) -> Tuple[
|
||||
sparse.csr_matrix,
|
||||
np.ndarray,
|
||||
np.ndarray,
|
||||
sparse.csr_matrix,
|
||||
np.ndarray,
|
||||
np.ndarray,
|
||||
sparse.csr_matrix,
|
||||
np.ndarray,
|
||||
np.ndarray,
|
||||
]:
|
||||
from sklearn.datasets import load_svmlight_files
|
||||
|
||||
src = "https://s3-us-west-2.amazonaws.com/xgboost-examples/MQ2008.zip"
|
||||
target = dpath + "/MQ2008.zip"
|
||||
if not os.path.exists(target):
|
||||
request.urlretrieve(url=src, filename=target)
|
||||
|
||||
with zipfile.ZipFile(target, "r") as f:
|
||||
f.extractall(path=dpath)
|
||||
|
||||
(
|
||||
x_train,
|
||||
y_train,
|
||||
qid_train,
|
||||
x_test,
|
||||
y_test,
|
||||
qid_test,
|
||||
x_valid,
|
||||
y_valid,
|
||||
qid_valid,
|
||||
) = load_svmlight_files(
|
||||
(
|
||||
dpath + "MQ2008/Fold1/train.txt",
|
||||
dpath + "MQ2008/Fold1/test.txt",
|
||||
dpath + "MQ2008/Fold1/vali.txt",
|
||||
),
|
||||
query_id=True,
|
||||
zero_based=False,
|
||||
)
|
||||
|
||||
return (
|
||||
x_train,
|
||||
y_train,
|
||||
qid_train,
|
||||
x_test,
|
||||
y_test,
|
||||
qid_test,
|
||||
x_valid,
|
||||
y_valid,
|
||||
qid_valid,
|
||||
)
|
||||
|
||||
|
||||
# pylint: disable=too-many-arguments,too-many-locals
|
||||
@memory.cache
|
||||
def make_categorical(
|
||||
@ -737,20 +606,7 @@ _unweighted_datasets_strategy = strategies.sampled_from(
|
||||
TestDataset(
|
||||
"calif_housing-l1", get_california_housing, "reg:absoluteerror", "mae"
|
||||
),
|
||||
TestDataset("digits", get_digits, "multi:softmax", "mlogloss"),
|
||||
TestDataset("cancer", get_cancer, "binary:logistic", "logloss"),
|
||||
TestDataset(
|
||||
"mtreg",
|
||||
lambda: datasets.make_regression(n_samples=128, n_features=2, n_targets=3),
|
||||
"reg:squarederror",
|
||||
"rmse",
|
||||
),
|
||||
TestDataset(
|
||||
"mtreg-l1",
|
||||
lambda: datasets.make_regression(n_samples=128, n_features=2, n_targets=3),
|
||||
"reg:absoluteerror",
|
||||
"mae",
|
||||
),
|
||||
TestDataset("sparse", get_sparse, "reg:squarederror", "rmse"),
|
||||
TestDataset("sparse-l1", get_sparse, "reg:absoluteerror", "mae"),
|
||||
TestDataset(
|
||||
@ -763,9 +619,17 @@ _unweighted_datasets_strategy = strategies.sampled_from(
|
||||
)
|
||||
|
||||
|
||||
def make_datasets_with_margin(
|
||||
unweighted_strategy: strategies.SearchStrategy,
|
||||
) -> Callable:
|
||||
"""Factory function for creating strategies that generates datasets with weight and
|
||||
base margin.
|
||||
|
||||
"""
|
||||
|
||||
@strategies.composite
|
||||
def _dataset_weight_margin(draw: Callable) -> TestDataset:
|
||||
data: TestDataset = draw(_unweighted_datasets_strategy)
|
||||
def weight_margin(draw: Callable) -> TestDataset:
|
||||
data: TestDataset = draw(unweighted_strategy)
|
||||
if draw(strategies.booleans()):
|
||||
data.w = draw(
|
||||
arrays(np.float64, (len(data.y)), elements=strategies.floats(0.1, 2.0))
|
||||
@ -790,10 +654,36 @@ def _dataset_weight_margin(draw: Callable) -> TestDataset:
|
||||
|
||||
return data
|
||||
|
||||
return weight_margin
|
||||
|
||||
# A strategy for drawing from a set of example datasets
|
||||
# May add random weights to the dataset
|
||||
dataset_strategy = _dataset_weight_margin()
|
||||
|
||||
# A strategy for drawing from a set of example datasets. May add random weights to the
|
||||
# dataset
|
||||
dataset_strategy = make_datasets_with_margin(_unweighted_datasets_strategy)()
|
||||
|
||||
|
||||
_unweighted_multi_datasets_strategy = strategies.sampled_from(
|
||||
[
|
||||
TestDataset("digits", get_digits, "multi:softmax", "mlogloss"),
|
||||
TestDataset(
|
||||
"mtreg",
|
||||
lambda: datasets.make_regression(n_samples=128, n_features=2, n_targets=3),
|
||||
"reg:squarederror",
|
||||
"rmse",
|
||||
),
|
||||
TestDataset(
|
||||
"mtreg-l1",
|
||||
lambda: datasets.make_regression(n_samples=128, n_features=2, n_targets=3),
|
||||
"reg:absoluteerror",
|
||||
"mae",
|
||||
),
|
||||
]
|
||||
)
|
||||
|
||||
# A strategy for drawing from a set of multi-target/multi-class datasets.
|
||||
multi_dataset_strategy = make_datasets_with_margin(
|
||||
_unweighted_multi_datasets_strategy
|
||||
)()
|
||||
|
||||
|
||||
def non_increasing(L: Sequence[float], tolerance: float = 1e-4) -> bool:
|
||||
|
||||
@ -1,10 +1,20 @@
|
||||
"""Utilities for data generation."""
|
||||
from typing import Any, Generator, Tuple, Union
|
||||
import os
|
||||
import zipfile
|
||||
from typing import Any, Generator, List, Tuple, Union
|
||||
from urllib import request
|
||||
|
||||
import numpy as np
|
||||
import pytest
|
||||
from numpy.random import Generator as RNG
|
||||
from scipy import sparse
|
||||
|
||||
import xgboost
|
||||
from xgboost.data import pandas_pyarrow_mapper
|
||||
|
||||
joblib = pytest.importorskip("joblib")
|
||||
memory = joblib.Memory("./cachedir", verbose=0)
|
||||
|
||||
|
||||
def np_dtypes(
|
||||
n_samples: int, n_features: int
|
||||
@ -179,3 +189,154 @@ def pd_arrow_dtypes() -> Generator:
|
||||
dtype=pd.ArrowDtype(pa.bool_()),
|
||||
)
|
||||
yield orig, df
|
||||
|
||||
|
||||
def check_inf(rng: RNG) -> None:
|
||||
"""Validate there's no inf in X."""
|
||||
X = rng.random(size=32).reshape(8, 4)
|
||||
y = rng.random(size=8)
|
||||
X[5, 2] = np.inf
|
||||
|
||||
with pytest.raises(ValueError, match="Input data contains `inf`"):
|
||||
xgboost.QuantileDMatrix(X, y)
|
||||
|
||||
with pytest.raises(ValueError, match="Input data contains `inf`"):
|
||||
xgboost.DMatrix(X, y)
|
||||
|
||||
|
||||
@memory.cache
|
||||
def get_california_housing() -> Tuple[np.ndarray, np.ndarray]:
|
||||
"""Fetch the California housing dataset from sklearn."""
|
||||
datasets = pytest.importorskip("sklearn.datasets")
|
||||
data = datasets.fetch_california_housing()
|
||||
return data.data, data.target
|
||||
|
||||
|
||||
@memory.cache
|
||||
def get_digits() -> Tuple[np.ndarray, np.ndarray]:
|
||||
"""Fetch the digits dataset from sklearn."""
|
||||
datasets = pytest.importorskip("sklearn.datasets")
|
||||
data = datasets.load_digits()
|
||||
return data.data, data.target
|
||||
|
||||
|
||||
@memory.cache
|
||||
def get_cancer() -> Tuple[np.ndarray, np.ndarray]:
|
||||
"""Fetch the breast cancer dataset from sklearn."""
|
||||
datasets = pytest.importorskip("sklearn.datasets")
|
||||
return datasets.load_breast_cancer(return_X_y=True)
|
||||
|
||||
|
||||
@memory.cache
|
||||
def get_sparse() -> Tuple[np.ndarray, np.ndarray]:
|
||||
"""Generate a sparse dataset."""
|
||||
datasets = pytest.importorskip("sklearn.datasets")
|
||||
rng = np.random.RandomState(199)
|
||||
n = 2000
|
||||
sparsity = 0.75
|
||||
X, y = datasets.make_regression(n, random_state=rng)
|
||||
flag = rng.binomial(1, sparsity, X.shape)
|
||||
for i in range(X.shape[0]):
|
||||
for j in range(X.shape[1]):
|
||||
if flag[i, j]:
|
||||
X[i, j] = np.nan
|
||||
return X, y
|
||||
|
||||
|
||||
@memory.cache
|
||||
def get_ames_housing() -> Tuple[np.ndarray, np.ndarray]:
|
||||
"""
|
||||
Number of samples: 1460
|
||||
Number of features: 20
|
||||
Number of categorical features: 10
|
||||
Number of numerical features: 10
|
||||
"""
|
||||
datasets = pytest.importorskip("sklearn.datasets")
|
||||
X, y = datasets.fetch_openml(data_id=42165, as_frame=True, return_X_y=True)
|
||||
|
||||
categorical_columns_subset: List[str] = [
|
||||
"BldgType", # 5 cats, no nan
|
||||
"GarageFinish", # 3 cats, nan
|
||||
"LotConfig", # 5 cats, no nan
|
||||
"Functional", # 7 cats, no nan
|
||||
"MasVnrType", # 4 cats, nan
|
||||
"HouseStyle", # 8 cats, no nan
|
||||
"FireplaceQu", # 5 cats, nan
|
||||
"ExterCond", # 5 cats, no nan
|
||||
"ExterQual", # 4 cats, no nan
|
||||
"PoolQC", # 3 cats, nan
|
||||
]
|
||||
|
||||
numerical_columns_subset: List[str] = [
|
||||
"3SsnPorch",
|
||||
"Fireplaces",
|
||||
"BsmtHalfBath",
|
||||
"HalfBath",
|
||||
"GarageCars",
|
||||
"TotRmsAbvGrd",
|
||||
"BsmtFinSF1",
|
||||
"BsmtFinSF2",
|
||||
"GrLivArea",
|
||||
"ScreenPorch",
|
||||
]
|
||||
|
||||
X = X[categorical_columns_subset + numerical_columns_subset]
|
||||
X[categorical_columns_subset] = X[categorical_columns_subset].astype("category")
|
||||
return X, y
|
||||
|
||||
|
||||
@memory.cache
|
||||
def get_mq2008(
|
||||
dpath: str,
|
||||
) -> Tuple[
|
||||
sparse.csr_matrix,
|
||||
np.ndarray,
|
||||
np.ndarray,
|
||||
sparse.csr_matrix,
|
||||
np.ndarray,
|
||||
np.ndarray,
|
||||
sparse.csr_matrix,
|
||||
np.ndarray,
|
||||
np.ndarray,
|
||||
]:
|
||||
"""Fetch the mq2008 dataset."""
|
||||
datasets = pytest.importorskip("sklearn.datasets")
|
||||
src = "https://s3-us-west-2.amazonaws.com/xgboost-examples/MQ2008.zip"
|
||||
target = os.path.join(dpath, "MQ2008.zip")
|
||||
if not os.path.exists(target):
|
||||
request.urlretrieve(url=src, filename=target)
|
||||
|
||||
with zipfile.ZipFile(target, "r") as f:
|
||||
f.extractall(path=dpath)
|
||||
|
||||
(
|
||||
x_train,
|
||||
y_train,
|
||||
qid_train,
|
||||
x_test,
|
||||
y_test,
|
||||
qid_test,
|
||||
x_valid,
|
||||
y_valid,
|
||||
qid_valid,
|
||||
) = datasets.load_svmlight_files(
|
||||
(
|
||||
os.path.join(dpath, "MQ2008/Fold1/train.txt"),
|
||||
os.path.join(dpath, "MQ2008/Fold1/test.txt"),
|
||||
os.path.join(dpath, "MQ2008/Fold1/vali.txt"),
|
||||
),
|
||||
query_id=True,
|
||||
zero_based=False,
|
||||
)
|
||||
|
||||
return (
|
||||
x_train,
|
||||
y_train,
|
||||
qid_train,
|
||||
x_test,
|
||||
y_test,
|
||||
qid_test,
|
||||
x_valid,
|
||||
y_valid,
|
||||
qid_valid,
|
||||
)
|
||||
|
||||
@ -4,8 +4,8 @@ from typing import cast
|
||||
|
||||
import pytest
|
||||
|
||||
hypothesis = pytest.importorskip("hypothesis")
|
||||
from hypothesis import strategies # pylint:disable=wrong-import-position
|
||||
strategies = pytest.importorskip("hypothesis.strategies")
|
||||
|
||||
|
||||
exact_parameter_strategy = strategies.fixed_dictionaries(
|
||||
{
|
||||
@ -41,6 +41,26 @@ hist_parameter_strategy = strategies.fixed_dictionaries(
|
||||
and (cast(int, x["max_depth"]) > 0 or x["grow_policy"] == "lossguide")
|
||||
)
|
||||
|
||||
hist_multi_parameter_strategy = strategies.fixed_dictionaries(
|
||||
{
|
||||
"max_depth": strategies.integers(1, 11),
|
||||
"max_leaves": strategies.integers(0, 1024),
|
||||
"max_bin": strategies.integers(2, 512),
|
||||
"multi_strategy": strategies.sampled_from(
|
||||
["multi_output_tree", "one_output_per_tree"]
|
||||
),
|
||||
"grow_policy": strategies.sampled_from(["lossguide", "depthwise"]),
|
||||
"min_child_weight": strategies.floats(0.5, 2.0),
|
||||
# We cannot enable subsampling as the training loss can increase
|
||||
# 'subsample': strategies.floats(0.5, 1.0),
|
||||
"colsample_bytree": strategies.floats(0.5, 1.0),
|
||||
"colsample_bylevel": strategies.floats(0.5, 1.0),
|
||||
}
|
||||
).filter(
|
||||
lambda x: (cast(int, x["max_depth"]) > 0 or cast(int, x["max_leaves"]) > 0)
|
||||
and (cast(int, x["max_depth"]) > 0 or x["grow_policy"] == "lossguide")
|
||||
)
|
||||
|
||||
cat_parameter_strategy = strategies.fixed_dictionaries(
|
||||
{
|
||||
"max_cat_to_onehot": strategies.integers(1, 128),
|
||||
|
||||
@ -48,7 +48,12 @@ def run_ranking_qid_df(impl: ModuleType, tree_method: str) -> None:
|
||||
def neg_mse(*args: Any, **kwargs: Any) -> float:
|
||||
return -float(mean_squared_error(*args, **kwargs))
|
||||
|
||||
ranker = xgb.XGBRanker(n_estimators=3, eval_metric=neg_mse, tree_method=tree_method)
|
||||
ranker = xgb.XGBRanker(
|
||||
n_estimators=3,
|
||||
eval_metric=neg_mse,
|
||||
tree_method=tree_method,
|
||||
disable_default_eval_metric=True,
|
||||
)
|
||||
ranker.fit(df, y, eval_set=[(valid_df, y)])
|
||||
score = ranker.score(valid_df, y)
|
||||
assert np.isclose(score, ranker.evals_result()["validation_0"]["neg_mse"][-1])
|
||||
|
||||
@ -55,6 +55,7 @@ inline void CalcPredictShape(bool strict_shape, PredictionType type, size_t rows
|
||||
*out_dim = 2;
|
||||
shape.resize(*out_dim);
|
||||
shape.front() = rows;
|
||||
// chunksize can be 1 if it's softmax
|
||||
shape.back() = std::min(groups, chunksize);
|
||||
}
|
||||
break;
|
||||
|
||||
@ -14,7 +14,7 @@
|
||||
|
||||
// clang with libstdc++ works as well
|
||||
#if defined(__GNUC__) && (__GNUC__ >= 4) && !defined(__sun) && !defined(sun) && \
|
||||
!defined(__APPLE__) && __has_include(<omp.h>)
|
||||
!defined(__APPLE__) && __has_include(<omp.h>) && __has_include(<parallel/algorithm>)
|
||||
#define GCC_HAS_PARALLEL 1
|
||||
#endif // GLIC_VERSION
|
||||
|
||||
|
||||
@ -121,17 +121,20 @@ namespace dh {
|
||||
#ifdef XGBOOST_USE_NCCL
|
||||
#define safe_nccl(ans) ThrowOnNcclError((ans), __FILE__, __LINE__)
|
||||
|
||||
inline ncclResult_t ThrowOnNcclError(ncclResult_t code, const char *file,
|
||||
int line) {
|
||||
inline ncclResult_t ThrowOnNcclError(ncclResult_t code, const char *file, int line) {
|
||||
if (code != ncclSuccess) {
|
||||
std::stringstream ss;
|
||||
ss << "NCCL failure :" << ncclGetErrorString(code);
|
||||
ss << "NCCL failure: " << ncclGetErrorString(code) << ".";
|
||||
ss << " " << file << "(" << line << ")\n";
|
||||
if (code == ncclUnhandledCudaError) {
|
||||
// nccl usually preserves the last error so we can get more details.
|
||||
auto err = cudaPeekAtLastError();
|
||||
ss << " " << thrust::system_error(err, thrust::cuda_category()).what();
|
||||
ss << " CUDA error: " << thrust::system_error(err, thrust::cuda_category()).what() << "\n";
|
||||
} else if (code == ncclSystemError) {
|
||||
ss << " This might be caused by a network configuration issue. Please consider specifying "
|
||||
"the network interface for NCCL via environment variables listed in its reference: "
|
||||
"`https://docs.nvidia.com/deeplearning/nccl/user-guide/docs/env.html`.\n";
|
||||
}
|
||||
ss << " " << file << "(" << line << ")";
|
||||
LOG(FATAL) << ss.str();
|
||||
}
|
||||
|
||||
|
||||
@ -2,6 +2,9 @@
|
||||
* Copyright 2017-2023 XGBoost contributors
|
||||
*/
|
||||
#pragma once
|
||||
|
||||
#if defined(XGBOOST_USE_CUDA)
|
||||
|
||||
#include <thrust/binary_search.h> // thrust::upper_bound
|
||||
#include <thrust/device_malloc_allocator.h>
|
||||
#include <thrust/device_ptr.h>
|
||||
@ -95,20 +98,23 @@ XGBOOST_DEV_INLINE T atomicAdd(T *addr, T v) { // NOLINT
|
||||
}
|
||||
namespace dh {
|
||||
|
||||
#ifdef XGBOOST_USE_NCCL
|
||||
#ifdef XGBOOST_USE_RCCL
|
||||
#define safe_nccl(ans) ThrowOnNcclError((ans), __FILE__, __LINE__)
|
||||
|
||||
inline ncclResult_t ThrowOnNcclError(ncclResult_t code, const char *file,
|
||||
int line) {
|
||||
inline ncclResult_t ThrowOnNcclError(ncclResult_t code, const char *file, int line) {
|
||||
if (code != ncclSuccess) {
|
||||
std::stringstream ss;
|
||||
ss << "NCCL failure :" << ncclGetErrorString(code);
|
||||
ss << "RCCL failure: " << ncclGetErrorString(code) << ".";
|
||||
ss << " " << file << "(" << line << ")\n";
|
||||
if (code == ncclUnhandledCudaError) {
|
||||
// nccl usually preserves the last error so we can get more details.
|
||||
auto err = hipPeekAtLastError();
|
||||
ss << " " << thrust::system_error(err, thrust::hip_category()).what();
|
||||
ss << " CUDA error: " << thrust::system_error(err, thrust::cuda_category()).what() << "\n";
|
||||
} else if (code == ncclSystemError) {
|
||||
ss << " This might be caused by a network configuration issue. Please consider specifying "
|
||||
"the network interface for NCCL via environment variables listed in its reference: "
|
||||
"`https://docs.nvidia.com/deeplearning/nccl/user-guide/docs/env.html`.\n";
|
||||
}
|
||||
ss << " " << file << "(" << line << ")";
|
||||
LOG(FATAL) << ss.str();
|
||||
}
|
||||
|
||||
|
||||
@ -20,5 +20,9 @@ constexpr StringView GroupSize() {
|
||||
constexpr StringView LabelScoreSize() {
|
||||
return "The size of label doesn't match the size of prediction.";
|
||||
}
|
||||
|
||||
constexpr StringView InfInData() {
|
||||
return "Input data contains `inf` or a value too large, while `missing` is not set to `inf`";
|
||||
}
|
||||
} // namespace xgboost::error
|
||||
#endif // XGBOOST_COMMON_ERROR_MSG_H_
|
||||
|
||||
@ -7,23 +7,22 @@
|
||||
#ifndef XGBOOST_COMMON_HIST_UTIL_H_
|
||||
#define XGBOOST_COMMON_HIST_UTIL_H_
|
||||
|
||||
#include <xgboost/data.h>
|
||||
|
||||
#include <algorithm>
|
||||
#include <cstdint> // for uint32_t
|
||||
#include <limits>
|
||||
#include <map>
|
||||
#include <memory>
|
||||
#include <utility>
|
||||
#include <vector>
|
||||
|
||||
#include "algorithm.h" // SegmentId
|
||||
#include "categorical.h"
|
||||
#include "common.h"
|
||||
#include "quantile.h"
|
||||
#include "row_set.h"
|
||||
#include "threading_utils.h"
|
||||
#include "timer.h"
|
||||
#include "xgboost/base.h" // bst_feature_t, bst_bin_t
|
||||
#include "xgboost/base.h" // for bst_feature_t, bst_bin_t
|
||||
#include "xgboost/data.h"
|
||||
|
||||
namespace xgboost {
|
||||
class GHistIndexMatrix;
|
||||
@ -392,15 +391,18 @@ class HistCollection {
|
||||
}
|
||||
|
||||
// have we computed a histogram for i-th node?
|
||||
bool RowExists(bst_uint nid) const {
|
||||
[[nodiscard]] bool RowExists(bst_uint nid) const {
|
||||
const uint32_t k_max = std::numeric_limits<uint32_t>::max();
|
||||
return (nid < row_ptr_.size() && row_ptr_[nid] != k_max);
|
||||
}
|
||||
|
||||
// initialize histogram collection
|
||||
void Init(uint32_t nbins) {
|
||||
if (nbins_ != nbins) {
|
||||
nbins_ = nbins;
|
||||
/**
|
||||
* \brief Initialize histogram collection.
|
||||
*
|
||||
* \param n_total_bins Number of bins across all features.
|
||||
*/
|
||||
void Init(std::uint32_t n_total_bins) {
|
||||
if (nbins_ != n_total_bins) {
|
||||
nbins_ = n_total_bins;
|
||||
// quite expensive operation, so let's do this only once
|
||||
data_.clear();
|
||||
}
|
||||
|
||||
@ -333,7 +333,7 @@ size_t constexpr JsonReader::kMaxNumLength;
|
||||
Json JsonReader::Parse() {
|
||||
while (true) {
|
||||
SkipSpaces();
|
||||
char c = PeekNextChar();
|
||||
auto c = PeekNextChar();
|
||||
if (c == -1) { break; }
|
||||
|
||||
if (c == '{') {
|
||||
@ -408,13 +408,13 @@ void JsonReader::Error(std::string msg) const {
|
||||
}
|
||||
|
||||
namespace {
|
||||
bool IsSpace(char c) { return c == ' ' || c == '\n' || c == '\r' || c == '\t'; }
|
||||
bool IsSpace(JsonReader::Char c) { return c == ' ' || c == '\n' || c == '\r' || c == '\t'; }
|
||||
} // anonymous namespace
|
||||
|
||||
// Json class
|
||||
void JsonReader::SkipSpaces() {
|
||||
while (cursor_.Pos() < raw_str_.size()) {
|
||||
char c = raw_str_[cursor_.Pos()];
|
||||
Char c = raw_str_[cursor_.Pos()];
|
||||
if (IsSpace(c)) {
|
||||
cursor_.Forward();
|
||||
} else {
|
||||
@ -436,12 +436,12 @@ void ParseStr(std::string const& str) {
|
||||
}
|
||||
|
||||
Json JsonReader::ParseString() {
|
||||
char ch { GetConsecutiveChar('\"') }; // NOLINT
|
||||
Char ch { GetConsecutiveChar('\"') }; // NOLINT
|
||||
std::string str;
|
||||
while (true) {
|
||||
ch = GetNextChar();
|
||||
if (ch == '\\') {
|
||||
char next = static_cast<char>(GetNextChar());
|
||||
Char next{GetNextChar()};
|
||||
switch (next) {
|
||||
case 'r': str += u8"\r"; break;
|
||||
case 'n': str += u8"\n"; break;
|
||||
@ -466,8 +466,8 @@ Json JsonReader::ParseString() {
|
||||
}
|
||||
|
||||
Json JsonReader::ParseNull() {
|
||||
char ch = GetNextNonSpaceChar();
|
||||
std::string buffer{ch};
|
||||
Char ch = GetNextNonSpaceChar();
|
||||
std::string buffer{static_cast<char>(ch)};
|
||||
for (size_t i = 0; i < 3; ++i) {
|
||||
buffer.push_back(GetNextChar());
|
||||
}
|
||||
@ -480,7 +480,7 @@ Json JsonReader::ParseNull() {
|
||||
Json JsonReader::ParseArray() {
|
||||
std::vector<Json> data;
|
||||
|
||||
char ch { GetConsecutiveChar('[') }; // NOLINT
|
||||
Char ch { GetConsecutiveChar('[') }; // NOLINT
|
||||
while (true) {
|
||||
if (PeekNextChar() == ']') {
|
||||
GetConsecutiveChar(']');
|
||||
@ -503,7 +503,7 @@ Json JsonReader::ParseObject() {
|
||||
|
||||
Object::Map data;
|
||||
SkipSpaces();
|
||||
char ch = PeekNextChar();
|
||||
auto ch = PeekNextChar();
|
||||
|
||||
if (ch == '}') {
|
||||
GetConsecutiveChar('}');
|
||||
@ -652,7 +652,7 @@ Json JsonReader::ParseNumber() {
|
||||
|
||||
Json JsonReader::ParseBoolean() {
|
||||
bool result = false;
|
||||
char ch = GetNextNonSpaceChar();
|
||||
Char ch = GetNextNonSpaceChar();
|
||||
std::string const t_value = u8"true";
|
||||
std::string const f_value = u8"false";
|
||||
|
||||
@ -737,7 +737,8 @@ Json UBJReader::ParseArray() {
|
||||
case 'L':
|
||||
return ParseTypedArray<I64Array>(n);
|
||||
default:
|
||||
LOG(FATAL) << "`" + std::string{type} + "` is not supported for typed array."; // NOLINT
|
||||
LOG(FATAL) << "`" + std::string{static_cast<char>(type)} + // NOLINT
|
||||
"` is not supported for typed array.";
|
||||
}
|
||||
}
|
||||
std::vector<Json> results;
|
||||
@ -794,7 +795,7 @@ Json UBJReader::Load() {
|
||||
|
||||
Json UBJReader::Parse() {
|
||||
while (true) {
|
||||
char c = PeekNextChar();
|
||||
auto c = PeekNextChar();
|
||||
if (c == -1) {
|
||||
break;
|
||||
}
|
||||
|
||||
@ -1,13 +1,15 @@
|
||||
/*!
|
||||
* Copyright 2022, XGBoost contributors.
|
||||
/**
|
||||
* Copyright 2022-2023 by XGBoost contributors.
|
||||
*/
|
||||
#ifndef XGBOOST_COMMON_NUMERIC_H_
|
||||
#define XGBOOST_COMMON_NUMERIC_H_
|
||||
|
||||
#include <dmlc/common.h> // OMPException
|
||||
|
||||
#include <algorithm> // std::max
|
||||
#include <iterator> // std::iterator_traits
|
||||
#include <algorithm> // for std::max
|
||||
#include <cstddef> // for size_t
|
||||
#include <cstdint> // for int32_t
|
||||
#include <iterator> // for iterator_traits
|
||||
#include <vector>
|
||||
|
||||
#include "common.h" // AssertGPUSupport
|
||||
@ -15,8 +17,7 @@
|
||||
#include "xgboost/context.h" // Context
|
||||
#include "xgboost/host_device_vector.h" // HostDeviceVector
|
||||
|
||||
namespace xgboost {
|
||||
namespace common {
|
||||
namespace xgboost::common {
|
||||
|
||||
/**
|
||||
* \brief Run length encode on CPU, input must be sorted.
|
||||
@ -111,11 +112,11 @@ inline double Reduce(Context const*, HostDeviceVector<float> const&) {
|
||||
namespace cpu_impl {
|
||||
template <typename It, typename V = typename It::value_type>
|
||||
V Reduce(Context const* ctx, It first, It second, V const& init) {
|
||||
size_t n = std::distance(first, second);
|
||||
common::MemStackAllocator<V, common::DefaultMaxThreads()> result_tloc(ctx->Threads(), init);
|
||||
common::ParallelFor(n, ctx->Threads(),
|
||||
[&](auto i) { result_tloc[omp_get_thread_num()] += first[i]; });
|
||||
auto result = std::accumulate(result_tloc.cbegin(), result_tloc.cbegin() + ctx->Threads(), init);
|
||||
std::size_t n = std::distance(first, second);
|
||||
auto n_threads = static_cast<std::size_t>(std::min(n, static_cast<std::size_t>(ctx->Threads())));
|
||||
common::MemStackAllocator<V, common::DefaultMaxThreads()> result_tloc(n_threads, init);
|
||||
common::ParallelFor(n, n_threads, [&](auto i) { result_tloc[omp_get_thread_num()] += first[i]; });
|
||||
auto result = std::accumulate(result_tloc.cbegin(), result_tloc.cbegin() + n_threads, init);
|
||||
return result;
|
||||
}
|
||||
} // namespace cpu_impl
|
||||
@ -144,7 +145,6 @@ void Iota(Context const* ctx, It first, It last,
|
||||
});
|
||||
}
|
||||
}
|
||||
} // namespace common
|
||||
} // namespace xgboost
|
||||
} // namespace xgboost::common
|
||||
|
||||
#endif // XGBOOST_COMMON_NUMERIC_H_
|
||||
|
||||
@ -1,5 +1,5 @@
|
||||
/*!
|
||||
* Copyright 2021-2022 by Contributors
|
||||
/**
|
||||
* Copyright 2021-2023 by Contributors
|
||||
* \file row_set.h
|
||||
* \brief Quick Utility to compute subset of rows
|
||||
* \author Philip Cho, Tianqi Chen
|
||||
@ -10,6 +10,7 @@
|
||||
#include <xgboost/data.h>
|
||||
|
||||
#include <algorithm>
|
||||
#include <cstddef> // for size_t
|
||||
#include <limits>
|
||||
#include <memory>
|
||||
#include <utility>
|
||||
@ -21,9 +22,7 @@
|
||||
#include "xgboost/context.h"
|
||||
#include "xgboost/tree_model.h"
|
||||
|
||||
namespace xgboost {
|
||||
namespace common {
|
||||
|
||||
namespace xgboost::common {
|
||||
// The builder is required for samples partition to left and rights children for set of nodes
|
||||
// Responsible for:
|
||||
// 1) Effective memory allocation for intermediate results for multi-thread work
|
||||
@ -109,18 +108,17 @@ class PartitionBuilder {
|
||||
return {nleft_elems, nright_elems};
|
||||
}
|
||||
|
||||
template <typename BinIdxType, bool any_missing, bool any_cat>
|
||||
void Partition(const size_t node_in_set, std::vector<xgboost::tree::CPUExpandEntry> const &nodes,
|
||||
const common::Range1d range,
|
||||
const bst_bin_t split_cond, GHistIndexMatrix const& gmat,
|
||||
const common::ColumnMatrix& column_matrix,
|
||||
template <typename BinIdxType, bool any_missing, bool any_cat, typename ExpandEntry>
|
||||
void Partition(const size_t node_in_set, std::vector<ExpandEntry> const& nodes,
|
||||
const common::Range1d range, const bst_bin_t split_cond,
|
||||
GHistIndexMatrix const& gmat, const common::ColumnMatrix& column_matrix,
|
||||
const RegTree& tree, const size_t* rid) {
|
||||
common::Span<const size_t> rid_span(rid + range.begin(), rid + range.end());
|
||||
common::Span<size_t> left = GetLeftBuffer(node_in_set, range.begin(), range.end());
|
||||
common::Span<size_t> right = GetRightBuffer(node_in_set, range.begin(), range.end());
|
||||
std::size_t nid = nodes[node_in_set].nid;
|
||||
bst_feature_t fid = tree[nid].SplitIndex();
|
||||
bool default_left = tree[nid].DefaultLeft();
|
||||
bst_feature_t fid = tree.SplitIndex(nid);
|
||||
bool default_left = tree.DefaultLeft(nid);
|
||||
bool is_cat = tree.GetSplitTypes()[nid] == FeatureType::kCategorical;
|
||||
auto node_cats = tree.NodeCats(nid);
|
||||
auto const& cut_values = gmat.cut.Values();
|
||||
@ -190,10 +188,10 @@ class PartitionBuilder {
|
||||
* worker, so we go through all the rows and mark the bit vectors on whether the decision is made
|
||||
* to go right, or if the feature value used for the split is missing.
|
||||
*/
|
||||
void MaskRows(const size_t node_in_set, std::vector<xgboost::tree::CPUExpandEntry> const &nodes,
|
||||
template <typename ExpandEntry>
|
||||
void MaskRows(const size_t node_in_set, std::vector<ExpandEntry> const& nodes,
|
||||
const common::Range1d range, GHistIndexMatrix const& gmat,
|
||||
const common::ColumnMatrix& column_matrix,
|
||||
const RegTree& tree, const size_t* rid,
|
||||
const common::ColumnMatrix& column_matrix, const RegTree& tree, const size_t* rid,
|
||||
BitVector* decision_bits, BitVector* missing_bits) {
|
||||
common::Span<const size_t> rid_span(rid + range.begin(), rid + range.end());
|
||||
std::size_t nid = nodes[node_in_set].nid;
|
||||
@ -228,8 +226,8 @@ class PartitionBuilder {
|
||||
* @brief Once we've aggregated the decision and missing bits from all the workers, we can then
|
||||
* use them to partition the rows accordingly.
|
||||
*/
|
||||
void PartitionByMask(const size_t node_in_set,
|
||||
std::vector<xgboost::tree::CPUExpandEntry> const& nodes,
|
||||
template <typename ExpandEntry>
|
||||
void PartitionByMask(const size_t node_in_set, std::vector<ExpandEntry> const& nodes,
|
||||
const common::Range1d range, GHistIndexMatrix const& gmat,
|
||||
const common::ColumnMatrix& column_matrix, const RegTree& tree,
|
||||
const size_t* rid, BitVector const& decision_bits,
|
||||
@ -293,11 +291,11 @@ class PartitionBuilder {
|
||||
}
|
||||
|
||||
|
||||
size_t GetNLeftElems(int nid) const {
|
||||
[[nodiscard]] std::size_t GetNLeftElems(int nid) const {
|
||||
return left_right_nodes_sizes_[nid].first;
|
||||
}
|
||||
|
||||
size_t GetNRightElems(int nid) const {
|
||||
[[nodiscard]] std::size_t GetNRightElems(int nid) const {
|
||||
return left_right_nodes_sizes_[nid].second;
|
||||
}
|
||||
|
||||
@ -349,7 +347,7 @@ class PartitionBuilder {
|
||||
if (node.node_id < 0) {
|
||||
return;
|
||||
}
|
||||
CHECK(tree[node.node_id].IsLeaf());
|
||||
CHECK(tree.IsLeaf(node.node_id));
|
||||
if (node.begin) { // guard for empty node.
|
||||
size_t ptr_offset = node.end - p_begin;
|
||||
CHECK_LE(ptr_offset, row_set.Data()->size()) << node.node_id;
|
||||
@ -384,8 +382,5 @@ class PartitionBuilder {
|
||||
std::vector<std::shared_ptr<BlockInfo>> mem_blocks_;
|
||||
size_t max_n_tasks_ = 0;
|
||||
};
|
||||
|
||||
} // namespace common
|
||||
} // namespace xgboost
|
||||
|
||||
} // namespace xgboost::common
|
||||
#endif // XGBOOST_COMMON_PARTITION_BUILDER_H_
|
||||
|
||||
@ -359,6 +359,7 @@ void AddCutPoint(typename SketchType::SummaryContainer const &summary, int max_b
|
||||
HistogramCuts *cuts) {
|
||||
size_t required_cuts = std::min(summary.size, static_cast<size_t>(max_bin));
|
||||
auto &cut_values = cuts->cut_values_.HostVector();
|
||||
// we use the min_value as the first (0th) element, hence starting from 1.
|
||||
for (size_t i = 1; i < required_cuts; ++i) {
|
||||
bst_float cpt = summary.data[i].value;
|
||||
if (i == 1 || cpt > cut_values.back()) {
|
||||
@ -419,8 +420,8 @@ void SketchContainerImpl<WQSketch>::MakeCuts(HistogramCuts* cuts) {
|
||||
} else {
|
||||
AddCutPoint<WQSketch>(a, max_num_bins, cuts);
|
||||
// push a value that is greater than anything
|
||||
const bst_float cpt = (a.size > 0) ? a.data[a.size - 1].value
|
||||
: cuts->min_vals_.HostVector()[fid];
|
||||
const bst_float cpt =
|
||||
(a.size > 0) ? a.data[a.size - 1].value : cuts->min_vals_.HostVector()[fid];
|
||||
// this must be bigger than last value in a scale
|
||||
const bst_float last = cpt + (fabs(cpt) + 1e-5f);
|
||||
cuts->cut_values_.HostVector().push_back(last);
|
||||
|
||||
@ -352,19 +352,6 @@ struct WQSummary {
|
||||
prev_rmax = data[i].rmax;
|
||||
}
|
||||
}
|
||||
// check consistency of the summary
|
||||
inline bool Check(const char *msg) const {
|
||||
const float tol = 10.0f;
|
||||
for (size_t i = 0; i < this->size; ++i) {
|
||||
if (data[i].rmin + data[i].wmin > data[i].rmax + tol ||
|
||||
data[i].rmin < -1e-6f || data[i].rmax < -1e-6f) {
|
||||
LOG(INFO) << "---------- WQSummary::Check did not pass ----------";
|
||||
this->Print();
|
||||
return false;
|
||||
}
|
||||
}
|
||||
return true;
|
||||
}
|
||||
};
|
||||
|
||||
/*! \brief try to do efficient pruning */
|
||||
|
||||
@ -6,9 +6,7 @@
|
||||
#include <algorithm> // for copy_n, max, min, none_of, all_of
|
||||
#include <cstddef> // for size_t
|
||||
#include <cstdio> // for sscanf
|
||||
#include <exception> // for exception
|
||||
#include <functional> // for greater
|
||||
#include <iterator> // for reverse_iterator
|
||||
#include <string> // for char_traits, string
|
||||
|
||||
#include "algorithm.h" // for ArgSort
|
||||
@ -18,12 +16,113 @@
|
||||
#include "xgboost/base.h" // for bst_group_t
|
||||
#include "xgboost/context.h" // for Context
|
||||
#include "xgboost/data.h" // for MetaInfo
|
||||
#include "xgboost/linalg.h" // for All, TensorView, Range, Tensor, Vector
|
||||
#include "xgboost/logging.h" // for Error, LogCheck_EQ, CHECK_EQ
|
||||
#include "xgboost/linalg.h" // for All, TensorView, Range
|
||||
#include "xgboost/logging.h" // for CHECK_EQ
|
||||
|
||||
namespace xgboost::ltr {
|
||||
void RankingCache::InitOnCPU(Context const* ctx, MetaInfo const& info) {
|
||||
if (info.group_ptr_.empty()) {
|
||||
group_ptr_.Resize(2, 0);
|
||||
group_ptr_.HostVector()[1] = info.num_row_;
|
||||
} else {
|
||||
group_ptr_.HostVector() = info.group_ptr_;
|
||||
}
|
||||
|
||||
auto const& gptr = group_ptr_.ConstHostVector();
|
||||
for (std::size_t i = 1; i < gptr.size(); ++i) {
|
||||
std::size_t n = gptr[i] - gptr[i - 1];
|
||||
max_group_size_ = std::max(max_group_size_, n);
|
||||
}
|
||||
|
||||
double sum_weights = 0;
|
||||
auto n_groups = Groups();
|
||||
auto weight = common::MakeOptionalWeights(ctx, info.weights_);
|
||||
for (bst_omp_uint k = 0; k < n_groups; ++k) {
|
||||
sum_weights += weight[k];
|
||||
}
|
||||
weight_norm_ = static_cast<double>(n_groups) / sum_weights;
|
||||
}
|
||||
|
||||
common::Span<std::size_t const> RankingCache::MakeRankOnCPU(Context const* ctx,
|
||||
common::Span<float const> predt) {
|
||||
auto gptr = this->DataGroupPtr(ctx);
|
||||
auto rank = this->sorted_idx_cache_.HostSpan();
|
||||
CHECK_EQ(rank.size(), predt.size());
|
||||
|
||||
common::ParallelFor(this->Groups(), ctx->Threads(), [&](auto g) {
|
||||
auto cnt = gptr[g + 1] - gptr[g];
|
||||
auto g_predt = predt.subspan(gptr[g], cnt);
|
||||
auto g_rank = rank.subspan(gptr[g], cnt);
|
||||
auto sorted_idx = common::ArgSort<std::size_t>(
|
||||
ctx, g_predt.data(), g_predt.data() + g_predt.size(), std::greater<>{});
|
||||
CHECK_EQ(g_rank.size(), sorted_idx.size());
|
||||
std::copy_n(sorted_idx.data(), sorted_idx.size(), g_rank.data());
|
||||
});
|
||||
|
||||
return rank;
|
||||
}
|
||||
|
||||
#if !defined(XGBOOST_USE_CUDA)
|
||||
void RankingCache::InitOnCUDA(Context const*, MetaInfo const&) { common::AssertGPUSupport(); }
|
||||
common::Span<std::size_t const> RankingCache::MakeRankOnCUDA(Context const*,
|
||||
common::Span<float const>) {
|
||||
common::AssertGPUSupport();
|
||||
return {};
|
||||
}
|
||||
#endif // !defined()
|
||||
|
||||
void NDCGCache::InitOnCPU(Context const* ctx, MetaInfo const& info) {
|
||||
auto const h_group_ptr = this->DataGroupPtr(ctx);
|
||||
|
||||
discounts_.Resize(MaxGroupSize(), 0);
|
||||
auto& h_discounts = discounts_.HostVector();
|
||||
for (std::size_t i = 0; i < MaxGroupSize(); ++i) {
|
||||
h_discounts[i] = CalcDCGDiscount(i);
|
||||
}
|
||||
|
||||
auto n_groups = h_group_ptr.size() - 1;
|
||||
auto h_labels = info.labels.HostView().Slice(linalg::All(), 0);
|
||||
|
||||
CheckNDCGLabels(this->Param(), h_labels,
|
||||
[](auto beg, auto end, auto op) { return std::none_of(beg, end, op); });
|
||||
|
||||
inv_idcg_.Reshape(n_groups);
|
||||
auto h_inv_idcg = inv_idcg_.HostView();
|
||||
std::size_t topk = this->Param().TopK();
|
||||
auto const exp_gain = this->Param().ndcg_exp_gain;
|
||||
|
||||
common::ParallelFor(n_groups, ctx->Threads(), [&](auto g) {
|
||||
auto g_labels = h_labels.Slice(linalg::Range(h_group_ptr[g], h_group_ptr[g + 1]));
|
||||
auto sorted_idx = common::ArgSort<std::size_t>(ctx, linalg::cbegin(g_labels),
|
||||
linalg::cend(g_labels), std::greater<>{});
|
||||
|
||||
double idcg{0.0};
|
||||
for (std::size_t i = 0; i < std::min(g_labels.Size(), topk); ++i) {
|
||||
if (exp_gain) {
|
||||
idcg += h_discounts[i] * CalcDCGGain(g_labels(sorted_idx[i]));
|
||||
} else {
|
||||
idcg += h_discounts[i] * g_labels(sorted_idx[i]);
|
||||
}
|
||||
}
|
||||
h_inv_idcg(g) = CalcInvIDCG(idcg);
|
||||
});
|
||||
}
|
||||
|
||||
#if !defined(XGBOOST_USE_CUDA)
|
||||
void NDCGCache::InitOnCUDA(Context const*, MetaInfo const&) { common::AssertGPUSupport(); }
|
||||
#endif // !defined(XGBOOST_USE_CUDA)
|
||||
|
||||
DMLC_REGISTER_PARAMETER(LambdaRankParam);
|
||||
|
||||
void MAPCache::InitOnCPU(Context const*, MetaInfo const& info) {
|
||||
auto const& h_label = info.labels.HostView().Slice(linalg::All(), 0);
|
||||
CheckMapLabels(h_label, [](auto beg, auto end, auto op) { return std::all_of(beg, end, op); });
|
||||
}
|
||||
|
||||
#if !defined(XGBOOST_USE_CUDA)
|
||||
void MAPCache::InitOnCUDA(Context const*, MetaInfo const&) { common::AssertGPUSupport(); }
|
||||
#endif // !defined(XGBOOST_USE_CUDA)
|
||||
|
||||
std::string ParseMetricName(StringView name, StringView param, position_t* topn, bool* minus) {
|
||||
std::string out_name;
|
||||
if (!param.empty()) {
|
||||
|
||||
212
src/common/ranking_utils.cu
Normal file
212
src/common/ranking_utils.cu
Normal file
@ -0,0 +1,212 @@
|
||||
/**
|
||||
* Copyright 2023 by XGBoost Contributors
|
||||
*/
|
||||
#include <thrust/functional.h> // for maximum
|
||||
#include <thrust/iterator/counting_iterator.h> // for make_counting_iterator
|
||||
#include <thrust/logical.h> // for none_of, all_of
|
||||
#include <thrust/pair.h> // for pair, make_pair
|
||||
#include <thrust/reduce.h> // for reduce
|
||||
#include <thrust/scan.h> // for inclusive_scan
|
||||
|
||||
#include <cstddef> // for size_t
|
||||
|
||||
#include "algorithm.cuh" // for SegmentedArgSort
|
||||
#include "cuda_context.cuh" // for CUDAContext
|
||||
#include "device_helpers.cuh" // for MakeTransformIterator, LaunchN
|
||||
#include "optional_weight.h" // for MakeOptionalWeights, OptionalWeights
|
||||
#include "ranking_utils.cuh" // for ThreadsForMean
|
||||
#include "ranking_utils.h"
|
||||
#include "threading_utils.cuh" // for SegmentedTrapezoidThreads
|
||||
#include "xgboost/base.h" // for XGBOOST_DEVICE, bst_group_t
|
||||
#include "xgboost/context.h" // for Context
|
||||
#include "xgboost/linalg.h" // for VectorView, All, Range
|
||||
#include "xgboost/logging.h" // for CHECK
|
||||
#include "xgboost/span.h" // for Span
|
||||
|
||||
namespace xgboost::ltr {
|
||||
namespace cuda_impl {
|
||||
void CalcQueriesDCG(Context const* ctx, linalg::VectorView<float const> d_labels,
|
||||
common::Span<std::size_t const> d_sorted_idx, bool exp_gain,
|
||||
common::Span<bst_group_t const> d_group_ptr, std::size_t k,
|
||||
linalg::VectorView<double> out_dcg) {
|
||||
CHECK_EQ(d_group_ptr.size() - 1, out_dcg.Size());
|
||||
using IdxGroup = thrust::pair<std::size_t, std::size_t>;
|
||||
auto group_it = dh::MakeTransformIterator<IdxGroup>(
|
||||
thrust::make_counting_iterator(0ull), [=] XGBOOST_DEVICE(std::size_t idx) {
|
||||
return thrust::make_pair(idx, dh::SegmentId(d_group_ptr, idx)); // NOLINT
|
||||
});
|
||||
auto value_it = dh::MakeTransformIterator<double>(
|
||||
group_it,
|
||||
[exp_gain, d_labels, d_group_ptr, k,
|
||||
d_sorted_idx] XGBOOST_DEVICE(IdxGroup const& l) -> double {
|
||||
auto g_begin = d_group_ptr[l.second];
|
||||
auto g_size = d_group_ptr[l.second + 1] - g_begin;
|
||||
|
||||
auto idx_in_group = l.first - g_begin;
|
||||
if (idx_in_group >= k) {
|
||||
return 0.0;
|
||||
}
|
||||
double gain{0.0};
|
||||
auto g_sorted_idx = d_sorted_idx.subspan(g_begin, g_size);
|
||||
auto g_labels = d_labels.Slice(linalg::Range(g_begin, g_begin + g_size));
|
||||
|
||||
if (exp_gain) {
|
||||
gain = ltr::CalcDCGGain(g_labels(g_sorted_idx[idx_in_group]));
|
||||
} else {
|
||||
gain = g_labels(g_sorted_idx[idx_in_group]);
|
||||
}
|
||||
double discount = CalcDCGDiscount(idx_in_group);
|
||||
return gain * discount;
|
||||
});
|
||||
|
||||
CHECK(out_dcg.Contiguous());
|
||||
std::size_t bytes;
|
||||
cub::DeviceSegmentedReduce::Sum(nullptr, bytes, value_it, out_dcg.Values().data(),
|
||||
d_group_ptr.size() - 1, d_group_ptr.data(),
|
||||
d_group_ptr.data() + 1, ctx->CUDACtx()->Stream());
|
||||
dh::TemporaryArray<char> temp(bytes);
|
||||
cub::DeviceSegmentedReduce::Sum(temp.data().get(), bytes, value_it, out_dcg.Values().data(),
|
||||
d_group_ptr.size() - 1, d_group_ptr.data(),
|
||||
d_group_ptr.data() + 1, ctx->CUDACtx()->Stream());
|
||||
}
|
||||
|
||||
void CalcQueriesInvIDCG(Context const* ctx, linalg::VectorView<float const> d_labels,
|
||||
common::Span<bst_group_t const> d_group_ptr,
|
||||
linalg::VectorView<double> out_inv_IDCG, ltr::LambdaRankParam const& p) {
|
||||
CHECK_GE(d_group_ptr.size(), 2ul);
|
||||
size_t n_groups = d_group_ptr.size() - 1;
|
||||
CHECK_EQ(out_inv_IDCG.Size(), n_groups);
|
||||
dh::device_vector<std::size_t> sorted_idx(d_labels.Size());
|
||||
auto d_sorted_idx = dh::ToSpan(sorted_idx);
|
||||
common::SegmentedArgSort<false, true>(ctx, d_labels.Values(), d_group_ptr, d_sorted_idx);
|
||||
CalcQueriesDCG(ctx, d_labels, d_sorted_idx, p.ndcg_exp_gain, d_group_ptr, p.TopK(), out_inv_IDCG);
|
||||
dh::LaunchN(out_inv_IDCG.Size(), ctx->CUDACtx()->Stream(),
|
||||
[out_inv_IDCG] XGBOOST_DEVICE(size_t idx) mutable {
|
||||
double idcg = out_inv_IDCG(idx);
|
||||
out_inv_IDCG(idx) = CalcInvIDCG(idcg);
|
||||
});
|
||||
}
|
||||
} // namespace cuda_impl
|
||||
|
||||
namespace {
|
||||
struct CheckNDCGOp {
|
||||
CUDAContext const* cuctx;
|
||||
template <typename It, typename Op>
|
||||
bool operator()(It beg, It end, Op op) {
|
||||
return thrust::none_of(cuctx->CTP(), beg, end, op);
|
||||
}
|
||||
};
|
||||
struct CheckMAPOp {
|
||||
CUDAContext const* cuctx;
|
||||
template <typename It, typename Op>
|
||||
bool operator()(It beg, It end, Op op) {
|
||||
return thrust::all_of(cuctx->CTP(), beg, end, op);
|
||||
}
|
||||
};
|
||||
|
||||
struct ThreadGroupOp {
|
||||
common::Span<bst_group_t const> d_group_ptr;
|
||||
std::size_t n_pairs;
|
||||
|
||||
common::Span<std::size_t> out_thread_group_ptr;
|
||||
|
||||
XGBOOST_DEVICE void operator()(std::size_t i) {
|
||||
out_thread_group_ptr[i + 1] =
|
||||
cuda_impl::ThreadsForMean(d_group_ptr[i + 1] - d_group_ptr[i], n_pairs);
|
||||
}
|
||||
};
|
||||
|
||||
struct GroupSizeOp {
|
||||
common::Span<bst_group_t const> d_group_ptr;
|
||||
|
||||
XGBOOST_DEVICE auto operator()(std::size_t i) -> std::size_t {
|
||||
return d_group_ptr[i + 1] - d_group_ptr[i];
|
||||
}
|
||||
};
|
||||
|
||||
struct WeightOp {
|
||||
common::OptionalWeights d_weight;
|
||||
XGBOOST_DEVICE auto operator()(std::size_t i) -> double { return d_weight[i]; }
|
||||
};
|
||||
} // anonymous namespace
|
||||
|
||||
void RankingCache::InitOnCUDA(Context const* ctx, MetaInfo const& info) {
|
||||
CUDAContext const* cuctx = ctx->CUDACtx();
|
||||
|
||||
group_ptr_.SetDevice(ctx->gpu_id);
|
||||
if (info.group_ptr_.empty()) {
|
||||
group_ptr_.Resize(2, 0);
|
||||
group_ptr_.HostVector()[1] = info.num_row_;
|
||||
} else {
|
||||
auto const& h_group_ptr = info.group_ptr_;
|
||||
group_ptr_.Resize(h_group_ptr.size());
|
||||
auto d_group_ptr = group_ptr_.DeviceSpan();
|
||||
dh::safe_cuda(cudaMemcpyAsync(d_group_ptr.data(), h_group_ptr.data(), d_group_ptr.size_bytes(),
|
||||
cudaMemcpyHostToDevice, cuctx->Stream()));
|
||||
}
|
||||
|
||||
auto d_group_ptr = DataGroupPtr(ctx);
|
||||
std::size_t n_groups = Groups();
|
||||
|
||||
auto it = dh::MakeTransformIterator<std::size_t>(thrust::make_counting_iterator(0ul),
|
||||
GroupSizeOp{d_group_ptr});
|
||||
max_group_size_ =
|
||||
thrust::reduce(cuctx->CTP(), it, it + n_groups, 0ul, thrust::maximum<std::size_t>{});
|
||||
|
||||
threads_group_ptr_.SetDevice(ctx->gpu_id);
|
||||
threads_group_ptr_.Resize(n_groups + 1, 0);
|
||||
auto d_threads_group_ptr = threads_group_ptr_.DeviceSpan();
|
||||
if (param_.HasTruncation()) {
|
||||
n_cuda_threads_ =
|
||||
common::SegmentedTrapezoidThreads(d_group_ptr, d_threads_group_ptr, Param().NumPair());
|
||||
} else {
|
||||
auto n_pairs = Param().NumPair();
|
||||
dh::LaunchN(n_groups, cuctx->Stream(),
|
||||
ThreadGroupOp{d_group_ptr, n_pairs, d_threads_group_ptr});
|
||||
thrust::inclusive_scan(cuctx->CTP(), dh::tcbegin(d_threads_group_ptr),
|
||||
dh::tcend(d_threads_group_ptr), dh::tbegin(d_threads_group_ptr));
|
||||
n_cuda_threads_ = info.num_row_ * param_.NumPair();
|
||||
}
|
||||
|
||||
sorted_idx_cache_.SetDevice(ctx->gpu_id);
|
||||
sorted_idx_cache_.Resize(info.labels.Size(), 0);
|
||||
|
||||
auto weight = common::MakeOptionalWeights(ctx, info.weights_);
|
||||
auto w_it =
|
||||
dh::MakeTransformIterator<double>(thrust::make_counting_iterator(0ul), WeightOp{weight});
|
||||
weight_norm_ = static_cast<double>(n_groups) / thrust::reduce(w_it, w_it + n_groups);
|
||||
}
|
||||
|
||||
common::Span<std::size_t const> RankingCache::MakeRankOnCUDA(Context const* ctx,
|
||||
common::Span<float const> predt) {
|
||||
auto d_sorted_idx = sorted_idx_cache_.DeviceSpan();
|
||||
auto d_group_ptr = DataGroupPtr(ctx);
|
||||
common::SegmentedArgSort<false, true>(ctx, predt, d_group_ptr, d_sorted_idx);
|
||||
return d_sorted_idx;
|
||||
}
|
||||
|
||||
void NDCGCache::InitOnCUDA(Context const* ctx, MetaInfo const& info) {
|
||||
CUDAContext const* cuctx = ctx->CUDACtx();
|
||||
auto labels = info.labels.View(ctx->gpu_id).Slice(linalg::All(), 0);
|
||||
CheckNDCGLabels(this->Param(), labels, CheckNDCGOp{cuctx});
|
||||
|
||||
auto d_group_ptr = this->DataGroupPtr(ctx);
|
||||
|
||||
std::size_t n_groups = d_group_ptr.size() - 1;
|
||||
inv_idcg_ = linalg::Zeros<double>(ctx, n_groups);
|
||||
auto d_inv_idcg = inv_idcg_.View(ctx->gpu_id);
|
||||
cuda_impl::CalcQueriesInvIDCG(ctx, labels, d_group_ptr, d_inv_idcg, this->Param());
|
||||
CHECK_GE(this->Param().NumPair(), 1ul);
|
||||
|
||||
discounts_.SetDevice(ctx->gpu_id);
|
||||
discounts_.Resize(MaxGroupSize());
|
||||
auto d_discount = discounts_.DeviceSpan();
|
||||
dh::LaunchN(MaxGroupSize(), cuctx->Stream(),
|
||||
[=] XGBOOST_DEVICE(std::size_t i) { d_discount[i] = CalcDCGDiscount(i); });
|
||||
}
|
||||
|
||||
void MAPCache::InitOnCUDA(Context const* ctx, MetaInfo const& info) {
|
||||
auto const d_label = info.labels.View(ctx->gpu_id).Slice(linalg::All(), 0);
|
||||
CheckMapLabels(d_label, CheckMAPOp{ctx->CUDACtx()});
|
||||
}
|
||||
} // namespace xgboost::ltr
|
||||
40
src/common/ranking_utils.cuh
Normal file
40
src/common/ranking_utils.cuh
Normal file
@ -0,0 +1,40 @@
|
||||
/**
|
||||
* Copyright 2023 by XGBoost Contributors
|
||||
*/
|
||||
#ifndef XGBOOST_COMMON_RANKING_UTILS_CUH_
|
||||
#define XGBOOST_COMMON_RANKING_UTILS_CUH_
|
||||
|
||||
#include <cstddef> // for size_t
|
||||
|
||||
#include "ranking_utils.h" // for LambdaRankParam
|
||||
#include "xgboost/base.h" // for bst_group_t, XGBOOST_DEVICE
|
||||
#include "xgboost/context.h" // for Context
|
||||
#include "xgboost/linalg.h" // for VectorView
|
||||
#include "xgboost/span.h" // for Span
|
||||
|
||||
namespace xgboost {
|
||||
namespace ltr {
|
||||
namespace cuda_impl {
|
||||
void CalcQueriesDCG(Context const *ctx, linalg::VectorView<float const> d_labels,
|
||||
common::Span<std::size_t const> d_sorted_idx, bool exp_gain,
|
||||
common::Span<bst_group_t const> d_group_ptr, std::size_t k,
|
||||
linalg::VectorView<double> out_dcg);
|
||||
|
||||
void CalcQueriesInvIDCG(Context const *ctx, linalg::VectorView<float const> d_labels,
|
||||
common::Span<bst_group_t const> d_group_ptr,
|
||||
linalg::VectorView<double> out_inv_IDCG, ltr::LambdaRankParam const &p);
|
||||
|
||||
// Functions for creating number of threads for CUDA, and getting back the number of pairs
|
||||
// from the number of threads.
|
||||
XGBOOST_DEVICE __forceinline__ std::size_t ThreadsForMean(std::size_t group_size,
|
||||
std::size_t n_pairs) {
|
||||
return group_size * n_pairs;
|
||||
}
|
||||
XGBOOST_DEVICE __forceinline__ std::size_t PairsForGroup(std::size_t n_threads,
|
||||
std::size_t group_size) {
|
||||
return n_threads / group_size;
|
||||
}
|
||||
} // namespace cuda_impl
|
||||
} // namespace ltr
|
||||
} // namespace xgboost
|
||||
#endif // XGBOOST_COMMON_RANKING_UTILS_CUH_
|
||||
@ -11,7 +11,6 @@
|
||||
#include <string> // for char_traits, string
|
||||
#include <vector> // for vector
|
||||
|
||||
#include "./math.h" // for CloseTo
|
||||
#include "dmlc/parameter.h" // for FieldEntry, DMLC_DECLARE_FIELD
|
||||
#include "error_msg.h" // for GroupWeight, GroupSize
|
||||
#include "xgboost/base.h" // for XGBOOST_DEVICE, bst_group_t
|
||||
@ -19,7 +18,7 @@
|
||||
#include "xgboost/data.h" // for MetaInfo
|
||||
#include "xgboost/host_device_vector.h" // for HostDeviceVector
|
||||
#include "xgboost/linalg.h" // for Vector, VectorView, Tensor
|
||||
#include "xgboost/logging.h" // for LogCheck_EQ, CHECK_EQ, CHECK
|
||||
#include "xgboost/logging.h" // for CHECK_EQ, CHECK
|
||||
#include "xgboost/parameter.h" // for XGBoostParameter
|
||||
#include "xgboost/span.h" // for Span
|
||||
#include "xgboost/string_view.h" // for StringView
|
||||
@ -34,6 +33,25 @@ using rel_degree_t = std::uint32_t; // NOLINT
|
||||
*/
|
||||
using position_t = std::uint32_t; // NOLINT
|
||||
|
||||
/**
|
||||
* \brief Maximum relevance degree for NDCG
|
||||
*/
|
||||
constexpr std::size_t MaxRel() { return sizeof(rel_degree_t) * 8 - 1; }
|
||||
static_assert(MaxRel() == 31);
|
||||
|
||||
XGBOOST_DEVICE inline double CalcDCGGain(rel_degree_t label) {
|
||||
return static_cast<double>((1u << label) - 1);
|
||||
}
|
||||
|
||||
XGBOOST_DEVICE inline double CalcDCGDiscount(std::size_t idx) {
|
||||
return 1.0 / std::log2(static_cast<double>(idx) + 2.0);
|
||||
}
|
||||
|
||||
XGBOOST_DEVICE inline double CalcInvIDCG(double idcg) {
|
||||
auto inv_idcg = (idcg == 0.0 ? 0.0 : (1.0 / idcg)); // handle irrelevant document
|
||||
return inv_idcg;
|
||||
}
|
||||
|
||||
enum class PairMethod : std::int32_t {
|
||||
kTopK = 0,
|
||||
kMean = 1,
|
||||
@ -115,7 +133,7 @@ struct LambdaRankParam : public XGBoostParameter<LambdaRankParam> {
|
||||
.describe("Number of pairs for each sample in the list.");
|
||||
DMLC_DECLARE_FIELD(lambdarank_unbiased)
|
||||
.set_default(false)
|
||||
.describe("Unbiased lambda mart. Use IPW to debias click position");
|
||||
.describe("Unbiased lambda mart. Use extended IPW to debias click position");
|
||||
DMLC_DECLARE_FIELD(lambdarank_bias_norm)
|
||||
.set_default(2.0)
|
||||
.set_lower_bound(0.0)
|
||||
@ -126,6 +144,285 @@ struct LambdaRankParam : public XGBoostParameter<LambdaRankParam> {
|
||||
}
|
||||
};
|
||||
|
||||
/**
|
||||
* \brief Common cached items for ranking tasks.
|
||||
*/
|
||||
class RankingCache {
|
||||
private:
|
||||
void InitOnCPU(Context const* ctx, MetaInfo const& info);
|
||||
void InitOnCUDA(Context const* ctx, MetaInfo const& info);
|
||||
// Cached parameter
|
||||
LambdaRankParam param_;
|
||||
// offset to data groups.
|
||||
HostDeviceVector<bst_group_t> group_ptr_;
|
||||
// store the sorted index of prediction.
|
||||
HostDeviceVector<std::size_t> sorted_idx_cache_;
|
||||
// Maximum size of group
|
||||
std::size_t max_group_size_{0};
|
||||
// Normalization for weight
|
||||
double weight_norm_{1.0};
|
||||
/**
|
||||
* CUDA cache
|
||||
*/
|
||||
// offset to threads assigned to each group for gradient calculation
|
||||
HostDeviceVector<std::size_t> threads_group_ptr_;
|
||||
// Sorted index of label for finding buckets.
|
||||
HostDeviceVector<std::size_t> y_sorted_idx_cache_;
|
||||
// Cached labels sorted by the model
|
||||
HostDeviceVector<float> y_ranked_by_model_;
|
||||
// store rounding factor for objective for each group
|
||||
linalg::Vector<GradientPair> roundings_;
|
||||
// rounding factor for cost
|
||||
HostDeviceVector<double> cost_rounding_;
|
||||
// temporary storage for creating rounding factors. Stored as byte to avoid having cuda
|
||||
// data structure in here.
|
||||
HostDeviceVector<std::uint8_t> max_lambdas_;
|
||||
// total number of cuda threads used for gradient calculation
|
||||
std::size_t n_cuda_threads_{0};
|
||||
|
||||
// Create model rank list on GPU
|
||||
common::Span<std::size_t const> MakeRankOnCUDA(Context const* ctx,
|
||||
common::Span<float const> predt);
|
||||
// Create model rank list on CPU
|
||||
common::Span<std::size_t const> MakeRankOnCPU(Context const* ctx,
|
||||
common::Span<float const> predt);
|
||||
|
||||
protected:
|
||||
[[nodiscard]] std::size_t MaxGroupSize() const { return max_group_size_; }
|
||||
|
||||
public:
|
||||
RankingCache(Context const* ctx, MetaInfo const& info, LambdaRankParam const& p) : param_{p} {
|
||||
CHECK(param_.GetInitialised());
|
||||
if (!info.group_ptr_.empty()) {
|
||||
CHECK_EQ(info.group_ptr_.back(), info.labels.Size())
|
||||
<< error::GroupSize() << "the size of label.";
|
||||
}
|
||||
if (ctx->IsCPU()) {
|
||||
this->InitOnCPU(ctx, info);
|
||||
} else {
|
||||
this->InitOnCUDA(ctx, info);
|
||||
}
|
||||
if (!info.weights_.Empty()) {
|
||||
CHECK_EQ(Groups(), info.weights_.Size()) << error::GroupWeight();
|
||||
}
|
||||
}
|
||||
[[nodiscard]] std::size_t MaxPositionSize() const {
|
||||
// Use truncation level as bound.
|
||||
if (param_.HasTruncation()) {
|
||||
return param_.NumPair();
|
||||
}
|
||||
// Hardcoded maximum size of positions to track. We don't need too many of them as the
|
||||
// bias decreases exponentially.
|
||||
return std::min(max_group_size_, static_cast<std::size_t>(32));
|
||||
}
|
||||
// Constructed as [1, n_samples] if group ptr is not supplied by the user
|
||||
common::Span<bst_group_t const> DataGroupPtr(Context const* ctx) const {
|
||||
group_ptr_.SetDevice(ctx->gpu_id);
|
||||
return ctx->IsCPU() ? group_ptr_.ConstHostSpan() : group_ptr_.ConstDeviceSpan();
|
||||
}
|
||||
|
||||
[[nodiscard]] auto const& Param() const { return param_; }
|
||||
[[nodiscard]] std::size_t Groups() const { return group_ptr_.Size() - 1; }
|
||||
[[nodiscard]] double WeightNorm() const { return weight_norm_; }
|
||||
|
||||
// Create a rank list by model prediction
|
||||
common::Span<std::size_t const> SortedIdx(Context const* ctx, common::Span<float const> predt) {
|
||||
if (sorted_idx_cache_.Empty()) {
|
||||
sorted_idx_cache_.SetDevice(ctx->gpu_id);
|
||||
sorted_idx_cache_.Resize(predt.size());
|
||||
}
|
||||
if (ctx->IsCPU()) {
|
||||
return this->MakeRankOnCPU(ctx, predt);
|
||||
} else {
|
||||
return this->MakeRankOnCUDA(ctx, predt);
|
||||
}
|
||||
}
|
||||
// The function simply returns a uninitialized buffer as this is only used by the
|
||||
// objective for creating pairs.
|
||||
common::Span<std::size_t> SortedIdxY(Context const* ctx, std::size_t n_samples) {
|
||||
CHECK(ctx->IsCUDA());
|
||||
if (y_sorted_idx_cache_.Empty()) {
|
||||
y_sorted_idx_cache_.SetDevice(ctx->gpu_id);
|
||||
y_sorted_idx_cache_.Resize(n_samples);
|
||||
}
|
||||
return y_sorted_idx_cache_.DeviceSpan();
|
||||
}
|
||||
common::Span<float> RankedY(Context const* ctx, std::size_t n_samples) {
|
||||
CHECK(ctx->IsCUDA());
|
||||
if (y_ranked_by_model_.Empty()) {
|
||||
y_ranked_by_model_.SetDevice(ctx->gpu_id);
|
||||
y_ranked_by_model_.Resize(n_samples);
|
||||
}
|
||||
return y_ranked_by_model_.DeviceSpan();
|
||||
}
|
||||
|
||||
// CUDA cache getters, the cache is shared between metric and objective, some of these
|
||||
// fields are lazy initialized to avoid unnecessary allocation.
|
||||
[[nodiscard]] common::Span<std::size_t const> CUDAThreadsGroupPtr() const {
|
||||
CHECK(!threads_group_ptr_.Empty());
|
||||
return threads_group_ptr_.ConstDeviceSpan();
|
||||
}
|
||||
[[nodiscard]] std::size_t CUDAThreads() const { return n_cuda_threads_; }
|
||||
|
||||
linalg::VectorView<GradientPair> CUDARounding(Context const* ctx) {
|
||||
if (roundings_.Size() == 0) {
|
||||
roundings_.SetDevice(ctx->gpu_id);
|
||||
roundings_.Reshape(Groups());
|
||||
}
|
||||
return roundings_.View(ctx->gpu_id);
|
||||
}
|
||||
common::Span<double> CUDACostRounding(Context const* ctx) {
|
||||
if (cost_rounding_.Size() == 0) {
|
||||
cost_rounding_.SetDevice(ctx->gpu_id);
|
||||
cost_rounding_.Resize(1);
|
||||
}
|
||||
return cost_rounding_.DeviceSpan();
|
||||
}
|
||||
template <typename Type>
|
||||
common::Span<Type> MaxLambdas(Context const* ctx, std::size_t n) {
|
||||
max_lambdas_.SetDevice(ctx->gpu_id);
|
||||
std::size_t bytes = n * sizeof(Type);
|
||||
if (bytes != max_lambdas_.Size()) {
|
||||
max_lambdas_.Resize(bytes);
|
||||
}
|
||||
return common::Span<Type>{reinterpret_cast<Type*>(max_lambdas_.DevicePointer()), n};
|
||||
}
|
||||
};
|
||||
|
||||
class NDCGCache : public RankingCache {
|
||||
// NDCG discount
|
||||
HostDeviceVector<double> discounts_;
|
||||
// 1.0 / IDCG
|
||||
linalg::Vector<double> inv_idcg_;
|
||||
/**
|
||||
* CUDA cache
|
||||
*/
|
||||
// store the intermediate DCG calculation result for metric
|
||||
linalg::Vector<double> dcg_;
|
||||
|
||||
public:
|
||||
void InitOnCPU(Context const* ctx, MetaInfo const& info);
|
||||
void InitOnCUDA(Context const* ctx, MetaInfo const& info);
|
||||
|
||||
public:
|
||||
NDCGCache(Context const* ctx, MetaInfo const& info, LambdaRankParam const& p)
|
||||
: RankingCache{ctx, info, p} {
|
||||
if (ctx->IsCPU()) {
|
||||
this->InitOnCPU(ctx, info);
|
||||
} else {
|
||||
this->InitOnCUDA(ctx, info);
|
||||
}
|
||||
}
|
||||
|
||||
linalg::VectorView<double const> InvIDCG(Context const* ctx) const {
|
||||
return inv_idcg_.View(ctx->gpu_id);
|
||||
}
|
||||
common::Span<double const> Discount(Context const* ctx) const {
|
||||
return ctx->IsCPU() ? discounts_.ConstHostSpan() : discounts_.ConstDeviceSpan();
|
||||
}
|
||||
linalg::VectorView<double> Dcg(Context const* ctx) {
|
||||
if (dcg_.Size() == 0) {
|
||||
dcg_.SetDevice(ctx->gpu_id);
|
||||
dcg_.Reshape(this->Groups());
|
||||
}
|
||||
return dcg_.View(ctx->gpu_id);
|
||||
}
|
||||
};
|
||||
|
||||
/**
|
||||
* \brief Validate label for NDCG
|
||||
*
|
||||
* \tparam NoneOf Implementation of std::none_of. Specified as a parameter to reuse the
|
||||
* check for both CPU and GPU.
|
||||
*/
|
||||
template <typename NoneOf>
|
||||
void CheckNDCGLabels(ltr::LambdaRankParam const& p, linalg::VectorView<float const> labels,
|
||||
NoneOf none_of) {
|
||||
auto d_labels = labels.Values();
|
||||
if (p.ndcg_exp_gain) {
|
||||
auto label_is_integer =
|
||||
none_of(d_labels.data(), d_labels.data() + d_labels.size(), [] XGBOOST_DEVICE(float v) {
|
||||
auto l = std::floor(v);
|
||||
return std::fabs(l - v) > kRtEps || v < 0.0f;
|
||||
});
|
||||
CHECK(label_is_integer)
|
||||
<< "When using relevance degree as target, label must be either 0 or positive integer.";
|
||||
}
|
||||
|
||||
if (p.ndcg_exp_gain) {
|
||||
auto label_is_valid = none_of(d_labels.data(), d_labels.data() + d_labels.size(),
|
||||
[] XGBOOST_DEVICE(ltr::rel_degree_t v) { return v > MaxRel(); });
|
||||
CHECK(label_is_valid) << "Relevance degress must be lesser than or equal to " << MaxRel()
|
||||
<< " when the exponential NDCG gain function is used. "
|
||||
<< "Set `ndcg_exp_gain` to false to use custom DCG gain.";
|
||||
}
|
||||
}
|
||||
|
||||
template <typename AllOf>
|
||||
bool IsBinaryRel(linalg::VectorView<float const> label, AllOf all_of) {
|
||||
auto s_label = label.Values();
|
||||
return all_of(s_label.data(), s_label.data() + s_label.size(), [] XGBOOST_DEVICE(float y) {
|
||||
return std::abs(y - 1.0f) < kRtEps || std::abs(y - 0.0f) < kRtEps;
|
||||
});
|
||||
}
|
||||
/**
|
||||
* \brief Validate label for MAP
|
||||
*
|
||||
* \tparam Implementation of std::all_of. Specified as a parameter to reuse the check for
|
||||
* both CPU and GPU.
|
||||
*/
|
||||
template <typename AllOf>
|
||||
void CheckMapLabels(linalg::VectorView<float const> label, AllOf all_of) {
|
||||
auto s_label = label.Values();
|
||||
auto is_binary = IsBinaryRel(label, all_of);
|
||||
CHECK(is_binary) << "MAP can only be used with binary labels.";
|
||||
}
|
||||
|
||||
class MAPCache : public RankingCache {
|
||||
// Total number of relevant documents for each group
|
||||
HostDeviceVector<double> n_rel_;
|
||||
// \sum l_k/k
|
||||
HostDeviceVector<double> acc_;
|
||||
HostDeviceVector<double> map_;
|
||||
// Number of samples in this dataset.
|
||||
std::size_t n_samples_{0};
|
||||
|
||||
void InitOnCPU(Context const* ctx, MetaInfo const& info);
|
||||
void InitOnCUDA(Context const* ctx, MetaInfo const& info);
|
||||
|
||||
public:
|
||||
MAPCache(Context const* ctx, MetaInfo const& info, LambdaRankParam const& p)
|
||||
: RankingCache{ctx, info, p}, n_samples_{static_cast<std::size_t>(info.num_row_)} {
|
||||
if (ctx->IsCPU()) {
|
||||
this->InitOnCPU(ctx, info);
|
||||
} else {
|
||||
this->InitOnCUDA(ctx, info);
|
||||
}
|
||||
}
|
||||
|
||||
common::Span<double> NumRelevant(Context const* ctx) {
|
||||
if (n_rel_.Empty()) {
|
||||
n_rel_.SetDevice(ctx->gpu_id);
|
||||
n_rel_.Resize(n_samples_);
|
||||
}
|
||||
return ctx->IsCPU() ? n_rel_.HostSpan() : n_rel_.DeviceSpan();
|
||||
}
|
||||
common::Span<double> Acc(Context const* ctx) {
|
||||
if (acc_.Empty()) {
|
||||
acc_.SetDevice(ctx->gpu_id);
|
||||
acc_.Resize(n_samples_);
|
||||
}
|
||||
return ctx->IsCPU() ? acc_.HostSpan() : acc_.DeviceSpan();
|
||||
}
|
||||
common::Span<double> Map(Context const* ctx) {
|
||||
if (map_.Empty()) {
|
||||
map_.SetDevice(ctx->gpu_id);
|
||||
map_.Resize(this->Groups());
|
||||
}
|
||||
return ctx->IsCPU() ? map_.HostSpan() : map_.DeviceSpan();
|
||||
}
|
||||
};
|
||||
|
||||
/**
|
||||
* \brief Parse name for ranking metric given parameters.
|
||||
*
|
||||
|
||||
@ -8,9 +8,11 @@
|
||||
#include <dmlc/omp.h>
|
||||
|
||||
#include <algorithm>
|
||||
#include <cstdint> // std::int32_t
|
||||
#include <cstdint> // for int32_t
|
||||
#include <cstdlib> // for malloc, free
|
||||
#include <limits>
|
||||
#include <type_traits> // std::is_signed
|
||||
#include <new> // for bad_alloc
|
||||
#include <type_traits> // for is_signed
|
||||
#include <vector>
|
||||
|
||||
#include "xgboost/logging.h"
|
||||
@ -266,7 +268,7 @@ class MemStackAllocator {
|
||||
if (MaxStackSize >= required_size_) {
|
||||
ptr_ = stack_mem_;
|
||||
} else {
|
||||
ptr_ = reinterpret_cast<T*>(malloc(required_size_ * sizeof(T)));
|
||||
ptr_ = reinterpret_cast<T*>(std::malloc(required_size_ * sizeof(T)));
|
||||
}
|
||||
if (!ptr_) {
|
||||
throw std::bad_alloc{};
|
||||
@ -278,7 +280,7 @@ class MemStackAllocator {
|
||||
|
||||
~MemStackAllocator() {
|
||||
if (required_size_ > MaxStackSize) {
|
||||
free(ptr_);
|
||||
std::free(ptr_);
|
||||
}
|
||||
}
|
||||
T& operator[](size_t i) { return ptr_[i]; }
|
||||
|
||||
@ -10,13 +10,16 @@
|
||||
#include <cstring>
|
||||
|
||||
#include "../collective/communicator-inl.h"
|
||||
#include "../common/algorithm.h" // StableSort
|
||||
#include "../common/api_entry.h" // XGBAPIThreadLocalEntry
|
||||
#include "../collective/communicator.h"
|
||||
#include "../common/common.h"
|
||||
#include "../common/algorithm.h" // for StableSort
|
||||
#include "../common/api_entry.h" // for XGBAPIThreadLocalEntry
|
||||
#include "../common/error_msg.h" // for InfInData
|
||||
#include "../common/group_data.h"
|
||||
#include "../common/io.h"
|
||||
#include "../common/linalg_op.h"
|
||||
#include "../common/math.h"
|
||||
#include "../common/numeric.h" // Iota
|
||||
#include "../common/numeric.h" // for Iota
|
||||
#include "../common/threading_utils.h"
|
||||
#include "../common/version.h"
|
||||
#include "../data/adapter.h"
|
||||
@ -700,6 +703,14 @@ void MetaInfo::Extend(MetaInfo const& that, bool accumulate_rows, bool check_col
|
||||
}
|
||||
}
|
||||
|
||||
void MetaInfo::SynchronizeNumberOfColumns() {
|
||||
if (collective::IsFederated() && data_split_mode == DataSplitMode::kCol) {
|
||||
collective::Allreduce<collective::Operation::kSum>(&num_col_, 1);
|
||||
} else {
|
||||
collective::Allreduce<collective::Operation::kMax>(&num_col_, 1);
|
||||
}
|
||||
}
|
||||
|
||||
void MetaInfo::Validate(std::int32_t device) const {
|
||||
if (group_ptr_.size() != 0 && weights_.Size() != 0) {
|
||||
CHECK_EQ(group_ptr_.size(), weights_.Size() + 1)
|
||||
@ -867,7 +878,7 @@ DMatrix* DMatrix::Load(const std::string& uri, bool silent, DataSplitMode data_s
|
||||
dmlc::Parser<uint32_t>::Create(fname.c_str(), partid, npart, file_format.c_str()));
|
||||
data::FileAdapter adapter(parser.get());
|
||||
dmat = DMatrix::Create(&adapter, std::numeric_limits<float>::quiet_NaN(), Context{}.Threads(),
|
||||
cache_file);
|
||||
cache_file, data_split_mode);
|
||||
} else {
|
||||
data::FileIterator iter{fname, static_cast<uint32_t>(partid), static_cast<uint32_t>(npart),
|
||||
file_format};
|
||||
@ -903,11 +914,6 @@ DMatrix* DMatrix::Load(const std::string& uri, bool silent, DataSplitMode data_s
|
||||
LOG(FATAL) << "Encountered parser error:\n" << e.what();
|
||||
}
|
||||
|
||||
/* sync up number of features after matrix loaded.
|
||||
* partitioned data will fail the train/val validation check
|
||||
* since partitioned data not knowing the real number of features. */
|
||||
collective::Allreduce<collective::Operation::kMax>(&dmat->Info().num_col_, 1);
|
||||
|
||||
if (need_split && data_split_mode == DataSplitMode::kCol) {
|
||||
if (!cache_file.empty()) {
|
||||
LOG(FATAL) << "Column-wise data split is not support for external memory.";
|
||||
@ -917,7 +923,6 @@ DMatrix* DMatrix::Load(const std::string& uri, bool silent, DataSplitMode data_s
|
||||
delete dmat;
|
||||
return sliced;
|
||||
} else {
|
||||
dmat->Info().data_split_mode = data_split_mode;
|
||||
return dmat;
|
||||
}
|
||||
}
|
||||
@ -954,39 +959,49 @@ template DMatrix *DMatrix::Create<DataIterHandle, DMatrixHandle,
|
||||
XGDMatrixCallbackNext *next, float missing, int32_t n_threads, std::string);
|
||||
|
||||
template <typename AdapterT>
|
||||
DMatrix* DMatrix::Create(AdapterT* adapter, float missing, int nthread, const std::string&) {
|
||||
return new data::SimpleDMatrix(adapter, missing, nthread);
|
||||
DMatrix* DMatrix::Create(AdapterT* adapter, float missing, int nthread, const std::string&,
|
||||
DataSplitMode data_split_mode) {
|
||||
return new data::SimpleDMatrix(adapter, missing, nthread, data_split_mode);
|
||||
}
|
||||
|
||||
template DMatrix* DMatrix::Create<data::DenseAdapter>(data::DenseAdapter* adapter, float missing,
|
||||
std::int32_t nthread,
|
||||
const std::string& cache_prefix);
|
||||
const std::string& cache_prefix,
|
||||
DataSplitMode data_split_mode);
|
||||
template DMatrix* DMatrix::Create<data::ArrayAdapter>(data::ArrayAdapter* adapter, float missing,
|
||||
std::int32_t nthread,
|
||||
const std::string& cache_prefix);
|
||||
const std::string& cache_prefix,
|
||||
DataSplitMode data_split_mode);
|
||||
template DMatrix* DMatrix::Create<data::CSRAdapter>(data::CSRAdapter* adapter, float missing,
|
||||
std::int32_t nthread,
|
||||
const std::string& cache_prefix);
|
||||
const std::string& cache_prefix,
|
||||
DataSplitMode data_split_mode);
|
||||
template DMatrix* DMatrix::Create<data::CSCAdapter>(data::CSCAdapter* adapter, float missing,
|
||||
std::int32_t nthread,
|
||||
const std::string& cache_prefix);
|
||||
const std::string& cache_prefix,
|
||||
DataSplitMode data_split_mode);
|
||||
template DMatrix* DMatrix::Create<data::DataTableAdapter>(data::DataTableAdapter* adapter,
|
||||
float missing, std::int32_t nthread,
|
||||
const std::string& cache_prefix);
|
||||
const std::string& cache_prefix,
|
||||
DataSplitMode data_split_mode);
|
||||
template DMatrix* DMatrix::Create<data::FileAdapter>(data::FileAdapter* adapter, float missing,
|
||||
std::int32_t nthread,
|
||||
const std::string& cache_prefix);
|
||||
const std::string& cache_prefix,
|
||||
DataSplitMode data_split_mode);
|
||||
template DMatrix* DMatrix::Create<data::CSRArrayAdapter>(data::CSRArrayAdapter* adapter,
|
||||
float missing, std::int32_t nthread,
|
||||
const std::string& cache_prefix);
|
||||
const std::string& cache_prefix,
|
||||
DataSplitMode data_split_mode);
|
||||
template DMatrix* DMatrix::Create<data::CSCArrayAdapter>(data::CSCArrayAdapter* adapter,
|
||||
float missing, std::int32_t nthread,
|
||||
const std::string& cache_prefix);
|
||||
const std::string& cache_prefix,
|
||||
DataSplitMode data_split_mode);
|
||||
template DMatrix* DMatrix::Create(
|
||||
data::IteratorAdapter<DataIterHandle, XGBCallbackDataIterNext, XGBoostBatchCSR>* adapter,
|
||||
float missing, int nthread, const std::string& cache_prefix);
|
||||
float missing, int nthread, const std::string& cache_prefix, DataSplitMode data_split_mode);
|
||||
template DMatrix* DMatrix::Create<data::RecordBatchesIterAdapter>(
|
||||
data::RecordBatchesIterAdapter* adapter, float missing, int nthread, const std::string&);
|
||||
data::RecordBatchesIterAdapter* adapter, float missing, int nthread, const std::string&,
|
||||
DataSplitMode data_split_mode);
|
||||
|
||||
SparsePage SparsePage::GetTranspose(int num_columns, int32_t n_threads) const {
|
||||
SparsePage transpose;
|
||||
@ -1048,6 +1063,13 @@ void SparsePage::SortIndices(int32_t n_threads) {
|
||||
});
|
||||
}
|
||||
|
||||
void SparsePage::Reindex(uint64_t feature_offset, int32_t n_threads) {
|
||||
auto& h_data = this->data.HostVector();
|
||||
common::ParallelFor(h_data.size(), n_threads, [&](auto i) {
|
||||
h_data[i].index += feature_offset;
|
||||
});
|
||||
}
|
||||
|
||||
void SparsePage::SortRows(int32_t n_threads) {
|
||||
auto& h_offset = this->offset.HostVector();
|
||||
auto& h_data = this->data.HostVector();
|
||||
@ -1144,7 +1166,7 @@ uint64_t SparsePage::Push(const AdapterBatchT& batch, float missing, int nthread
|
||||
});
|
||||
}
|
||||
exec.Rethrow();
|
||||
CHECK(valid) << "Input data contains `inf` or `nan`";
|
||||
CHECK(valid) << error::InfInData();
|
||||
for (const auto & max : max_columns_vector) {
|
||||
max_columns = std::max(max_columns, max[0]);
|
||||
}
|
||||
|
||||
@ -208,17 +208,17 @@ void MetaInfo::SetInfoFromCUDA(Context const& ctx, StringView key, Json array) {
|
||||
|
||||
template <typename AdapterT>
|
||||
DMatrix* DMatrix::Create(AdapterT* adapter, float missing, int nthread,
|
||||
const std::string& cache_prefix) {
|
||||
const std::string& cache_prefix, DataSplitMode data_split_mode) {
|
||||
CHECK_EQ(cache_prefix.size(), 0)
|
||||
<< "Device memory construction is not currently supported with external "
|
||||
"memory.";
|
||||
return new data::SimpleDMatrix(adapter, missing, nthread);
|
||||
return new data::SimpleDMatrix(adapter, missing, nthread, data_split_mode);
|
||||
}
|
||||
|
||||
template DMatrix* DMatrix::Create<data::CudfAdapter>(
|
||||
data::CudfAdapter* adapter, float missing, int nthread,
|
||||
const std::string& cache_prefix);
|
||||
const std::string& cache_prefix, DataSplitMode data_split_mode);
|
||||
template DMatrix* DMatrix::Create<data::CupyAdapter>(
|
||||
data::CupyAdapter* adapter, float missing, int nthread,
|
||||
const std::string& cache_prefix);
|
||||
const std::string& cache_prefix, DataSplitMode data_split_mode);
|
||||
} // namespace xgboost
|
||||
|
||||
@ -4,6 +4,9 @@
|
||||
*/
|
||||
#ifndef XGBOOST_DATA_DEVICE_ADAPTER_H_
|
||||
#define XGBOOST_DATA_DEVICE_ADAPTER_H_
|
||||
#include <thrust/iterator/counting_iterator.h> // for make_counting_iterator
|
||||
#include <thrust/logical.h> // for none_of
|
||||
|
||||
#include <cstddef> // for size_t
|
||||
#include <limits>
|
||||
#include <memory>
|
||||
@ -240,6 +243,20 @@ size_t GetRowCounts(const AdapterBatchT batch, common::Span<size_t> offset,
|
||||
|
||||
return row_stride;
|
||||
}
|
||||
|
||||
/**
|
||||
* \brief Check there's no inf in data.
|
||||
*/
|
||||
template <typename AdapterBatchT>
|
||||
bool HasInfInData(AdapterBatchT const& batch, IsValidFunctor is_valid) {
|
||||
auto counting = thrust::make_counting_iterator(0llu);
|
||||
auto value_iter = dh::MakeTransformIterator<float>(
|
||||
counting, [=] XGBOOST_DEVICE(std::size_t idx) { return batch.GetElement(idx).value; });
|
||||
auto valid =
|
||||
thrust::none_of(value_iter, value_iter + batch.Size(),
|
||||
[is_valid] XGBOOST_DEVICE(float v) { return is_valid(v) && std::isinf(v); });
|
||||
return valid;
|
||||
}
|
||||
}; // namespace data
|
||||
} // namespace xgboost
|
||||
#endif // XGBOOST_DATA_DEVICE_ADAPTER_H_
|
||||
|
||||
@ -1,5 +1,5 @@
|
||||
/*!
|
||||
* Copyright 2019-2022 XGBoost contributors
|
||||
/**
|
||||
* Copyright 2019-2023 by XGBoost contributors
|
||||
*/
|
||||
#include <thrust/iterator/discard_iterator.h>
|
||||
#include <thrust/iterator/transform_output_iterator.h>
|
||||
@ -9,7 +9,7 @@
|
||||
#include "../common/random.h"
|
||||
#include "../common/transform_iterator.h" // MakeIndexTransformIter
|
||||
#include "./ellpack_page.cuh"
|
||||
#include "device_adapter.cuh"
|
||||
#include "device_adapter.cuh" // for HasInfInData
|
||||
#include "gradient_index.h"
|
||||
#include "xgboost/data.h"
|
||||
|
||||
@ -203,8 +203,7 @@ struct TupleScanOp {
|
||||
// Here the data is already correctly ordered and simply needs to be compacted
|
||||
// to remove missing data
|
||||
template <typename AdapterBatchT>
|
||||
void CopyDataToEllpack(const AdapterBatchT &batch,
|
||||
common::Span<FeatureType const> feature_types,
|
||||
void CopyDataToEllpack(const AdapterBatchT& batch, common::Span<FeatureType const> feature_types,
|
||||
EllpackPageImpl* dst, int device_idx, float missing) {
|
||||
// Some witchcraft happens here
|
||||
// The goal is to copy valid elements out of the input to an ELLPACK matrix
|
||||
@ -215,6 +214,9 @@ void CopyDataToEllpack(const AdapterBatchT &batch,
|
||||
// correct output position
|
||||
auto counting = thrust::make_counting_iterator(0llu);
|
||||
data::IsValidFunctor is_valid(missing);
|
||||
bool valid = data::HasInfInData(batch, is_valid);
|
||||
CHECK(valid) << error::InfInData();
|
||||
|
||||
auto key_iter = dh::MakeTransformIterator<size_t>(
|
||||
counting,
|
||||
[=] __device__(size_t idx) {
|
||||
@ -255,9 +257,9 @@ void CopyDataToEllpack(const AdapterBatchT &batch,
|
||||
cub::DispatchScan<decltype(key_value_index_iter), decltype(out),
|
||||
TupleScanOp<Tuple>, cub::NullType, int64_t>;
|
||||
#if THRUST_MAJOR_VERSION >= 2
|
||||
DispatchScan::Dispatch(nullptr, temp_storage_bytes, key_value_index_iter, out,
|
||||
dh::safe_cuda(DispatchScan::Dispatch(nullptr, temp_storage_bytes, key_value_index_iter, out,
|
||||
TupleScanOp<Tuple>(), cub::NullType(), batch.Size(),
|
||||
nullptr);
|
||||
nullptr));
|
||||
#else
|
||||
DispatchScan::Dispatch(nullptr, temp_storage_bytes, key_value_index_iter, out,
|
||||
TupleScanOp<Tuple>(), cub::NullType(), batch.Size(),
|
||||
@ -265,9 +267,9 @@ void CopyDataToEllpack(const AdapterBatchT &batch,
|
||||
#endif
|
||||
dh::TemporaryArray<char> temp_storage(temp_storage_bytes);
|
||||
#if THRUST_MAJOR_VERSION >= 2
|
||||
DispatchScan::Dispatch(temp_storage.data().get(), temp_storage_bytes,
|
||||
dh::safe_cuda(DispatchScan::Dispatch(temp_storage.data().get(), temp_storage_bytes,
|
||||
key_value_index_iter, out, TupleScanOp<Tuple>(),
|
||||
cub::NullType(), batch.Size(), nullptr);
|
||||
cub::NullType(), batch.Size(), nullptr));
|
||||
#else
|
||||
DispatchScan::Dispatch(temp_storage.data().get(), temp_storage_bytes,
|
||||
key_value_index_iter, out, TupleScanOp<Tuple>(),
|
||||
|
||||
@ -1,21 +1,23 @@
|
||||
/*!
|
||||
* Copyright 2017-2022 by XGBoost Contributors
|
||||
/**
|
||||
* Copyright 2017-2023 by XGBoost Contributors
|
||||
* \brief Data type for fast histogram aggregation.
|
||||
*/
|
||||
#ifndef XGBOOST_DATA_GRADIENT_INDEX_H_
|
||||
#define XGBOOST_DATA_GRADIENT_INDEX_H_
|
||||
|
||||
#include <algorithm> // std::min
|
||||
#include <cinttypes> // std::uint32_t
|
||||
#include <cstddef> // std::size_t
|
||||
#include <algorithm> // for min
|
||||
#include <atomic> // for atomic
|
||||
#include <cinttypes> // for uint32_t
|
||||
#include <cstddef> // for size_t
|
||||
#include <memory>
|
||||
#include <vector>
|
||||
|
||||
#include "../common/categorical.h"
|
||||
#include "../common/error_msg.h" // for InfInData
|
||||
#include "../common/hist_util.h"
|
||||
#include "../common/numeric.h"
|
||||
#include "../common/threading_utils.h"
|
||||
#include "../common/transform_iterator.h" // common::MakeIndexTransformIter
|
||||
#include "../common/transform_iterator.h" // for MakeIndexTransformIter
|
||||
#include "adapter.h"
|
||||
#include "proxy_dmatrix.h"
|
||||
#include "xgboost/base.h"
|
||||
@ -62,6 +64,7 @@ class GHistIndexMatrix {
|
||||
BinIdxType* index_data = index_data_span.data();
|
||||
auto const& ptrs = cut.Ptrs();
|
||||
auto const& values = cut.Values();
|
||||
std::atomic<bool> valid{true};
|
||||
common::ParallelFor(batch_size, batch_threads, [&](size_t i) {
|
||||
auto line = batch.GetLine(i);
|
||||
size_t ibegin = row_ptr[rbegin + i]; // index of first entry for current block
|
||||
@ -70,6 +73,9 @@ class GHistIndexMatrix {
|
||||
for (size_t j = 0; j < line.Size(); ++j) {
|
||||
data::COOTuple elem = line.GetElement(j);
|
||||
if (is_valid(elem)) {
|
||||
if (XGBOOST_EXPECT((std::isinf(elem.value)), false)) {
|
||||
valid = false;
|
||||
}
|
||||
bst_bin_t bin_idx{-1};
|
||||
if (common::IsCat(ft, elem.column_idx)) {
|
||||
bin_idx = cut.SearchCatBin(elem.value, elem.column_idx, ptrs, values);
|
||||
@ -82,6 +88,8 @@ class GHistIndexMatrix {
|
||||
}
|
||||
}
|
||||
});
|
||||
|
||||
CHECK(valid) << error::InfInData();
|
||||
}
|
||||
|
||||
// Gather hit_count from all threads
|
||||
|
||||
@ -190,7 +190,7 @@ void IterativeDMatrix::InitFromCPU(DataIterHandle iter_handle, float missing,
|
||||
// From here on Info() has the correct data shape
|
||||
Info().num_row_ = accumulated_rows;
|
||||
Info().num_nonzero_ = nnz;
|
||||
collective::Allreduce<collective::Operation::kMax>(&info_.num_col_, 1);
|
||||
Info().SynchronizeNumberOfColumns();
|
||||
CHECK(std::none_of(column_sizes.cbegin(), column_sizes.cend(), [&](auto f) {
|
||||
return f > accumulated_rows;
|
||||
})) << "Something went wrong during iteration.";
|
||||
@ -257,6 +257,7 @@ void IterativeDMatrix::InitFromCPU(DataIterHandle iter_handle, float missing,
|
||||
}
|
||||
iter.Reset();
|
||||
CHECK_EQ(rbegin, Info().num_row_);
|
||||
CHECK_EQ(this->ghist_->Features(), Info().num_col_);
|
||||
|
||||
/**
|
||||
* Generate column matrix
|
||||
|
||||
@ -195,7 +195,7 @@ void IterativeDMatrix::InitFromCUDA(DataIterHandle iter_handle, float missing,
|
||||
|
||||
iter.Reset();
|
||||
// Synchronise worker columns
|
||||
collective::Allreduce<collective::Operation::kMax>(&info_.num_col_, 1);
|
||||
info_.SynchronizeNumberOfColumns();
|
||||
}
|
||||
|
||||
BatchSet<EllpackPage> IterativeDMatrix::GetEllpackBatches(BatchParam const& param) {
|
||||
|
||||
@ -1,27 +1,24 @@
|
||||
/*!
|
||||
* Copyright 2021 XGBoost contributors
|
||||
/**
|
||||
* Copyright 2021-2023 XGBoost contributors
|
||||
*/
|
||||
#include <any> // for any, any_cast
|
||||
|
||||
#include "device_adapter.cuh"
|
||||
#include "proxy_dmatrix.h"
|
||||
|
||||
namespace xgboost {
|
||||
namespace data {
|
||||
namespace xgboost::data {
|
||||
template <typename Fn>
|
||||
decltype(auto) Dispatch(DMatrixProxy const* proxy, Fn fn) {
|
||||
if (proxy->Adapter().type() == typeid(std::shared_ptr<CupyAdapter>)) {
|
||||
auto value = dmlc::get<std::shared_ptr<CupyAdapter>>(
|
||||
proxy->Adapter())->Value();
|
||||
auto value = std::any_cast<std::shared_ptr<CupyAdapter>>(proxy->Adapter())->Value();
|
||||
return fn(value);
|
||||
} else if (proxy->Adapter().type() == typeid(std::shared_ptr<CudfAdapter>)) {
|
||||
auto value = dmlc::get<std::shared_ptr<CudfAdapter>>(
|
||||
proxy->Adapter())->Value();
|
||||
auto value = std::any_cast<std::shared_ptr<CudfAdapter>>(proxy->Adapter())->Value();
|
||||
return fn(value);
|
||||
} else {
|
||||
LOG(FATAL) << "Unknown type: " << proxy->Adapter().type().name();
|
||||
auto value = dmlc::get<std::shared_ptr<CudfAdapter>>(
|
||||
proxy->Adapter())->Value();
|
||||
auto value = std::any_cast<std::shared_ptr<CudfAdapter>>(proxy->Adapter())->Value();
|
||||
return fn(value);
|
||||
}
|
||||
}
|
||||
} // namespace data
|
||||
} // namespace xgboost
|
||||
} // namespace xgboost::data
|
||||
|
||||
@ -1,11 +1,10 @@
|
||||
/*!
|
||||
* Copyright 2020-2022, XGBoost contributors
|
||||
/**
|
||||
* Copyright 2020-2023, XGBoost contributors
|
||||
*/
|
||||
#ifndef XGBOOST_DATA_PROXY_DMATRIX_H_
|
||||
#define XGBOOST_DATA_PROXY_DMATRIX_H_
|
||||
|
||||
#include <dmlc/any.h>
|
||||
|
||||
#include <any> // for any, any_cast
|
||||
#include <memory>
|
||||
#include <string>
|
||||
#include <utility>
|
||||
@ -15,8 +14,7 @@
|
||||
#include "xgboost/context.h"
|
||||
#include "xgboost/data.h"
|
||||
|
||||
namespace xgboost {
|
||||
namespace data {
|
||||
namespace xgboost::data {
|
||||
/*
|
||||
* \brief A proxy to external iterator.
|
||||
*/
|
||||
@ -44,7 +42,7 @@ class DataIterProxy {
|
||||
*/
|
||||
class DMatrixProxy : public DMatrix {
|
||||
MetaInfo info_;
|
||||
dmlc::any batch_;
|
||||
std::any batch_;
|
||||
Context ctx_;
|
||||
|
||||
#if defined(XGBOOST_USE_CUDA) || defined(XGBOOST_USE_HIP)
|
||||
@ -115,9 +113,7 @@ class DMatrixProxy : public DMatrix {
|
||||
LOG(FATAL) << "Not implemented.";
|
||||
return BatchSet<ExtSparsePage>(BatchIterator<ExtSparsePage>(nullptr));
|
||||
}
|
||||
dmlc::any Adapter() const {
|
||||
return batch_;
|
||||
}
|
||||
std::any Adapter() const { return batch_; }
|
||||
};
|
||||
|
||||
inline DMatrixProxy* MakeProxy(DMatrixHandle proxy) {
|
||||
@ -131,15 +127,13 @@ inline DMatrixProxy* MakeProxy(DMatrixHandle proxy) {
|
||||
template <typename Fn>
|
||||
decltype(auto) HostAdapterDispatch(DMatrixProxy const* proxy, Fn fn, bool* type_error = nullptr) {
|
||||
if (proxy->Adapter().type() == typeid(std::shared_ptr<CSRArrayAdapter>)) {
|
||||
auto value =
|
||||
dmlc::get<std::shared_ptr<CSRArrayAdapter>>(proxy->Adapter())->Value();
|
||||
auto value = std::any_cast<std::shared_ptr<CSRArrayAdapter>>(proxy->Adapter())->Value();
|
||||
if (type_error) {
|
||||
*type_error = false;
|
||||
}
|
||||
return fn(value);
|
||||
} else if (proxy->Adapter().type() == typeid(std::shared_ptr<ArrayAdapter>)) {
|
||||
auto value = dmlc::get<std::shared_ptr<ArrayAdapter>>(
|
||||
proxy->Adapter())->Value();
|
||||
auto value = std::any_cast<std::shared_ptr<ArrayAdapter>>(proxy->Adapter())->Value();
|
||||
if (type_error) {
|
||||
*type_error = false;
|
||||
}
|
||||
@ -154,6 +148,5 @@ decltype(auto) HostAdapterDispatch(DMatrixProxy const* proxy, Fn fn, bool* type_
|
||||
decltype(std::declval<std::shared_ptr<ArrayAdapter>>()->Value()))>();
|
||||
}
|
||||
}
|
||||
} // namespace data
|
||||
} // namespace xgboost
|
||||
} // namespace xgboost::data
|
||||
#endif // XGBOOST_DATA_PROXY_DMATRIX_H_
|
||||
|
||||
@ -73,6 +73,19 @@ DMatrix* SimpleDMatrix::SliceCol(int num_slices, int slice_id) {
|
||||
return out;
|
||||
}
|
||||
|
||||
void SimpleDMatrix::ReindexFeatures() {
|
||||
if (collective::IsFederated() && info_.data_split_mode == DataSplitMode::kCol) {
|
||||
std::vector<uint64_t> buffer(collective::GetWorldSize());
|
||||
buffer[collective::GetRank()] = info_.num_col_;
|
||||
collective::Allgather(buffer.data(), buffer.size() * sizeof(uint64_t));
|
||||
auto offset = std::accumulate(buffer.cbegin(), buffer.cbegin() + collective::GetRank(), 0);
|
||||
if (offset == 0) {
|
||||
return;
|
||||
}
|
||||
sparse_page_->Reindex(offset, ctx_.Threads());
|
||||
}
|
||||
}
|
||||
|
||||
BatchSet<SparsePage> SimpleDMatrix::GetRowBatches() {
|
||||
// since csr is the default data structure so `source_` is always available.
|
||||
auto begin_iter = BatchIterator<SparsePage>(
|
||||
@ -151,7 +164,8 @@ BatchSet<ExtSparsePage> SimpleDMatrix::GetExtBatches(BatchParam const&) {
|
||||
}
|
||||
|
||||
template <typename AdapterT>
|
||||
SimpleDMatrix::SimpleDMatrix(AdapterT* adapter, float missing, int nthread) {
|
||||
SimpleDMatrix::SimpleDMatrix(AdapterT* adapter, float missing, int nthread,
|
||||
DataSplitMode data_split_mode) {
|
||||
this->ctx_.nthread = nthread;
|
||||
|
||||
std::vector<uint64_t> qids;
|
||||
@ -217,7 +231,9 @@ SimpleDMatrix::SimpleDMatrix(AdapterT* adapter, float missing, int nthread) {
|
||||
|
||||
|
||||
// Synchronise worker columns
|
||||
collective::Allreduce<collective::Operation::kMax>(&info_.num_col_, 1);
|
||||
info_.data_split_mode = data_split_mode;
|
||||
ReindexFeatures();
|
||||
info_.SynchronizeNumberOfColumns();
|
||||
|
||||
if (adapter->NumRows() == kAdapterUnknownSize) {
|
||||
using IteratorAdapterT
|
||||
@ -272,21 +288,30 @@ void SimpleDMatrix::SaveToLocalFile(const std::string& fname) {
|
||||
fo->Write(sparse_page_->data.HostVector());
|
||||
}
|
||||
|
||||
template SimpleDMatrix::SimpleDMatrix(DenseAdapter* adapter, float missing, int nthread);
|
||||
template SimpleDMatrix::SimpleDMatrix(ArrayAdapter* adapter, float missing, int nthread);
|
||||
template SimpleDMatrix::SimpleDMatrix(CSRAdapter* adapter, float missing, int nthread);
|
||||
template SimpleDMatrix::SimpleDMatrix(CSRArrayAdapter* adapter, float missing, int nthread);
|
||||
template SimpleDMatrix::SimpleDMatrix(CSCArrayAdapter* adapter, float missing, int nthread);
|
||||
template SimpleDMatrix::SimpleDMatrix(CSCAdapter* adapter, float missing, int nthread);
|
||||
template SimpleDMatrix::SimpleDMatrix(DataTableAdapter* adapter, float missing, int nthread);
|
||||
template SimpleDMatrix::SimpleDMatrix(FileAdapter* adapter, float missing, int nthread);
|
||||
template SimpleDMatrix::SimpleDMatrix(DenseAdapter* adapter, float missing, int nthread,
|
||||
DataSplitMode data_split_mode);
|
||||
template SimpleDMatrix::SimpleDMatrix(ArrayAdapter* adapter, float missing, int nthread,
|
||||
DataSplitMode data_split_mode);
|
||||
template SimpleDMatrix::SimpleDMatrix(CSRAdapter* adapter, float missing, int nthread,
|
||||
DataSplitMode data_split_mode);
|
||||
template SimpleDMatrix::SimpleDMatrix(CSRArrayAdapter* adapter, float missing, int nthread,
|
||||
DataSplitMode data_split_mode);
|
||||
template SimpleDMatrix::SimpleDMatrix(CSCArrayAdapter* adapter, float missing, int nthread,
|
||||
DataSplitMode data_split_mode);
|
||||
template SimpleDMatrix::SimpleDMatrix(CSCAdapter* adapter, float missing, int nthread,
|
||||
DataSplitMode data_split_mode);
|
||||
template SimpleDMatrix::SimpleDMatrix(DataTableAdapter* adapter, float missing, int nthread,
|
||||
DataSplitMode data_split_mode);
|
||||
template SimpleDMatrix::SimpleDMatrix(FileAdapter* adapter, float missing, int nthread,
|
||||
DataSplitMode data_split_mode);
|
||||
template SimpleDMatrix::SimpleDMatrix(
|
||||
IteratorAdapter<DataIterHandle, XGBCallbackDataIterNext, XGBoostBatchCSR>
|
||||
*adapter,
|
||||
float missing, int nthread);
|
||||
float missing, int nthread, DataSplitMode data_split_mode);
|
||||
|
||||
template <>
|
||||
SimpleDMatrix::SimpleDMatrix(RecordBatchesIterAdapter* adapter, float missing, int nthread) {
|
||||
SimpleDMatrix::SimpleDMatrix(RecordBatchesIterAdapter* adapter, float missing, int nthread,
|
||||
DataSplitMode data_split_mode) {
|
||||
ctx_.nthread = nthread;
|
||||
|
||||
auto& offset_vec = sparse_page_->offset.HostVector();
|
||||
@ -346,7 +371,10 @@ SimpleDMatrix::SimpleDMatrix(RecordBatchesIterAdapter* adapter, float missing, i
|
||||
}
|
||||
// Synchronise worker columns
|
||||
info_.num_col_ = adapter->NumColumns();
|
||||
collective::Allreduce<collective::Operation::kMax>(&info_.num_col_, 1);
|
||||
info_.data_split_mode = data_split_mode;
|
||||
ReindexFeatures();
|
||||
info_.SynchronizeNumberOfColumns();
|
||||
|
||||
info_.num_row_ = total_batch_size;
|
||||
info_.num_nonzero_ = data_vec.size();
|
||||
CHECK_EQ(offset_vec.back(), info_.num_nonzero_);
|
||||
|
||||
@ -15,7 +15,10 @@ namespace data {
|
||||
// Current implementation assumes a single batch. More batches can
|
||||
// be supported in future. Does not currently support inferring row/column size
|
||||
template <typename AdapterT>
|
||||
SimpleDMatrix::SimpleDMatrix(AdapterT* adapter, float missing, int32_t /*nthread*/) {
|
||||
SimpleDMatrix::SimpleDMatrix(AdapterT* adapter, float missing, int32_t /*nthread*/,
|
||||
DataSplitMode data_split_mode) {
|
||||
CHECK(data_split_mode != DataSplitMode::kCol)
|
||||
<< "Column-wise data split is currently not supported on the GPU.";
|
||||
auto device = (adapter->DeviceIdx() < 0 || adapter->NumRows() == 0) ? dh::CurrentDevice()
|
||||
: adapter->DeviceIdx();
|
||||
CHECK_GE(device, 0);
|
||||
@ -40,12 +43,13 @@ SimpleDMatrix::SimpleDMatrix(AdapterT* adapter, float missing, int32_t /*nthread
|
||||
info_.num_col_ = adapter->NumColumns();
|
||||
info_.num_row_ = adapter->NumRows();
|
||||
// Synchronise worker columns
|
||||
collective::Allreduce<collective::Operation::kMax>(&info_.num_col_, 1);
|
||||
info_.data_split_mode = data_split_mode;
|
||||
info_.SynchronizeNumberOfColumns();
|
||||
}
|
||||
|
||||
template SimpleDMatrix::SimpleDMatrix(CudfAdapter* adapter, float missing,
|
||||
int nthread);
|
||||
int nthread, DataSplitMode data_split_mode);
|
||||
template SimpleDMatrix::SimpleDMatrix(CupyAdapter* adapter, float missing,
|
||||
int nthread);
|
||||
int nthread, DataSplitMode data_split_mode);
|
||||
} // namespace data
|
||||
} // namespace xgboost
|
||||
|
||||
@ -1,14 +1,13 @@
|
||||
/*!
|
||||
* Copyright 2019-2021 by XGBoost Contributors
|
||||
/**
|
||||
* Copyright 2019-2023 by XGBoost Contributors
|
||||
* \file simple_dmatrix.cuh
|
||||
*/
|
||||
#ifndef XGBOOST_DATA_SIMPLE_DMATRIX_CUH_
|
||||
#define XGBOOST_DATA_SIMPLE_DMATRIX_CUH_
|
||||
|
||||
#include <thrust/copy.h>
|
||||
#include <thrust/scan.h>
|
||||
#include <thrust/execution_policy.h>
|
||||
#include "device_adapter.cuh"
|
||||
#include <thrust/scan.h>
|
||||
|
||||
#if defined(XGBOOST_USE_CUDA)
|
||||
#include "../common/device_helpers.cuh"
|
||||
@ -16,8 +15,10 @@
|
||||
#include "../common/device_helpers.hip.h"
|
||||
#endif
|
||||
|
||||
namespace xgboost {
|
||||
namespace data {
|
||||
#include "../common/error_msg.h" // for InfInData
|
||||
#include "device_adapter.cuh" // for HasInfInData
|
||||
|
||||
namespace xgboost::data {
|
||||
|
||||
#if defined(XGBOOST_USE_CUDA)
|
||||
template <typename AdapterBatchT>
|
||||
@ -94,7 +95,11 @@ void CountRowOffsets(const AdapterBatchT& batch, common::Span<bst_row_t> offset,
|
||||
}
|
||||
|
||||
template <typename AdapterBatchT>
|
||||
size_t CopyToSparsePage(AdapterBatchT const& batch, int32_t device, float missing, SparsePage* page) {
|
||||
size_t CopyToSparsePage(AdapterBatchT const& batch, int32_t device, float missing,
|
||||
SparsePage* page) {
|
||||
bool valid = HasInfInData(batch, IsValidFunctor{missing});
|
||||
CHECK(valid) << error::InfInData();
|
||||
|
||||
page->offset.SetDevice(device);
|
||||
page->data.SetDevice(device);
|
||||
page->offset.Resize(batch.NumRows() + 1);
|
||||
@ -106,6 +111,5 @@ size_t CopyToSparsePage(AdapterBatchT const& batch, int32_t device, float missin
|
||||
|
||||
return num_nonzero_;
|
||||
}
|
||||
} // namespace data
|
||||
} // namespace xgboost
|
||||
} // namespace xgboost::data
|
||||
#endif // XGBOOST_DATA_SIMPLE_DMATRIX_CUH_
|
||||
|
||||
@ -22,7 +22,8 @@ class SimpleDMatrix : public DMatrix {
|
||||
public:
|
||||
SimpleDMatrix() = default;
|
||||
template <typename AdapterT>
|
||||
explicit SimpleDMatrix(AdapterT* adapter, float missing, int nthread);
|
||||
explicit SimpleDMatrix(AdapterT* adapter, float missing, int nthread,
|
||||
DataSplitMode data_split_mode = DataSplitMode::kRow);
|
||||
|
||||
explicit SimpleDMatrix(dmlc::Stream* in_stream);
|
||||
~SimpleDMatrix() override = default;
|
||||
@ -61,6 +62,15 @@ class SimpleDMatrix : public DMatrix {
|
||||
bool GHistIndexExists() const override { return static_cast<bool>(gradient_index_); }
|
||||
bool SparsePageExists() const override { return true; }
|
||||
|
||||
/**
|
||||
* \brief Reindex the features based on a global view.
|
||||
*
|
||||
* In some cases (e.g. vertical federated learning), features are loaded locally with indices
|
||||
* starting from 0. However, all the algorithms assume the features are globally indexed, so we
|
||||
* reindex the features based on the offset needed to obtain the global view.
|
||||
*/
|
||||
void ReindexFeatures();
|
||||
|
||||
private:
|
||||
Context ctx_;
|
||||
};
|
||||
|
||||
@ -96,7 +96,7 @@ SparsePageDMatrix::SparsePageDMatrix(DataIterHandle iter_handle, DMatrixHandle p
|
||||
this->info_.num_col_ = n_features;
|
||||
this->info_.num_nonzero_ = nnz;
|
||||
|
||||
collective::Allreduce<collective::Operation::kMax>(&info_.num_col_, 1);
|
||||
info_.SynchronizeNumberOfColumns();
|
||||
CHECK_NE(info_.num_col_, 0);
|
||||
}
|
||||
|
||||
|
||||
@ -10,6 +10,7 @@
|
||||
#include <dmlc/parameter.h>
|
||||
|
||||
#include <algorithm>
|
||||
#include <cinttypes> // for uint32_t
|
||||
#include <limits>
|
||||
#include <memory>
|
||||
#include <string>
|
||||
@ -27,9 +28,11 @@
|
||||
#include "xgboost/host_device_vector.h"
|
||||
#include "xgboost/json.h"
|
||||
#include "xgboost/logging.h"
|
||||
#include "xgboost/model.h"
|
||||
#include "xgboost/objective.h"
|
||||
#include "xgboost/predictor.h"
|
||||
#include "xgboost/string_view.h"
|
||||
#include "xgboost/string_view.h" // for StringView
|
||||
#include "xgboost/tree_model.h" // for RegTree
|
||||
#include "xgboost/tree_updater.h"
|
||||
|
||||
namespace xgboost::gbm {
|
||||
@ -131,6 +134,12 @@ void GBTree::PerformTreeMethodHeuristic(DMatrix* fmat) {
|
||||
// set, since only experts are expected to do so.
|
||||
return;
|
||||
}
|
||||
if (model_.learner_model_param->IsVectorLeaf()) {
|
||||
CHECK(tparam_.tree_method == TreeMethod::kHist)
|
||||
<< "Only the hist tree method is supported for building multi-target trees with vector "
|
||||
"leaf.";
|
||||
}
|
||||
|
||||
// tparam_ is set before calling this function.
|
||||
if (tparam_.tree_method != TreeMethod::kAuto) {
|
||||
return;
|
||||
@ -175,12 +184,12 @@ void GBTree::ConfigureUpdaters() {
|
||||
case TreeMethod::kExact:
|
||||
tparam_.updater_seq = "grow_colmaker,prune";
|
||||
break;
|
||||
case TreeMethod::kHist:
|
||||
LOG(INFO) <<
|
||||
"Tree method is selected to be 'hist', which uses a "
|
||||
"single updater grow_quantile_histmaker.";
|
||||
case TreeMethod::kHist: {
|
||||
LOG(INFO) << "Tree method is selected to be 'hist', which uses a single updater "
|
||||
"grow_quantile_histmaker.";
|
||||
tparam_.updater_seq = "grow_quantile_histmaker";
|
||||
break;
|
||||
}
|
||||
case TreeMethod::kGPUHist: {
|
||||
common::AssertGPUSupport();
|
||||
tparam_.updater_seq = "grow_gpu_hist";
|
||||
@ -209,11 +218,9 @@ void CopyGradient(HostDeviceVector<GradientPair> const* in_gpair, int32_t n_thre
|
||||
GPUCopyGradient(in_gpair, n_groups, group_id, out_gpair);
|
||||
} else {
|
||||
std::vector<GradientPair> &tmp_h = out_gpair->HostVector();
|
||||
auto nsize = static_cast<bst_omp_uint>(out_gpair->Size());
|
||||
const auto& gpair_h = in_gpair->ConstHostVector();
|
||||
common::ParallelFor(nsize, n_threads, [&](bst_omp_uint i) {
|
||||
tmp_h[i] = gpair_h[i * n_groups + group_id];
|
||||
});
|
||||
common::ParallelFor(out_gpair->Size(), n_threads,
|
||||
[&](auto i) { tmp_h[i] = gpair_h[i * n_groups + group_id]; });
|
||||
}
|
||||
}
|
||||
|
||||
@ -234,6 +241,7 @@ void GBTree::UpdateTreeLeaf(DMatrix const* p_fmat, HostDeviceVector<float> const
|
||||
CHECK_EQ(model_.param.num_parallel_tree, trees.size());
|
||||
CHECK_EQ(model_.param.num_parallel_tree, 1)
|
||||
<< "Boosting random forest is not supported for current objective.";
|
||||
CHECK(!trees.front()->IsMultiTarget()) << "Update tree leaf" << MTNotImplemented();
|
||||
CHECK_EQ(trees.size(), model_.param.num_parallel_tree);
|
||||
for (std::size_t tree_idx = 0; tree_idx < trees.size(); ++tree_idx) {
|
||||
auto const& position = node_position.at(tree_idx);
|
||||
@ -245,17 +253,18 @@ void GBTree::UpdateTreeLeaf(DMatrix const* p_fmat, HostDeviceVector<float> const
|
||||
void GBTree::DoBoost(DMatrix* p_fmat, HostDeviceVector<GradientPair>* in_gpair,
|
||||
PredictionCacheEntry* predt, ObjFunction const* obj) {
|
||||
std::vector<std::vector<std::unique_ptr<RegTree>>> new_trees;
|
||||
const int ngroup = model_.learner_model_param->num_output_group;
|
||||
const int ngroup = model_.learner_model_param->OutputLength();
|
||||
ConfigureWithKnownData(this->cfg_, p_fmat);
|
||||
monitor_.Start("BoostNewTrees");
|
||||
|
||||
// Weird case that tree method is cpu-based but gpu_id is set. Ideally we should let
|
||||
// `gpu_id` be the single source of determining what algorithms to run, but that will
|
||||
// break a lots of existing code.
|
||||
auto device = tparam_.tree_method != TreeMethod::kGPUHist ? Context::kCpuId : ctx_->gpu_id;
|
||||
auto out = linalg::TensorView<float, 2>{
|
||||
auto out = linalg::MakeTensorView(
|
||||
device,
|
||||
device == Context::kCpuId ? predt->predictions.HostSpan() : predt->predictions.DeviceSpan(),
|
||||
{static_cast<size_t>(p_fmat->Info().num_row_), static_cast<size_t>(ngroup)},
|
||||
device};
|
||||
p_fmat->Info().num_row_, model_.learner_model_param->OutputLength());
|
||||
CHECK_NE(ngroup, 0);
|
||||
|
||||
if (!p_fmat->SingleColBlock() && obj->Task().UpdateTreeLeaf()) {
|
||||
@ -266,7 +275,13 @@ void GBTree::DoBoost(DMatrix* p_fmat, HostDeviceVector<GradientPair>* in_gpair,
|
||||
// position is negated if the row is sampled out.
|
||||
std::vector<HostDeviceVector<bst_node_t>> node_position;
|
||||
|
||||
if (ngroup == 1) {
|
||||
if (model_.learner_model_param->IsVectorLeaf()) {
|
||||
std::vector<std::unique_ptr<RegTree>> ret;
|
||||
BoostNewTrees(in_gpair, p_fmat, 0, &node_position, &ret);
|
||||
UpdateTreeLeaf(p_fmat, predt->predictions, obj, 0, node_position, &ret);
|
||||
// No update prediction cache yet.
|
||||
new_trees.push_back(std::move(ret));
|
||||
} else if (model_.learner_model_param->OutputLength() == 1) {
|
||||
std::vector<std::unique_ptr<RegTree>> ret;
|
||||
BoostNewTrees(in_gpair, p_fmat, 0, &node_position, &ret);
|
||||
UpdateTreeLeaf(p_fmat, predt->predictions, obj, 0, node_position, &ret);
|
||||
@ -360,8 +375,8 @@ void GBTree::BoostNewTrees(HostDeviceVector<GradientPair>* gpair, DMatrix* p_fma
|
||||
<< "Set `process_type` to `update` if you want to update existing "
|
||||
"trees.";
|
||||
// create new tree
|
||||
std::unique_ptr<RegTree> ptr(new RegTree());
|
||||
ptr->param.UpdateAllowUnknown(this->cfg_);
|
||||
std::unique_ptr<RegTree> ptr(new RegTree{this->model_.learner_model_param->LeafLength(),
|
||||
this->model_.learner_model_param->num_feature});
|
||||
new_trees.push_back(ptr.get());
|
||||
ret->push_back(std::move(ptr));
|
||||
} else if (tparam_.process_type == TreeProcessType::kUpdate) {
|
||||
@ -383,11 +398,15 @@ void GBTree::BoostNewTrees(HostDeviceVector<GradientPair>* gpair, DMatrix* p_fma
|
||||
}
|
||||
|
||||
// update the trees
|
||||
CHECK_EQ(gpair->Size(), p_fmat->Info().num_row_)
|
||||
<< "Mismatching size between number of rows from input data and size of "
|
||||
"gradient vector.";
|
||||
auto n_out = model_.learner_model_param->OutputLength() * p_fmat->Info().num_row_;
|
||||
StringView msg{
|
||||
"Mismatching size between number of rows from input data and size of gradient vector."};
|
||||
if (!model_.learner_model_param->IsVectorLeaf() && p_fmat->Info().num_row_ != 0) {
|
||||
CHECK_EQ(n_out % gpair->Size(), 0) << msg;
|
||||
} else {
|
||||
CHECK_EQ(gpair->Size(), n_out) << msg;
|
||||
}
|
||||
|
||||
CHECK(out_position);
|
||||
out_position->resize(new_trees.size());
|
||||
|
||||
// Rescale learning rate according to the size of trees
|
||||
@ -402,9 +421,13 @@ void GBTree::BoostNewTrees(HostDeviceVector<GradientPair>* gpair, DMatrix* p_fma
|
||||
|
||||
void GBTree::CommitModel(std::vector<std::vector<std::unique_ptr<RegTree>>>&& new_trees) {
|
||||
monitor_.Start("CommitModel");
|
||||
for (uint32_t gid = 0; gid < model_.learner_model_param->num_output_group; ++gid) {
|
||||
if (this->model_.learner_model_param->IsVectorLeaf()) {
|
||||
model_.CommitModel(std::move(new_trees[0]), 0);
|
||||
} else {
|
||||
for (std::uint32_t gid = 0; gid < model_.learner_model_param->OutputLength(); ++gid) {
|
||||
model_.CommitModel(std::move(new_trees[gid]), gid);
|
||||
}
|
||||
}
|
||||
monitor_.Stop("CommitModel");
|
||||
}
|
||||
|
||||
@ -564,11 +587,10 @@ void GBTree::PredictBatch(DMatrix* p_fmat,
|
||||
if (out_preds->version == 0) {
|
||||
// out_preds->Size() can be non-zero as it's initialized here before any
|
||||
// tree is built at the 0^th iterator.
|
||||
predictor->InitOutPredictions(p_fmat->Info(), &out_preds->predictions,
|
||||
model_);
|
||||
predictor->InitOutPredictions(p_fmat->Info(), &out_preds->predictions, model_);
|
||||
}
|
||||
|
||||
uint32_t tree_begin, tree_end;
|
||||
std::uint32_t tree_begin, tree_end;
|
||||
std::tie(tree_begin, tree_end) = detail::LayerToTree(model_, layer_begin, layer_end);
|
||||
CHECK_LE(tree_end, model_.trees.size()) << "Invalid number of trees.";
|
||||
if (tree_end > tree_begin) {
|
||||
@ -577,7 +599,7 @@ void GBTree::PredictBatch(DMatrix* p_fmat,
|
||||
if (reset) {
|
||||
out_preds->version = 0;
|
||||
} else {
|
||||
uint32_t delta = layer_end - out_preds->version;
|
||||
std::uint32_t delta = layer_end - out_preds->version;
|
||||
out_preds->Update(delta);
|
||||
}
|
||||
}
|
||||
@ -770,6 +792,7 @@ class Dart : public GBTree {
|
||||
void PredictBatchImpl(DMatrix *p_fmat, PredictionCacheEntry *p_out_preds,
|
||||
bool training, unsigned layer_begin,
|
||||
unsigned layer_end) const {
|
||||
CHECK(!this->model_.learner_model_param->IsVectorLeaf()) << "dart" << MTNotImplemented();
|
||||
auto &predictor = this->GetPredictor(&p_out_preds->predictions, p_fmat);
|
||||
CHECK(predictor);
|
||||
predictor->InitOutPredictions(p_fmat->Info(), &p_out_preds->predictions,
|
||||
@ -830,6 +853,7 @@ class Dart : public GBTree {
|
||||
void InplacePredict(std::shared_ptr<DMatrix> p_fmat, float missing,
|
||||
PredictionCacheEntry* p_out_preds, uint32_t layer_begin,
|
||||
unsigned layer_end) const override {
|
||||
CHECK(!this->model_.learner_model_param->IsVectorLeaf()) << "dart" << MTNotImplemented();
|
||||
uint32_t tree_begin, tree_end;
|
||||
std::tie(tree_begin, tree_end) = detail::LayerToTree(model_, layer_begin, layer_end);
|
||||
auto n_groups = model_.learner_model_param->num_output_group;
|
||||
@ -996,8 +1020,9 @@ class Dart : public GBTree {
|
||||
}
|
||||
|
||||
// set normalization factors
|
||||
inline size_t NormalizeTrees(size_t size_new_trees) {
|
||||
float lr = 1.0 * dparam_.learning_rate / size_new_trees;
|
||||
std::size_t NormalizeTrees(size_t size_new_trees) {
|
||||
CHECK(tree_param_.GetInitialised());
|
||||
float lr = 1.0 * tree_param_.learning_rate / size_new_trees;
|
||||
size_t num_drop = idx_drop_.size();
|
||||
if (num_drop == 0) {
|
||||
for (size_t i = 0; i < size_new_trees; ++i) {
|
||||
|
||||
@ -111,8 +111,6 @@ struct DartTrainParam : public XGBoostParameter<DartTrainParam> {
|
||||
bool one_drop;
|
||||
/*! \brief probability of skipping the dropout during an iteration */
|
||||
float skip_drop;
|
||||
/*! \brief learning step size for a time */
|
||||
float learning_rate;
|
||||
// declare parameters
|
||||
DMLC_DECLARE_PARAMETER(DartTrainParam) {
|
||||
DMLC_DECLARE_FIELD(sample_type)
|
||||
@ -136,24 +134,27 @@ struct DartTrainParam : public XGBoostParameter<DartTrainParam> {
|
||||
.set_range(0.0f, 1.0f)
|
||||
.set_default(0.0f)
|
||||
.describe("Probability of skipping the dropout during a boosting iteration.");
|
||||
DMLC_DECLARE_FIELD(learning_rate)
|
||||
.set_lower_bound(0.0f)
|
||||
.set_default(0.3f)
|
||||
.describe("Learning rate(step size) of update.");
|
||||
DMLC_DECLARE_ALIAS(learning_rate, eta);
|
||||
}
|
||||
};
|
||||
|
||||
namespace detail {
|
||||
// From here on, layer becomes concrete trees.
|
||||
inline std::pair<uint32_t, uint32_t> LayerToTree(gbm::GBTreeModel const& model,
|
||||
size_t layer_begin,
|
||||
size_t layer_end) {
|
||||
bst_group_t groups = model.learner_model_param->num_output_group;
|
||||
uint32_t tree_begin = layer_begin * groups * model.param.num_parallel_tree;
|
||||
uint32_t tree_end = layer_end * groups * model.param.num_parallel_tree;
|
||||
std::uint32_t layer_begin,
|
||||
std::uint32_t layer_end) {
|
||||
std::uint32_t tree_begin;
|
||||
std::uint32_t tree_end;
|
||||
if (model.learner_model_param->IsVectorLeaf()) {
|
||||
tree_begin = layer_begin * model.param.num_parallel_tree;
|
||||
tree_end = layer_end * model.param.num_parallel_tree;
|
||||
} else {
|
||||
bst_group_t groups = model.learner_model_param->OutputLength();
|
||||
tree_begin = layer_begin * groups * model.param.num_parallel_tree;
|
||||
tree_end = layer_end * groups * model.param.num_parallel_tree;
|
||||
}
|
||||
|
||||
if (tree_end == 0) {
|
||||
tree_end = static_cast<uint32_t>(model.trees.size());
|
||||
tree_end = model.trees.size();
|
||||
}
|
||||
if (model.trees.size() != 0) {
|
||||
CHECK_LE(tree_begin, tree_end);
|
||||
@ -241,22 +242,25 @@ class GBTree : public GradientBooster {
|
||||
void LoadModel(Json const& in) override;
|
||||
|
||||
// Number of trees per layer.
|
||||
auto LayerTrees() const {
|
||||
auto n_trees = model_.learner_model_param->num_output_group * model_.param.num_parallel_tree;
|
||||
return n_trees;
|
||||
[[nodiscard]] std::uint32_t LayerTrees() const {
|
||||
if (model_.learner_model_param->IsVectorLeaf()) {
|
||||
return model_.param.num_parallel_tree;
|
||||
}
|
||||
return model_.param.num_parallel_tree * model_.learner_model_param->OutputLength();
|
||||
}
|
||||
|
||||
// slice the trees, out must be already allocated
|
||||
void Slice(int32_t layer_begin, int32_t layer_end, int32_t step,
|
||||
GradientBooster *out, bool* out_of_bound) const override;
|
||||
|
||||
int32_t BoostedRounds() const override {
|
||||
[[nodiscard]] std::int32_t BoostedRounds() const override {
|
||||
CHECK_NE(model_.param.num_parallel_tree, 0);
|
||||
CHECK_NE(model_.learner_model_param->num_output_group, 0);
|
||||
|
||||
return model_.trees.size() / this->LayerTrees();
|
||||
}
|
||||
|
||||
bool ModelFitted() const override {
|
||||
[[nodiscard]] bool ModelFitted() const override {
|
||||
return !model_.trees.empty() || !model_.trees_to_update.empty();
|
||||
}
|
||||
|
||||
|
||||
@ -326,7 +326,7 @@ struct LearnerTrainParam : public XGBoostParameter<LearnerTrainParam> {
|
||||
std::string booster;
|
||||
std::string objective;
|
||||
// This is a training parameter and is not saved (nor loaded) in the model.
|
||||
MultiStrategy multi_strategy{MultiStrategy::kComposite};
|
||||
MultiStrategy multi_strategy{MultiStrategy::kOneOutputPerTree};
|
||||
|
||||
// declare parameters
|
||||
DMLC_DECLARE_PARAMETER(LearnerTrainParam) {
|
||||
@ -339,12 +339,12 @@ struct LearnerTrainParam : public XGBoostParameter<LearnerTrainParam> {
|
||||
.set_default("reg:squarederror")
|
||||
.describe("Objective function used for obtaining gradient.");
|
||||
DMLC_DECLARE_FIELD(multi_strategy)
|
||||
.add_enum("composite", MultiStrategy::kComposite)
|
||||
.add_enum("monolithic", MultiStrategy::kMonolithic)
|
||||
.set_default(MultiStrategy::kComposite)
|
||||
.add_enum("one_output_per_tree", MultiStrategy::kOneOutputPerTree)
|
||||
.add_enum("multi_output_tree", MultiStrategy::kMultiOutputTree)
|
||||
.set_default(MultiStrategy::kOneOutputPerTree)
|
||||
.describe(
|
||||
"Strategy used for training multi-target models. `mono` means building one single tree "
|
||||
"for all targets.");
|
||||
"Strategy used for training multi-target models. `multi_output_tree` means building "
|
||||
"one single tree for all targets.");
|
||||
}
|
||||
};
|
||||
|
||||
@ -440,7 +440,7 @@ class LearnerConfiguration : public Learner {
|
||||
info.Validate(Ctx()->gpu_id);
|
||||
// We estimate it from input data.
|
||||
linalg::Tensor<float, 1> base_score;
|
||||
UsePtr(obj_)->InitEstimation(info, &base_score);
|
||||
InitEstimation(info, &base_score);
|
||||
CHECK_EQ(base_score.Size(), 1);
|
||||
mparam_.base_score = base_score(0);
|
||||
CHECK(!std::isnan(mparam_.base_score));
|
||||
@ -775,8 +775,6 @@ class LearnerConfiguration : public Learner {
|
||||
}
|
||||
CHECK_NE(mparam_.num_feature, 0)
|
||||
<< "0 feature is supplied. Are you using raw Booster interface?";
|
||||
// Remove these once binary IO is gone.
|
||||
cfg_["num_feature"] = common::ToString(mparam_.num_feature);
|
||||
}
|
||||
|
||||
void ConfigureGBM(LearnerTrainParam const& old, Args const& args) {
|
||||
@ -859,17 +857,37 @@ class LearnerConfiguration : public Learner {
|
||||
mparam_.num_target = n_targets;
|
||||
}
|
||||
}
|
||||
|
||||
void InitEstimation(MetaInfo const& info, linalg::Tensor<float, 1>* base_score) {
|
||||
// Special handling for vertical federated learning.
|
||||
if (collective::IsFederated() && info.data_split_mode == DataSplitMode::kCol) {
|
||||
// We assume labels are only available on worker 0, so the estimation is calculated there
|
||||
// and added to other workers.
|
||||
if (collective::GetRank() == 0) {
|
||||
UsePtr(obj_)->InitEstimation(info, base_score);
|
||||
collective::Broadcast(base_score->Data()->HostPointer(),
|
||||
sizeof(bst_float) * base_score->Size(), 0);
|
||||
} else {
|
||||
base_score->Reshape(1);
|
||||
collective::Broadcast(base_score->Data()->HostPointer(),
|
||||
sizeof(bst_float) * base_score->Size(), 0);
|
||||
}
|
||||
} else {
|
||||
UsePtr(obj_)->InitEstimation(info, base_score);
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
std::string const LearnerConfiguration::kEvalMetric {"eval_metric"}; // NOLINT
|
||||
|
||||
class LearnerIO : public LearnerConfiguration {
|
||||
private:
|
||||
std::set<std::string> saved_configs_ = {"num_round"};
|
||||
// Used to identify the offset of JSON string when
|
||||
// Will be removed once JSON takes over. Right now we still loads some RDS files from R.
|
||||
std::string const serialisation_header_ { u8"CONFIG-offset:" };
|
||||
|
||||
void ClearCaches() { this->prediction_container_ = PredictionContainer{}; }
|
||||
|
||||
public:
|
||||
explicit LearnerIO(std::vector<std::shared_ptr<DMatrix>> cache) : LearnerConfiguration{cache} {}
|
||||
|
||||
@ -922,6 +940,7 @@ class LearnerIO : public LearnerConfiguration {
|
||||
}
|
||||
|
||||
this->need_configuration_ = true;
|
||||
this->ClearCaches();
|
||||
}
|
||||
|
||||
void SaveModel(Json* p_out) const override {
|
||||
@ -1015,21 +1034,11 @@ class LearnerIO : public LearnerConfiguration {
|
||||
CHECK(fi->Read(&tparam_.booster)) << "BoostLearner: wrong model format";
|
||||
|
||||
obj_.reset(ObjFunction::Create(tparam_.objective, &ctx_));
|
||||
gbm_.reset(GradientBooster::Create(tparam_.booster, &ctx_,
|
||||
&learner_model_param_));
|
||||
gbm_.reset(GradientBooster::Create(tparam_.booster, &ctx_, &learner_model_param_));
|
||||
gbm_->Load(fi);
|
||||
if (mparam_.contain_extra_attrs != 0) {
|
||||
std::vector<std::pair<std::string, std::string> > attr;
|
||||
fi->Read(&attr);
|
||||
for (auto& kv : attr) {
|
||||
const std::string prefix = "SAVED_PARAM_";
|
||||
if (kv.first.find(prefix) == 0) {
|
||||
const std::string saved_param = kv.first.substr(prefix.length());
|
||||
if (saved_configs_.find(saved_param) != saved_configs_.end()) {
|
||||
cfg_[saved_param] = kv.second;
|
||||
}
|
||||
}
|
||||
}
|
||||
attributes_ = std::map<std::string, std::string>(attr.begin(), attr.end());
|
||||
}
|
||||
bool warn_old_model { false };
|
||||
@ -1098,6 +1107,7 @@ class LearnerIO : public LearnerConfiguration {
|
||||
cfg_.insert(n.cbegin(), n.cend());
|
||||
|
||||
this->need_configuration_ = true;
|
||||
this->ClearCaches();
|
||||
}
|
||||
|
||||
// Save model into binary format. The code is about to be deprecated by more robust
|
||||
@ -1111,16 +1121,6 @@ class LearnerIO : public LearnerConfiguration {
|
||||
std::vector<std::pair<std::string, std::string> > extra_attr;
|
||||
mparam.contain_extra_attrs = 1;
|
||||
|
||||
{
|
||||
std::vector<std::string> saved_params;
|
||||
for (const auto& key : saved_params) {
|
||||
auto it = cfg_.find(key);
|
||||
if (it != cfg_.end()) {
|
||||
mparam.contain_extra_attrs = 1;
|
||||
extra_attr.emplace_back("SAVED_PARAM_" + key, it->second);
|
||||
}
|
||||
}
|
||||
}
|
||||
{
|
||||
// Similar to JSON model IO, we save the objective.
|
||||
Json j_obj { Object() };
|
||||
@ -1305,7 +1305,7 @@ class LearnerImpl : public LearnerIO {
|
||||
monitor_.Stop("PredictRaw");
|
||||
|
||||
monitor_.Start("GetGradient");
|
||||
obj_->GetGradient(predt.predictions, train->Info(), iter, &gpair_);
|
||||
GetGradient(predt.predictions, train->Info(), iter, &gpair_);
|
||||
monitor_.Stop("GetGradient");
|
||||
TrainingObserver::Instance().Observe(gpair_, "Gradients");
|
||||
|
||||
@ -1484,6 +1484,28 @@ class LearnerImpl : public LearnerIO {
|
||||
}
|
||||
|
||||
private:
|
||||
void GetGradient(HostDeviceVector<bst_float> const& preds, MetaInfo const& info, int iteration,
|
||||
HostDeviceVector<GradientPair>* out_gpair) {
|
||||
// Special handling for vertical federated learning.
|
||||
if (collective::IsFederated() && info.data_split_mode == DataSplitMode::kCol) {
|
||||
// We assume labels are only available on worker 0, so the gradients are calculated there
|
||||
// and broadcast to other workers.
|
||||
if (collective::GetRank() == 0) {
|
||||
obj_->GetGradient(preds, info, iteration, out_gpair);
|
||||
collective::Broadcast(out_gpair->HostPointer(), out_gpair->Size() * sizeof(GradientPair),
|
||||
0);
|
||||
} else {
|
||||
CHECK_EQ(info.labels.Size(), 0)
|
||||
<< "In vertical federated learning, labels should only be on the first worker";
|
||||
out_gpair->Resize(preds.Size());
|
||||
collective::Broadcast(out_gpair->HostPointer(), out_gpair->Size() * sizeof(GradientPair),
|
||||
0);
|
||||
}
|
||||
} else {
|
||||
obj_->GetGradient(preds, info, iteration, out_gpair);
|
||||
}
|
||||
}
|
||||
|
||||
/*! \brief random number transformation seed. */
|
||||
static int32_t constexpr kRandSeedMagic = 127;
|
||||
// gradient pairs
|
||||
|
||||
@ -20,23 +20,51 @@
|
||||
// corresponding headers that brings in those function declaration can't be included with CUDA).
|
||||
// This precludes the CPU and GPU logic to coexist inside a .cu file
|
||||
|
||||
#include "rank_metric.h"
|
||||
|
||||
#include <dmlc/omp.h>
|
||||
#include <dmlc/registry.h>
|
||||
#include <xgboost/metric.h>
|
||||
|
||||
#include <cmath>
|
||||
#include <vector>
|
||||
#include <algorithm> // for stable_sort, copy, fill_n, min, max
|
||||
#include <array> // for array
|
||||
#include <cmath> // for log, sqrt
|
||||
#include <cstddef> // for size_t, std
|
||||
#include <cstdint> // for uint32_t
|
||||
#include <functional> // for less, greater
|
||||
#include <map> // for operator!=, _Rb_tree_const_iterator
|
||||
#include <memory> // for allocator, unique_ptr, shared_ptr, __shared_...
|
||||
#include <numeric> // for accumulate
|
||||
#include <ostream> // for operator<<, basic_ostream, ostringstream
|
||||
#include <string> // for char_traits, operator<, basic_string, to_string
|
||||
#include <utility> // for pair, make_pair
|
||||
#include <vector> // for vector
|
||||
|
||||
#include "../collective/communicator-inl.h"
|
||||
#include "../common/algorithm.h" // Sort
|
||||
#include "../common/math.h"
|
||||
#include "../common/ranking_utils.h" // MakeMetricName
|
||||
#include "../common/threading_utils.h"
|
||||
#include "metric_common.h"
|
||||
#include "xgboost/host_device_vector.h"
|
||||
#include "../collective/communicator-inl.h" // for IsDistributed, Allreduce
|
||||
#include "../collective/communicator.h" // for Operation
|
||||
#include "../common/algorithm.h" // for ArgSort, Sort
|
||||
#include "../common/linalg_op.h" // for cbegin, cend
|
||||
#include "../common/math.h" // for CmpFirst
|
||||
#include "../common/optional_weight.h" // for OptionalWeights, MakeOptionalWeights
|
||||
#include "../common/ranking_utils.h" // for LambdaRankParam, NDCGCache, ParseMetricName
|
||||
#include "../common/threading_utils.h" // for ParallelFor
|
||||
#include "../common/transform_iterator.h" // for IndexTransformIter
|
||||
#include "dmlc/common.h" // for OMPException
|
||||
#include "metric_common.h" // for MetricNoCache, GPUMetric, PackedReduceResult
|
||||
#include "xgboost/base.h" // for bst_float, bst_omp_uint, bst_group_t, Args
|
||||
#include "xgboost/cache.h" // for DMatrixCache
|
||||
#include "xgboost/context.h" // for Context
|
||||
#include "xgboost/data.h" // for MetaInfo, DMatrix
|
||||
#include "xgboost/host_device_vector.h" // for HostDeviceVector
|
||||
#include "xgboost/json.h" // for Json, FromJson, IsA, ToJson, get, Null, Object
|
||||
#include "xgboost/linalg.h" // for Tensor, TensorView, Range, VectorView, MakeT...
|
||||
#include "xgboost/logging.h" // for CHECK, ConsoleLogger, LOG_INFO, CHECK_EQ
|
||||
#include "xgboost/metric.h" // for MetricReg, XGBOOST_REGISTER_METRIC, Metric
|
||||
#include "xgboost/span.h" // for Span, operator!=
|
||||
#include "xgboost/string_view.h" // for StringView
|
||||
|
||||
namespace {
|
||||
|
||||
using PredIndPair = std::pair<xgboost::bst_float, uint32_t>;
|
||||
using PredIndPair = std::pair<xgboost::bst_float, xgboost::ltr::rel_degree_t>;
|
||||
using PredIndPairContainer = std::vector<PredIndPair>;
|
||||
|
||||
/*
|
||||
@ -87,8 +115,7 @@ class PerGroupWeightPolicy {
|
||||
|
||||
} // anonymous namespace
|
||||
|
||||
namespace xgboost {
|
||||
namespace metric {
|
||||
namespace xgboost::metric {
|
||||
// tag the this file, used by force static link later.
|
||||
DMLC_REGISTRY_FILE_TAG(rank_metric);
|
||||
|
||||
@ -257,71 +284,6 @@ struct EvalPrecision : public EvalRank {
|
||||
}
|
||||
};
|
||||
|
||||
/*! \brief NDCG: Normalized Discounted Cumulative Gain at N */
|
||||
struct EvalNDCG : public EvalRank {
|
||||
private:
|
||||
double CalcDCG(const PredIndPairContainer &rec) const {
|
||||
double sumdcg = 0.0;
|
||||
for (size_t i = 0; i < rec.size() && i < this->topn; ++i) {
|
||||
const unsigned rel = rec[i].second;
|
||||
if (rel != 0) {
|
||||
sumdcg += ((1 << rel) - 1) / std::log2(i + 2.0);
|
||||
}
|
||||
}
|
||||
return sumdcg;
|
||||
}
|
||||
|
||||
public:
|
||||
explicit EvalNDCG(const char* name, const char* param) : EvalRank(name, param) {}
|
||||
|
||||
double EvalGroup(PredIndPairContainer *recptr) const override {
|
||||
PredIndPairContainer &rec(*recptr);
|
||||
std::stable_sort(rec.begin(), rec.end(), common::CmpFirst);
|
||||
double dcg = CalcDCG(rec);
|
||||
std::stable_sort(rec.begin(), rec.end(), common::CmpSecond);
|
||||
double idcg = CalcDCG(rec);
|
||||
if (idcg == 0.0f) {
|
||||
if (this->minus) {
|
||||
return 0.0f;
|
||||
} else {
|
||||
return 1.0f;
|
||||
}
|
||||
}
|
||||
return dcg/idcg;
|
||||
}
|
||||
};
|
||||
|
||||
/*! \brief Mean Average Precision at N, for both classification and rank */
|
||||
struct EvalMAP : public EvalRank {
|
||||
public:
|
||||
explicit EvalMAP(const char* name, const char* param) : EvalRank(name, param) {}
|
||||
|
||||
double EvalGroup(PredIndPairContainer *recptr) const override {
|
||||
PredIndPairContainer &rec(*recptr);
|
||||
std::stable_sort(rec.begin(), rec.end(), common::CmpFirst);
|
||||
unsigned nhits = 0;
|
||||
double sumap = 0.0;
|
||||
for (size_t i = 0; i < rec.size(); ++i) {
|
||||
if (rec[i].second != 0) {
|
||||
nhits += 1;
|
||||
if (i < this->topn) {
|
||||
sumap += static_cast<double>(nhits) / (i + 1);
|
||||
}
|
||||
}
|
||||
}
|
||||
if (nhits != 0) {
|
||||
sumap /= nhits;
|
||||
return sumap;
|
||||
} else {
|
||||
if (this->minus) {
|
||||
return 0.0;
|
||||
} else {
|
||||
return 1.0;
|
||||
}
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
/*! \brief Cox: Partial likelihood of the Cox proportional hazards model */
|
||||
struct EvalCox : public MetricNoCache {
|
||||
public:
|
||||
@ -377,16 +339,213 @@ XGBOOST_REGISTER_METRIC(Precision, "pre")
|
||||
.describe("precision@k for rank.")
|
||||
.set_body([](const char* param) { return new EvalPrecision("pre", param); });
|
||||
|
||||
XGBOOST_REGISTER_METRIC(NDCG, "ndcg")
|
||||
.describe("ndcg@k for rank.")
|
||||
.set_body([](const char* param) { return new EvalNDCG("ndcg", param); });
|
||||
|
||||
XGBOOST_REGISTER_METRIC(MAP, "map")
|
||||
.describe("map@k for rank.")
|
||||
.set_body([](const char* param) { return new EvalMAP("map", param); });
|
||||
|
||||
XGBOOST_REGISTER_METRIC(Cox, "cox-nloglik")
|
||||
.describe("Negative log partial likelihood of Cox proportional hazards model.")
|
||||
.set_body([](const char*) { return new EvalCox(); });
|
||||
} // namespace metric
|
||||
} // namespace xgboost
|
||||
|
||||
// ranking metrics that requires cache
|
||||
template <typename Cache>
|
||||
class EvalRankWithCache : public Metric {
|
||||
protected:
|
||||
ltr::LambdaRankParam param_;
|
||||
bool minus_{false};
|
||||
std::string name_;
|
||||
|
||||
DMatrixCache<Cache> cache_{DMatrixCache<Cache>::DefaultSize()};
|
||||
|
||||
public:
|
||||
EvalRankWithCache(StringView name, const char* param) {
|
||||
auto constexpr kMax = ltr::LambdaRankParam::NotSet();
|
||||
std::uint32_t topn{kMax};
|
||||
this->name_ = ltr::ParseMetricName(name, param, &topn, &minus_);
|
||||
if (topn != kMax) {
|
||||
param_.UpdateAllowUnknown(Args{{"lambdarank_num_pair_per_sample", std::to_string(topn)},
|
||||
{"lambdarank_pair_method", "topk"}});
|
||||
}
|
||||
param_.UpdateAllowUnknown(Args{});
|
||||
}
|
||||
void Configure(Args const&) override {
|
||||
// do not configure, otherwise the ndcg param will be forced into the same as the one in
|
||||
// objective.
|
||||
}
|
||||
void LoadConfig(Json const& in) override {
|
||||
if (IsA<Null>(in)) {
|
||||
return;
|
||||
}
|
||||
auto const& obj = get<Object const>(in);
|
||||
auto it = obj.find("lambdarank_param");
|
||||
if (it != obj.cend()) {
|
||||
FromJson(it->second, ¶m_);
|
||||
}
|
||||
}
|
||||
|
||||
void SaveConfig(Json* p_out) const override {
|
||||
auto& out = *p_out;
|
||||
out["name"] = String{this->Name()};
|
||||
out["lambdarank_param"] = ToJson(param_);
|
||||
}
|
||||
|
||||
double Evaluate(HostDeviceVector<float> const& preds, std::shared_ptr<DMatrix> p_fmat) override {
|
||||
auto const& info = p_fmat->Info();
|
||||
auto p_cache = cache_.CacheItem(p_fmat, ctx_, info, param_);
|
||||
if (p_cache->Param() != param_) {
|
||||
p_cache = cache_.ResetItem(p_fmat, ctx_, info, param_);
|
||||
}
|
||||
CHECK(p_cache->Param() == param_);
|
||||
CHECK_EQ(preds.Size(), info.labels.Size());
|
||||
|
||||
return this->Eval(preds, info, p_cache);
|
||||
}
|
||||
|
||||
virtual double Eval(HostDeviceVector<float> const& preds, MetaInfo const& info,
|
||||
std::shared_ptr<Cache> p_cache) = 0;
|
||||
};
|
||||
|
||||
namespace {
|
||||
double Finalize(double score, double sw) {
|
||||
std::array<double, 2> dat{score, sw};
|
||||
collective::Allreduce<collective::Operation::kSum>(dat.data(), dat.size());
|
||||
if (sw > 0.0) {
|
||||
score = score / sw;
|
||||
}
|
||||
|
||||
CHECK_LE(score, 1.0 + kRtEps)
|
||||
<< "Invalid output score, might be caused by invalid query group weight.";
|
||||
score = std::min(1.0, score);
|
||||
|
||||
return score;
|
||||
}
|
||||
} // namespace
|
||||
|
||||
/**
|
||||
* \brief Implement the NDCG score function for learning to rank.
|
||||
*
|
||||
* Ties are ignored, which can lead to different result with other implementations.
|
||||
*/
|
||||
class EvalNDCG : public EvalRankWithCache<ltr::NDCGCache> {
|
||||
public:
|
||||
using EvalRankWithCache::EvalRankWithCache;
|
||||
const char* Name() const override { return name_.c_str(); }
|
||||
|
||||
double Eval(HostDeviceVector<float> const& preds, MetaInfo const& info,
|
||||
std::shared_ptr<ltr::NDCGCache> p_cache) override {
|
||||
if (ctx_->IsCUDA()) {
|
||||
auto ndcg = cuda_impl::NDCGScore(ctx_, info, preds, minus_, p_cache);
|
||||
return Finalize(ndcg.Residue(), ndcg.Weights());
|
||||
}
|
||||
|
||||
// group local ndcg
|
||||
auto group_ptr = p_cache->DataGroupPtr(ctx_);
|
||||
bst_group_t n_groups = group_ptr.size() - 1;
|
||||
auto ndcg_gloc = p_cache->Dcg(ctx_);
|
||||
std::fill_n(ndcg_gloc.Values().data(), ndcg_gloc.Size(), 0.0);
|
||||
|
||||
auto h_inv_idcg = p_cache->InvIDCG(ctx_);
|
||||
auto p_discount = p_cache->Discount(ctx_).data();
|
||||
|
||||
auto h_label = info.labels.HostView();
|
||||
auto h_predt = linalg::MakeTensorView(ctx_, &preds, preds.Size());
|
||||
auto weights = common::MakeOptionalWeights(ctx_, info.weights_);
|
||||
|
||||
common::ParallelFor(n_groups, ctx_->Threads(), [&](auto g) {
|
||||
auto g_predt = h_predt.Slice(linalg::Range(group_ptr[g], group_ptr[g + 1]));
|
||||
auto g_labels = h_label.Slice(linalg::Range(group_ptr[g], group_ptr[g + 1]), 0);
|
||||
auto sorted_idx = common::ArgSort<std::size_t>(ctx_, linalg::cbegin(g_predt),
|
||||
linalg::cend(g_predt), std::greater<>{});
|
||||
double ndcg{.0};
|
||||
double inv_idcg = h_inv_idcg(g);
|
||||
if (inv_idcg <= 0.0) {
|
||||
ndcg_gloc(g) = minus_ ? 0.0 : 1.0;
|
||||
return;
|
||||
}
|
||||
std::size_t n{std::min(sorted_idx.size(), static_cast<std::size_t>(param_.TopK()))};
|
||||
if (param_.ndcg_exp_gain) {
|
||||
for (std::size_t i = 0; i < n; ++i) {
|
||||
ndcg += p_discount[i] * ltr::CalcDCGGain(g_labels(sorted_idx[i])) * inv_idcg;
|
||||
}
|
||||
} else {
|
||||
for (std::size_t i = 0; i < n; ++i) {
|
||||
ndcg += p_discount[i] * g_labels(sorted_idx[i]) * inv_idcg;
|
||||
}
|
||||
}
|
||||
ndcg_gloc(g) += ndcg * weights[g];
|
||||
});
|
||||
double sum_w{0};
|
||||
if (weights.Empty()) {
|
||||
sum_w = n_groups;
|
||||
} else {
|
||||
sum_w = std::accumulate(weights.weights.cbegin(), weights.weights.cend(), 0.0);
|
||||
}
|
||||
auto ndcg = std::accumulate(linalg::cbegin(ndcg_gloc), linalg::cend(ndcg_gloc), 0.0);
|
||||
return Finalize(ndcg, sum_w);
|
||||
}
|
||||
};
|
||||
|
||||
class EvalMAPScore : public EvalRankWithCache<ltr::MAPCache> {
|
||||
public:
|
||||
using EvalRankWithCache::EvalRankWithCache;
|
||||
const char* Name() const override { return name_.c_str(); }
|
||||
|
||||
double Eval(HostDeviceVector<float> const& predt, MetaInfo const& info,
|
||||
std::shared_ptr<ltr::MAPCache> p_cache) override {
|
||||
if (ctx_->IsCUDA()) {
|
||||
auto map = cuda_impl::MAPScore(ctx_, info, predt, minus_, p_cache);
|
||||
return Finalize(map.Residue(), map.Weights());
|
||||
}
|
||||
|
||||
auto gptr = p_cache->DataGroupPtr(ctx_);
|
||||
auto h_label = info.labels.HostView().Slice(linalg::All(), 0);
|
||||
auto h_predt = linalg::MakeTensorView(ctx_, &predt, predt.Size());
|
||||
|
||||
auto map_gloc = p_cache->Map(ctx_);
|
||||
std::fill_n(map_gloc.data(), map_gloc.size(), 0.0);
|
||||
auto rank_idx = p_cache->SortedIdx(ctx_, predt.ConstHostSpan());
|
||||
|
||||
common::ParallelFor(p_cache->Groups(), ctx_->Threads(), [&](auto g) {
|
||||
auto g_predt = h_predt.Slice(linalg::Range(gptr[g], gptr[g + 1]));
|
||||
auto g_label = h_label.Slice(linalg::Range(gptr[g], gptr[g + 1]));
|
||||
auto g_rank = rank_idx.subspan(gptr[g]);
|
||||
|
||||
auto n = std::min(static_cast<std::size_t>(param_.TopK()), g_label.Size());
|
||||
double n_hits{0.0};
|
||||
for (std::size_t i = 0; i < n; ++i) {
|
||||
auto p = g_label(g_rank[i]);
|
||||
n_hits += p;
|
||||
map_gloc[g] += n_hits / static_cast<double>((i + 1)) * p;
|
||||
}
|
||||
for (std::size_t i = n; i < g_label.Size(); ++i) {
|
||||
n_hits += g_label(g_rank[i]);
|
||||
}
|
||||
if (n_hits > 0.0) {
|
||||
map_gloc[g] /= std::min(n_hits, static_cast<double>(param_.TopK()));
|
||||
} else {
|
||||
map_gloc[g] = minus_ ? 0.0 : 1.0;
|
||||
}
|
||||
});
|
||||
|
||||
auto sw = 0.0;
|
||||
auto weight = common::MakeOptionalWeights(ctx_, info.weights_);
|
||||
if (!weight.Empty()) {
|
||||
CHECK_EQ(weight.weights.size(), p_cache->Groups());
|
||||
}
|
||||
for (std::size_t i = 0; i < map_gloc.size(); ++i) {
|
||||
map_gloc[i] = map_gloc[i] * weight[i];
|
||||
sw += weight[i];
|
||||
}
|
||||
auto sum = std::accumulate(map_gloc.cbegin(), map_gloc.cend(), 0.0);
|
||||
return Finalize(sum, sw);
|
||||
}
|
||||
};
|
||||
|
||||
XGBOOST_REGISTER_METRIC(EvalMAP, "map")
|
||||
.describe("map@k for ranking.")
|
||||
.set_body([](char const* param) {
|
||||
return new EvalMAPScore{"map", param};
|
||||
});
|
||||
|
||||
XGBOOST_REGISTER_METRIC(EvalNDCG, "ndcg")
|
||||
.describe("ndcg@k for ranking.")
|
||||
.set_body([](char const* param) {
|
||||
return new EvalNDCG{"ndcg", param};
|
||||
});
|
||||
} // namespace xgboost::metric
|
||||
|
||||
@ -2,22 +2,29 @@
|
||||
* Copyright 2020-2023 by XGBoost Contributors
|
||||
*/
|
||||
#include <dmlc/registry.h>
|
||||
#include <thrust/iterator/counting_iterator.h> // make_counting_iterator
|
||||
#include <thrust/reduce.h> // reduce
|
||||
#include <xgboost/metric.h>
|
||||
#include <thrust/iterator/counting_iterator.h> // for make_counting_iterator
|
||||
#include <thrust/reduce.h> // for reduce
|
||||
|
||||
#include <cstddef> // std::size_t
|
||||
#include <memory> // std::shared_ptr
|
||||
#include <algorithm> // for transform
|
||||
#include <cstddef> // for size_t
|
||||
#include <memory> // for shared_ptr
|
||||
#include <vector> // for vector
|
||||
|
||||
#include "../common/cuda_context.cuh" // CUDAContext
|
||||
#include "../common/cuda_context.cuh" // for CUDAContext
|
||||
#include "../common/device_helpers.cuh" // for MakeTransformIterator
|
||||
#include "../common/optional_weight.h" // for MakeOptionalWeights
|
||||
#include "../common/ranking_utils.cuh" // for CalcQueriesDCG, NDCGCache
|
||||
#include "metric_common.h"
|
||||
#include "xgboost/base.h" // XGBOOST_DEVICE
|
||||
#include "xgboost/context.h" // Context
|
||||
#include "xgboost/data.h" // MetaInfo
|
||||
#include "xgboost/host_device_vector.h" // HostDeviceVector
|
||||
#include "rank_metric.h"
|
||||
#include "xgboost/base.h" // for XGBOOST_DEVICE
|
||||
#include "xgboost/context.h" // for Context
|
||||
#include "xgboost/data.h" // for MetaInfo
|
||||
#include "xgboost/host_device_vector.h" // for HostDeviceVector
|
||||
#include "xgboost/linalg.h" // for MakeTensorView
|
||||
#include "xgboost/logging.h" // for CHECK
|
||||
#include "xgboost/metric.h"
|
||||
|
||||
namespace xgboost {
|
||||
namespace metric {
|
||||
namespace xgboost::metric {
|
||||
// tag the this file, used by force static link later.
|
||||
DMLC_REGISTRY_FILE_TAG(rank_metric_gpu);
|
||||
|
||||
@ -134,200 +141,125 @@ struct EvalPrecisionGpu {
|
||||
}
|
||||
};
|
||||
|
||||
/*! \brief NDCG: Normalized Discounted Cumulative Gain at N */
|
||||
struct EvalNDCGGpu {
|
||||
public:
|
||||
static void ComputeDCG(const dh::SegmentSorter<float> &pred_sorter,
|
||||
const float *dlabels,
|
||||
const EvalRankConfig &ecfg,
|
||||
// The order in which labels have to be accessed. The order is determined
|
||||
// by sorting the predictions or the labels for the entire dataset
|
||||
const xgboost::common::Span<const uint32_t> &dlabels_sort_order,
|
||||
dh::caching_device_vector<double> *dcgptr) {
|
||||
dh::caching_device_vector<double> &dcgs(*dcgptr);
|
||||
// Group info on device
|
||||
const auto &dgroups = pred_sorter.GetGroupsSpan();
|
||||
const auto &dgroup_idx = pred_sorter.GetGroupSegmentsSpan();
|
||||
|
||||
// First, determine non zero labels in the dataset individually
|
||||
auto DetermineNonTrivialLabelLambda = [=] __device__(uint32_t idx) {
|
||||
return (static_cast<unsigned>(dlabels[dlabels_sort_order[idx]]));
|
||||
}; // NOLINT
|
||||
|
||||
// Find each group's DCG value
|
||||
const auto nitems = pred_sorter.GetNumItems();
|
||||
auto *ddcgs = dcgs.data().get();
|
||||
|
||||
int device_id = -1;
|
||||
|
||||
#if defined(XGBOOST_USE_CUDA)
|
||||
dh::safe_cuda(cudaGetDevice(&device_id));
|
||||
#elif defined(XGBOOST_USE_HIP)
|
||||
dh::safe_cuda(hipGetDevice(&device_id));
|
||||
#endif
|
||||
|
||||
// For each group item compute the aggregated precision
|
||||
dh::LaunchN(nitems, nullptr, [=] __device__(uint32_t idx) {
|
||||
const auto group_idx = dgroup_idx[idx];
|
||||
const auto group_begin = dgroups[group_idx];
|
||||
const auto ridx = idx - group_begin;
|
||||
auto label = DetermineNonTrivialLabelLambda(idx);
|
||||
if (ridx < ecfg.topn && label) {
|
||||
atomicAdd(&ddcgs[group_idx], ((1 << label) - 1) / std::log2(ridx + 2.0));
|
||||
}
|
||||
});
|
||||
}
|
||||
|
||||
static double EvalMetric(const dh::SegmentSorter<float> &pred_sorter,
|
||||
const float *dlabels,
|
||||
const EvalRankConfig &ecfg) {
|
||||
// Sort the labels and compute IDCG
|
||||
dh::SegmentSorter<float> segment_label_sorter;
|
||||
segment_label_sorter.SortItems(dlabels, pred_sorter.GetNumItems(),
|
||||
pred_sorter.GetGroupSegmentsSpan());
|
||||
|
||||
uint32_t ngroups = pred_sorter.GetNumGroups();
|
||||
|
||||
dh::caching_device_vector<double> idcg(ngroups, 0);
|
||||
ComputeDCG(pred_sorter, dlabels, ecfg, segment_label_sorter.GetOriginalPositionsSpan(), &idcg);
|
||||
|
||||
// Compute the DCG values next
|
||||
dh::caching_device_vector<double> dcg(ngroups, 0);
|
||||
ComputeDCG(pred_sorter, dlabels, ecfg, pred_sorter.GetOriginalPositionsSpan(), &dcg);
|
||||
|
||||
double *ddcg = dcg.data().get();
|
||||
double *didcg = idcg.data().get();
|
||||
|
||||
int device_id = -1;
|
||||
|
||||
#if defined(XGBOOST_USE_CUDA)
|
||||
dh::safe_cuda(cudaGetDevice(&device_id));
|
||||
#elif defined(XGBOOST_USE_HIP)
|
||||
dh::safe_cuda(hipGetDevice(&device_id));
|
||||
#endif
|
||||
|
||||
// Compute the group's DCG and reduce it across all groups
|
||||
dh::LaunchN(ngroups, nullptr, [=] __device__(uint32_t gidx) {
|
||||
if (didcg[gidx] == 0.0f) {
|
||||
ddcg[gidx] = (ecfg.minus) ? 0.0f : 1.0f;
|
||||
} else {
|
||||
ddcg[gidx] /= didcg[gidx];
|
||||
}
|
||||
});
|
||||
|
||||
// Allocator to be used for managing space overhead while performing reductions
|
||||
dh::XGBCachingDeviceAllocator<char> alloc;
|
||||
|
||||
#if defined(XGBOOST_USE_CUDA)
|
||||
return thrust::reduce(thrust::cuda::par(alloc), dcg.begin(), dcg.end());
|
||||
#elif defined(XGBOOST_USE_HIP)
|
||||
return thrust::reduce(thrust::hip::par(alloc), dcg.begin(), dcg.end());
|
||||
#endif
|
||||
}
|
||||
};
|
||||
|
||||
/*! \brief Mean Average Precision at N, for both classification and rank */
|
||||
struct EvalMAPGpu {
|
||||
public:
|
||||
static double EvalMetric(const dh::SegmentSorter<float> &pred_sorter,
|
||||
const float *dlabels,
|
||||
const EvalRankConfig &ecfg) {
|
||||
// Group info on device
|
||||
const auto &dgroups = pred_sorter.GetGroupsSpan();
|
||||
const auto ngroups = pred_sorter.GetNumGroups();
|
||||
const auto &dgroup_idx = pred_sorter.GetGroupSegmentsSpan();
|
||||
|
||||
// Original positions of the predictions after they have been sorted
|
||||
const auto &dpreds_orig_pos = pred_sorter.GetOriginalPositionsSpan();
|
||||
|
||||
// First, determine non zero labels in the dataset individually
|
||||
const auto nitems = pred_sorter.GetNumItems();
|
||||
dh::caching_device_vector<uint32_t> hits(nitems, 0);
|
||||
auto DetermineNonTrivialLabelLambda = [=] __device__(uint32_t idx) {
|
||||
return (static_cast<unsigned>(dlabels[dpreds_orig_pos[idx]]) != 0) ? 1 : 0;
|
||||
}; // NOLINT
|
||||
|
||||
thrust::transform(thrust::make_counting_iterator(static_cast<uint32_t>(0)),
|
||||
thrust::make_counting_iterator(nitems),
|
||||
hits.begin(),
|
||||
DetermineNonTrivialLabelLambda);
|
||||
|
||||
// Allocator to be used by sort for managing space overhead while performing prefix scans
|
||||
dh::XGBCachingDeviceAllocator<char> alloc;
|
||||
|
||||
// Next, prefix scan the nontrivial labels that are segmented to accumulate them.
|
||||
// This is required for computing the metric sum
|
||||
// Data segmented into different groups...
|
||||
#if defined(XGBOOST_USE_CUDA)
|
||||
thrust::inclusive_scan_by_key(thrust::cuda::par(alloc),
|
||||
dh::tcbegin(dgroup_idx), dh::tcend(dgroup_idx),
|
||||
hits.begin(), // Input value
|
||||
hits.begin()); // In-place scan
|
||||
#elif defined(XGBOOST_USE_HIP)
|
||||
thrust::inclusive_scan_by_key(thrust::hip::par(alloc),
|
||||
dh::tcbegin(dgroup_idx), dh::tcend(dgroup_idx),
|
||||
hits.begin(), // Input value
|
||||
hits.begin()); // In-place scan
|
||||
#endif
|
||||
|
||||
// Find each group's metric sum
|
||||
dh::caching_device_vector<double> sumap(ngroups, 0);
|
||||
auto *dsumap = sumap.data().get();
|
||||
const auto *dhits = hits.data().get();
|
||||
|
||||
int device_id = -1;
|
||||
|
||||
#if defined(XGBOOST_USE_CUDA)
|
||||
dh::safe_cuda(cudaGetDevice(&device_id));
|
||||
#elif defined(XGBOOST_USE_HIP)
|
||||
dh::safe_cuda(hipGetDevice(&device_id));
|
||||
#endif
|
||||
|
||||
// For each group item compute the aggregated precision
|
||||
dh::LaunchN(nitems, nullptr, [=] __device__(uint32_t idx) {
|
||||
if (DetermineNonTrivialLabelLambda(idx)) {
|
||||
const auto group_idx = dgroup_idx[idx];
|
||||
const auto group_begin = dgroups[group_idx];
|
||||
const auto ridx = idx - group_begin;
|
||||
if (ridx < ecfg.topn) {
|
||||
atomicAdd(&dsumap[group_idx],
|
||||
static_cast<double>(dhits[idx]) / (ridx + 1));
|
||||
}
|
||||
}
|
||||
});
|
||||
|
||||
// Aggregate the group's item precisions
|
||||
dh::LaunchN(ngroups, nullptr, [=] __device__(uint32_t gidx) {
|
||||
auto nhits = dgroups[gidx + 1] ? dhits[dgroups[gidx + 1] - 1] : 0;
|
||||
if (nhits != 0) {
|
||||
dsumap[gidx] /= nhits;
|
||||
} else {
|
||||
if (ecfg.minus) {
|
||||
dsumap[gidx] = 0;
|
||||
} else {
|
||||
dsumap[gidx] = 1;
|
||||
}
|
||||
}
|
||||
});
|
||||
|
||||
#if defined(XGBOOST_USE_CUDA)
|
||||
return thrust::reduce(thrust::cuda::par(alloc), sumap.begin(), sumap.end());
|
||||
#elif defined(XGBOOST_USE_HIP)
|
||||
return thrust::reduce(thrust::hip::par(alloc), sumap.begin(), sumap.end());
|
||||
#endif
|
||||
}
|
||||
};
|
||||
|
||||
XGBOOST_REGISTER_GPU_METRIC(PrecisionGpu, "pre")
|
||||
.describe("precision@k for rank computed on GPU.")
|
||||
.set_body([](const char* param) { return new EvalRankGpu<EvalPrecisionGpu>("pre", param); });
|
||||
|
||||
XGBOOST_REGISTER_GPU_METRIC(NDCGGpu, "ndcg")
|
||||
.describe("ndcg@k for rank computed on GPU.")
|
||||
.set_body([](const char* param) { return new EvalRankGpu<EvalNDCGGpu>("ndcg", param); });
|
||||
namespace cuda_impl {
|
||||
PackedReduceResult NDCGScore(Context const *ctx, MetaInfo const &info,
|
||||
HostDeviceVector<float> const &predt, bool minus,
|
||||
std::shared_ptr<ltr::NDCGCache> p_cache) {
|
||||
CHECK(p_cache);
|
||||
|
||||
XGBOOST_REGISTER_GPU_METRIC(MAPGpu, "map")
|
||||
.describe("map@k for rank computed on GPU.")
|
||||
.set_body([](const char* param) { return new EvalRankGpu<EvalMAPGpu>("map", param); });
|
||||
} // namespace metric
|
||||
} // namespace xgboost
|
||||
auto const &p = p_cache->Param();
|
||||
auto d_weight = common::MakeOptionalWeights(ctx, info.weights_);
|
||||
if (!d_weight.Empty()) {
|
||||
CHECK_EQ(d_weight.weights.size(), p_cache->Groups());
|
||||
}
|
||||
auto d_label = info.labels.View(ctx->gpu_id).Slice(linalg::All(), 0);
|
||||
predt.SetDevice(ctx->gpu_id);
|
||||
auto d_predt = linalg::MakeTensorView(ctx, predt.ConstDeviceSpan(), predt.Size());
|
||||
|
||||
auto d_group_ptr = p_cache->DataGroupPtr(ctx);
|
||||
|
||||
auto d_inv_idcg = p_cache->InvIDCG(ctx);
|
||||
auto d_sorted_idx = p_cache->SortedIdx(ctx, d_predt.Values());
|
||||
auto d_out_dcg = p_cache->Dcg(ctx);
|
||||
|
||||
ltr::cuda_impl::CalcQueriesDCG(ctx, d_label, d_sorted_idx, p.ndcg_exp_gain, d_group_ptr, p.TopK(),
|
||||
d_out_dcg);
|
||||
auto it = dh::MakeTransformIterator<PackedReduceResult>(
|
||||
thrust::make_counting_iterator(0ul), [=] XGBOOST_DEVICE(std::size_t i) {
|
||||
if (d_inv_idcg(i) <= 0.0) {
|
||||
return PackedReduceResult{minus ? 0.0 : 1.0, static_cast<double>(d_weight[i])};
|
||||
}
|
||||
return PackedReduceResult{d_out_dcg(i) * d_inv_idcg(i) * d_weight[i],
|
||||
static_cast<double>(d_weight[i])};
|
||||
});
|
||||
auto pair = thrust::reduce(ctx->CUDACtx()->CTP(), it, it + d_out_dcg.Size(),
|
||||
PackedReduceResult{0.0, 0.0});
|
||||
return pair;
|
||||
}
|
||||
|
||||
PackedReduceResult MAPScore(Context const *ctx, MetaInfo const &info,
|
||||
HostDeviceVector<float> const &predt, bool minus,
|
||||
std::shared_ptr<ltr::MAPCache> p_cache) {
|
||||
auto d_group_ptr = p_cache->DataGroupPtr(ctx);
|
||||
auto d_label = info.labels.View(ctx->gpu_id).Slice(linalg::All(), 0);
|
||||
|
||||
predt.SetDevice(ctx->gpu_id);
|
||||
auto d_rank_idx = p_cache->SortedIdx(ctx, predt.ConstDeviceSpan());
|
||||
auto key_it = dh::MakeTransformIterator<std::size_t>(
|
||||
thrust::make_counting_iterator(0ul),
|
||||
[=] XGBOOST_DEVICE(std::size_t i) { return dh::SegmentId(d_group_ptr, i); });
|
||||
|
||||
auto get_label = [=] XGBOOST_DEVICE(std::size_t i) {
|
||||
auto g = key_it[i];
|
||||
auto g_begin = d_group_ptr[g];
|
||||
auto g_end = d_group_ptr[g + 1];
|
||||
i -= g_begin;
|
||||
auto g_label = d_label.Slice(linalg::Range(g_begin, g_end));
|
||||
auto g_rank = d_rank_idx.subspan(g_begin, g_end - g_begin);
|
||||
return g_label(g_rank[i]);
|
||||
};
|
||||
auto it = dh::MakeTransformIterator<double>(thrust::make_counting_iterator(0ul), get_label);
|
||||
|
||||
auto cuctx = ctx->CUDACtx();
|
||||
auto n_rel = p_cache->NumRelevant(ctx);
|
||||
thrust::inclusive_scan_by_key(cuctx->CTP(), key_it, key_it + d_label.Size(), it, n_rel.data());
|
||||
|
||||
double topk = p_cache->Param().TopK();
|
||||
auto map = p_cache->Map(ctx);
|
||||
thrust::fill_n(cuctx->CTP(), map.data(), map.size(), 0.0);
|
||||
{
|
||||
auto val_it = dh::MakeTransformIterator<double>(
|
||||
thrust::make_counting_iterator(0ul), [=] XGBOOST_DEVICE(std::size_t i) {
|
||||
auto g = key_it[i];
|
||||
auto g_begin = d_group_ptr[g];
|
||||
auto g_end = d_group_ptr[g + 1];
|
||||
i -= g_begin;
|
||||
if (i >= topk) {
|
||||
return 0.0;
|
||||
}
|
||||
|
||||
auto g_label = d_label.Slice(linalg::Range(g_begin, g_end));
|
||||
auto g_rank = d_rank_idx.subspan(g_begin, g_end - g_begin);
|
||||
auto label = g_label(g_rank[i]);
|
||||
|
||||
auto g_n_rel = n_rel.subspan(g_begin, g_end - g_begin);
|
||||
auto nhits = g_n_rel[i];
|
||||
return nhits / static_cast<double>(i + 1) * label;
|
||||
});
|
||||
|
||||
std::size_t bytes;
|
||||
cub::DeviceSegmentedReduce::Sum(nullptr, bytes, val_it, map.data(), p_cache->Groups(),
|
||||
d_group_ptr.data(), d_group_ptr.data() + 1, cuctx->Stream());
|
||||
dh::TemporaryArray<char> temp(bytes);
|
||||
cub::DeviceSegmentedReduce::Sum(temp.data().get(), bytes, val_it, map.data(), p_cache->Groups(),
|
||||
d_group_ptr.data(), d_group_ptr.data() + 1, cuctx->Stream());
|
||||
}
|
||||
|
||||
PackedReduceResult result{0.0, 0.0};
|
||||
{
|
||||
auto d_weight = common::MakeOptionalWeights(ctx, info.weights_);
|
||||
if (!d_weight.Empty()) {
|
||||
CHECK_EQ(d_weight.weights.size(), p_cache->Groups());
|
||||
}
|
||||
auto val_it = dh::MakeTransformIterator<PackedReduceResult>(
|
||||
thrust::make_counting_iterator(0ul), [=] XGBOOST_DEVICE(std::size_t g) {
|
||||
auto g_begin = d_group_ptr[g];
|
||||
auto g_end = d_group_ptr[g + 1];
|
||||
auto g_n_rel = n_rel.subspan(g_begin, g_end - g_begin);
|
||||
if (!g_n_rel.empty() && g_n_rel.back() > 0.0) {
|
||||
return PackedReduceResult{map[g] * d_weight[g] / std::min(g_n_rel.back(), topk),
|
||||
static_cast<double>(d_weight[g])};
|
||||
}
|
||||
return PackedReduceResult{minus ? 0.0 : 1.0, static_cast<double>(d_weight[g])};
|
||||
});
|
||||
result =
|
||||
thrust::reduce(cuctx->CTP(), val_it, val_it + map.size(), PackedReduceResult{0.0, 0.0});
|
||||
}
|
||||
return result;
|
||||
}
|
||||
} // namespace cuda_impl
|
||||
} // namespace xgboost::metric
|
||||
|
||||
44
src/metric/rank_metric.h
Normal file
44
src/metric/rank_metric.h
Normal file
@ -0,0 +1,44 @@
|
||||
#ifndef XGBOOST_METRIC_RANK_METRIC_H_
|
||||
#define XGBOOST_METRIC_RANK_METRIC_H_
|
||||
/**
|
||||
* Copyright 2023 by XGBoost Contributors
|
||||
*/
|
||||
#include <memory> // for shared_ptr
|
||||
|
||||
#include "../common/common.h" // for AssertGPUSupport
|
||||
#include "../common/ranking_utils.h" // for NDCGCache, MAPCache
|
||||
#include "metric_common.h" // for PackedReduceResult
|
||||
#include "xgboost/context.h" // for Context
|
||||
#include "xgboost/data.h" // for MetaInfo
|
||||
#include "xgboost/host_device_vector.h" // for HostDeviceVector
|
||||
|
||||
namespace xgboost {
|
||||
namespace metric {
|
||||
namespace cuda_impl {
|
||||
PackedReduceResult NDCGScore(Context const *ctx, MetaInfo const &info,
|
||||
HostDeviceVector<float> const &predt, bool minus,
|
||||
std::shared_ptr<ltr::NDCGCache> p_cache);
|
||||
|
||||
PackedReduceResult MAPScore(Context const *ctx, MetaInfo const &info,
|
||||
HostDeviceVector<float> const &predt, bool minus,
|
||||
std::shared_ptr<ltr::MAPCache> p_cache);
|
||||
|
||||
#if !defined(XGBOOST_USE_CUDA)
|
||||
inline PackedReduceResult NDCGScore(Context const *, MetaInfo const &,
|
||||
HostDeviceVector<float> const &, bool,
|
||||
std::shared_ptr<ltr::NDCGCache>) {
|
||||
common::AssertGPUSupport();
|
||||
return {};
|
||||
}
|
||||
|
||||
inline PackedReduceResult MAPScore(Context const *, MetaInfo const &,
|
||||
HostDeviceVector<float> const &, bool,
|
||||
std::shared_ptr<ltr::MAPCache>) {
|
||||
common::AssertGPUSupport();
|
||||
return {};
|
||||
}
|
||||
#endif
|
||||
} // namespace cuda_impl
|
||||
} // namespace metric
|
||||
} // namespace xgboost
|
||||
#endif // XGBOOST_METRIC_RANK_METRIC_H_
|
||||
@ -33,7 +33,7 @@ void FitIntercept::InitEstimation(MetaInfo const& info, linalg::Vector<float>* b
|
||||
new_obj->GetGradient(dummy_predt, info, 0, &gpair);
|
||||
bst_target_t n_targets = this->Targets(info);
|
||||
linalg::Vector<float> leaf_weight;
|
||||
tree::FitStump(this->ctx_, gpair, n_targets, &leaf_weight);
|
||||
tree::FitStump(this->ctx_, info, gpair, n_targets, &leaf_weight);
|
||||
|
||||
// workaround, we don't support multi-target due to binary model serialization for
|
||||
// base margin.
|
||||
|
||||
@ -1,52 +1,64 @@
|
||||
/**
|
||||
* Copyright 2017-2023 by XGBoost Contributors
|
||||
*/
|
||||
#include <dmlc/any.h>
|
||||
#include <dmlc/omp.h>
|
||||
#include <algorithm> // for max, fill, min
|
||||
#include <any> // for any, any_cast
|
||||
#include <cassert> // for assert
|
||||
#include <cstddef> // for size_t
|
||||
#include <cstdint> // for uint32_t, int32_t, uint64_t
|
||||
#include <memory> // for unique_ptr, shared_ptr
|
||||
#include <ostream> // for char_traits, operator<<, basic_ostream
|
||||
#include <typeinfo> // for type_info
|
||||
#include <vector> // for vector
|
||||
|
||||
#include <cstddef>
|
||||
#include <limits>
|
||||
#include <mutex>
|
||||
#include "../collective/communicator-inl.h" // for Allreduce, IsDistributed
|
||||
#include "../collective/communicator.h" // for Operation
|
||||
#include "../common/bitfield.h" // for RBitField8
|
||||
#include "../common/categorical.h" // for IsCat, Decision
|
||||
#include "../common/common.h" // for DivRoundUp
|
||||
#include "../common/math.h" // for CheckNAN
|
||||
#include "../common/threading_utils.h" // for ParallelFor
|
||||
#include "../data/adapter.h" // for ArrayAdapter, CSRAdapter, CSRArrayAdapter
|
||||
#include "../data/gradient_index.h" // for GHistIndexMatrix
|
||||
#include "../data/proxy_dmatrix.h" // for DMatrixProxy
|
||||
#include "../gbm/gbtree_model.h" // for GBTreeModel, GBTreeModelParam
|
||||
#include "cpu_treeshap.h" // for CalculateContributions
|
||||
#include "dmlc/registry.h" // for DMLC_REGISTRY_FILE_TAG
|
||||
#include "predict_fn.h" // for GetNextNode, GetNextNodeMulti
|
||||
#include "xgboost/base.h" // for bst_float, bst_node_t, bst_omp_uint, bst_fe...
|
||||
#include "xgboost/context.h" // for Context
|
||||
#include "xgboost/data.h" // for Entry, DMatrix, MetaInfo, SparsePage, Batch...
|
||||
#include "xgboost/host_device_vector.h" // for HostDeviceVector
|
||||
#include "xgboost/learner.h" // for LearnerModelParam
|
||||
#include "xgboost/linalg.h" // for TensorView, All, VectorView, Tensor
|
||||
#include "xgboost/logging.h" // for LogCheck_EQ, CHECK_EQ, CHECK, LogCheck_NE
|
||||
#include "xgboost/multi_target_tree_model.h" // for MultiTargetTree
|
||||
#include "xgboost/predictor.h" // for PredictionCacheEntry, Predictor, PredictorReg
|
||||
#include "xgboost/span.h" // for Span
|
||||
#include "xgboost/tree_model.h" // for RegTree, MTNotImplemented, RTreeNodeStat
|
||||
|
||||
#include "../collective/communicator-inl.h"
|
||||
#include "../common/categorical.h"
|
||||
#include "../common/math.h"
|
||||
#include "../common/threading_utils.h"
|
||||
#include "../data/adapter.h"
|
||||
#include "../data/gradient_index.h"
|
||||
#include "../gbm/gbtree_model.h"
|
||||
#include "cpu_treeshap.h" // CalculateContributions
|
||||
#include "predict_fn.h"
|
||||
#include "xgboost/base.h"
|
||||
#include "xgboost/data.h"
|
||||
#include "xgboost/host_device_vector.h"
|
||||
#include "xgboost/logging.h"
|
||||
#include "xgboost/predictor.h"
|
||||
#include "xgboost/tree_model.h"
|
||||
|
||||
namespace xgboost {
|
||||
namespace predictor {
|
||||
namespace xgboost::predictor {
|
||||
|
||||
DMLC_REGISTRY_FILE_TAG(cpu_predictor);
|
||||
|
||||
namespace scalar {
|
||||
template <bool has_missing, bool has_categorical>
|
||||
bst_node_t GetLeafIndex(RegTree const &tree, const RegTree::FVec &feat,
|
||||
RegTree::CategoricalSplitMatrix const &cats) {
|
||||
bst_node_t nid = 0;
|
||||
while (!tree[nid].IsLeaf()) {
|
||||
unsigned split_index = tree[nid].SplitIndex();
|
||||
bst_node_t nidx{0};
|
||||
while (!tree[nidx].IsLeaf()) {
|
||||
bst_feature_t split_index = tree[nidx].SplitIndex();
|
||||
auto fvalue = feat.GetFvalue(split_index);
|
||||
nid = GetNextNode<has_missing, has_categorical>(
|
||||
tree[nid], nid, fvalue, has_missing && feat.IsMissing(split_index), cats);
|
||||
nidx = GetNextNode<has_missing, has_categorical>(
|
||||
tree[nidx], nidx, fvalue, has_missing && feat.IsMissing(split_index), cats);
|
||||
}
|
||||
return nid;
|
||||
return nidx;
|
||||
}
|
||||
|
||||
bst_float PredValue(const SparsePage::Inst &inst,
|
||||
const std::vector<std::unique_ptr<RegTree>> &trees,
|
||||
const std::vector<int> &tree_info, int bst_group,
|
||||
RegTree::FVec *p_feats, unsigned tree_begin,
|
||||
unsigned tree_end) {
|
||||
const std::vector<int> &tree_info, std::int32_t bst_group,
|
||||
RegTree::FVec *p_feats, std::uint32_t tree_begin, std::uint32_t tree_end) {
|
||||
bst_float psum = 0.0f;
|
||||
p_feats->Fill(inst);
|
||||
for (size_t i = tree_begin; i < tree_end; ++i) {
|
||||
@ -68,36 +80,80 @@ bst_float PredValue(const SparsePage::Inst &inst,
|
||||
}
|
||||
|
||||
template <bool has_categorical>
|
||||
bst_float
|
||||
PredValueByOneTree(const RegTree::FVec &p_feats, RegTree const &tree,
|
||||
bst_float PredValueByOneTree(const RegTree::FVec &p_feats, RegTree const &tree,
|
||||
RegTree::CategoricalSplitMatrix const &cats) {
|
||||
const bst_node_t leaf = p_feats.HasMissing() ?
|
||||
GetLeafIndex<true, has_categorical>(tree, p_feats, cats) :
|
||||
GetLeafIndex<false, has_categorical>(tree, p_feats, cats);
|
||||
const bst_node_t leaf = p_feats.HasMissing()
|
||||
? GetLeafIndex<true, has_categorical>(tree, p_feats, cats)
|
||||
: GetLeafIndex<false, has_categorical>(tree, p_feats, cats);
|
||||
return tree[leaf].LeafValue();
|
||||
}
|
||||
} // namespace scalar
|
||||
|
||||
void PredictByAllTrees(gbm::GBTreeModel const &model, const size_t tree_begin,
|
||||
const size_t tree_end, std::vector<bst_float> *out_preds,
|
||||
const size_t predict_offset, const size_t num_group,
|
||||
const std::vector<RegTree::FVec> &thread_temp,
|
||||
const size_t offset, const size_t block_size) {
|
||||
std::vector<bst_float> &preds = *out_preds;
|
||||
for (size_t tree_id = tree_begin; tree_id < tree_end; ++tree_id) {
|
||||
const size_t gid = model.tree_info[tree_id];
|
||||
auto const &tree = *model.trees[tree_id];
|
||||
namespace multi {
|
||||
template <bool has_missing, bool has_categorical>
|
||||
bst_node_t GetLeafIndex(MultiTargetTree const &tree, const RegTree::FVec &feat,
|
||||
RegTree::CategoricalSplitMatrix const &cats) {
|
||||
bst_node_t nidx{0};
|
||||
while (!tree.IsLeaf(nidx)) {
|
||||
unsigned split_index = tree.SplitIndex(nidx);
|
||||
auto fvalue = feat.GetFvalue(split_index);
|
||||
nidx = GetNextNodeMulti<has_missing, has_categorical>(
|
||||
tree, nidx, fvalue, has_missing && feat.IsMissing(split_index), cats);
|
||||
}
|
||||
return nidx;
|
||||
}
|
||||
|
||||
template <bool has_categorical>
|
||||
void PredValueByOneTree(RegTree::FVec const &p_feats, MultiTargetTree const &tree,
|
||||
RegTree::CategoricalSplitMatrix const &cats,
|
||||
linalg::VectorView<float> out_predt) {
|
||||
bst_node_t const leaf = p_feats.HasMissing()
|
||||
? GetLeafIndex<true, has_categorical>(tree, p_feats, cats)
|
||||
: GetLeafIndex<false, has_categorical>(tree, p_feats, cats);
|
||||
auto leaf_value = tree.LeafValue(leaf);
|
||||
assert(out_predt.Shape(0) == leaf_value.Shape(0) && "shape mismatch.");
|
||||
for (size_t i = 0; i < leaf_value.Size(); ++i) {
|
||||
out_predt(i) += leaf_value(i);
|
||||
}
|
||||
}
|
||||
} // namespace multi
|
||||
|
||||
namespace {
|
||||
void PredictByAllTrees(gbm::GBTreeModel const &model, std::uint32_t const tree_begin,
|
||||
std::uint32_t const tree_end, std::size_t const predict_offset,
|
||||
std::vector<RegTree::FVec> const &thread_temp, std::size_t const offset,
|
||||
std::size_t const block_size, linalg::MatrixView<float> out_predt) {
|
||||
for (std::uint32_t tree_id = tree_begin; tree_id < tree_end; ++tree_id) {
|
||||
auto const &tree = *model.trees.at(tree_id);
|
||||
auto const &cats = tree.GetCategoriesMatrix();
|
||||
auto has_categorical = tree.HasCategoricalSplit();
|
||||
bool has_categorical = tree.HasCategoricalSplit();
|
||||
|
||||
if (tree.IsMultiTarget()) {
|
||||
if (has_categorical) {
|
||||
for (size_t i = 0; i < block_size; ++i) {
|
||||
preds[(predict_offset + i) * num_group + gid] +=
|
||||
PredValueByOneTree<true>(thread_temp[offset + i], tree, cats);
|
||||
for (std::size_t i = 0; i < block_size; ++i) {
|
||||
auto t_predts = out_predt.Slice(predict_offset + i, linalg::All());
|
||||
multi::PredValueByOneTree<true>(thread_temp[offset + i], *tree.GetMultiTargetTree(), cats,
|
||||
t_predts);
|
||||
}
|
||||
} else {
|
||||
for (size_t i = 0; i < block_size; ++i) {
|
||||
preds[(predict_offset + i) * num_group + gid] +=
|
||||
PredValueByOneTree<false>(thread_temp[offset + i], tree, cats);
|
||||
for (std::size_t i = 0; i < block_size; ++i) {
|
||||
auto t_predts = out_predt.Slice(predict_offset + i, linalg::All());
|
||||
multi::PredValueByOneTree<false>(thread_temp[offset + i], *tree.GetMultiTargetTree(),
|
||||
cats, t_predts);
|
||||
}
|
||||
}
|
||||
} else {
|
||||
auto const gid = model.tree_info[tree_id];
|
||||
if (has_categorical) {
|
||||
for (std::size_t i = 0; i < block_size; ++i) {
|
||||
out_predt(predict_offset + i, gid) +=
|
||||
scalar::PredValueByOneTree<true>(thread_temp[offset + i], tree, cats);
|
||||
}
|
||||
} else {
|
||||
for (std::size_t i = 0; i < block_size; ++i) {
|
||||
out_predt(predict_offset + i, gid) +=
|
||||
scalar::PredValueByOneTree<true>(thread_temp[offset + i], tree, cats);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
@ -126,9 +182,7 @@ void FVecDrop(const size_t block_size, const size_t batch_offset, DataView* batc
|
||||
}
|
||||
}
|
||||
|
||||
namespace {
|
||||
static size_t constexpr kUnroll = 8;
|
||||
} // anonymous namespace
|
||||
static std::size_t constexpr kUnroll = 8;
|
||||
|
||||
struct SparsePageView {
|
||||
bst_row_t base_rowid;
|
||||
@ -227,15 +281,13 @@ class AdapterView {
|
||||
};
|
||||
|
||||
template <typename DataView, size_t block_of_rows_size>
|
||||
void PredictBatchByBlockOfRowsKernel(
|
||||
DataView batch, std::vector<bst_float> *out_preds,
|
||||
gbm::GBTreeModel const &model, int32_t tree_begin, int32_t tree_end,
|
||||
std::vector<RegTree::FVec> *p_thread_temp, int32_t n_threads) {
|
||||
void PredictBatchByBlockOfRowsKernel(DataView batch, gbm::GBTreeModel const &model,
|
||||
std::uint32_t tree_begin, std::uint32_t tree_end,
|
||||
std::vector<RegTree::FVec> *p_thread_temp, int32_t n_threads,
|
||||
linalg::TensorView<float, 2> out_predt) {
|
||||
auto &thread_temp = *p_thread_temp;
|
||||
int32_t const num_group = model.learner_model_param->num_output_group;
|
||||
|
||||
CHECK_EQ(model.param.size_leaf_vector, 0)
|
||||
<< "size_leaf_vector is enforced to 0 so far";
|
||||
CHECK_EQ(model.param.size_leaf_vector, 0) << "size_leaf_vector is enforced to 0 so far";
|
||||
// parallel over local batch
|
||||
const auto nsize = static_cast<bst_omp_uint>(batch.Size());
|
||||
const int num_feature = model.learner_model_param->num_feature;
|
||||
@ -243,16 +295,13 @@ void PredictBatchByBlockOfRowsKernel(
|
||||
|
||||
common::ParallelFor(n_blocks, n_threads, [&](bst_omp_uint block_id) {
|
||||
const size_t batch_offset = block_id * block_of_rows_size;
|
||||
const size_t block_size =
|
||||
std::min(nsize - batch_offset, block_of_rows_size);
|
||||
const size_t block_size = std::min(nsize - batch_offset, block_of_rows_size);
|
||||
const size_t fvec_offset = omp_get_thread_num() * block_of_rows_size;
|
||||
|
||||
FVecFill(block_size, batch_offset, num_feature, &batch, fvec_offset,
|
||||
p_thread_temp);
|
||||
FVecFill(block_size, batch_offset, num_feature, &batch, fvec_offset, p_thread_temp);
|
||||
// process block of rows through all trees to keep cache locality
|
||||
PredictByAllTrees(model, tree_begin, tree_end, out_preds,
|
||||
batch_offset + batch.base_rowid, num_group, thread_temp,
|
||||
fvec_offset, block_size);
|
||||
PredictByAllTrees(model, tree_begin, tree_end, batch_offset + batch.base_rowid, thread_temp,
|
||||
fvec_offset, block_size, out_predt);
|
||||
FVecDrop(block_size, batch_offset, &batch, fvec_offset, p_thread_temp);
|
||||
});
|
||||
}
|
||||
@ -275,7 +324,7 @@ float FillNodeMeanValues(RegTree const *tree, bst_node_t nidx, std::vector<float
|
||||
}
|
||||
|
||||
void FillNodeMeanValues(RegTree const* tree, std::vector<float>* mean_values) {
|
||||
size_t num_nodes = tree->param.num_nodes;
|
||||
size_t num_nodes = tree->NumNodes();
|
||||
if (mean_values->size() == num_nodes) {
|
||||
return;
|
||||
}
|
||||
@ -283,7 +332,6 @@ void FillNodeMeanValues(RegTree const* tree, std::vector<float>* mean_values) {
|
||||
FillNodeMeanValues(tree, 0, mean_values);
|
||||
}
|
||||
|
||||
namespace {
|
||||
// init thread buffers
|
||||
static void InitThreadTemp(int nthread, std::vector<RegTree::FVec> *out) {
|
||||
int prev_thread_temp_size = out->size();
|
||||
@ -557,33 +605,6 @@ class ColumnSplitHelper {
|
||||
|
||||
class CPUPredictor : public Predictor {
|
||||
protected:
|
||||
void PredictGHistIndex(DMatrix *p_fmat, gbm::GBTreeModel const &model, int32_t tree_begin,
|
||||
int32_t tree_end, std::vector<bst_float> *out_preds) const {
|
||||
auto const n_threads = this->ctx_->Threads();
|
||||
|
||||
constexpr double kDensityThresh = .5;
|
||||
size_t total =
|
||||
std::max(p_fmat->Info().num_row_ * p_fmat->Info().num_col_, static_cast<uint64_t>(1));
|
||||
double density = static_cast<double>(p_fmat->Info().num_nonzero_) / static_cast<double>(total);
|
||||
bool blocked = density > kDensityThresh;
|
||||
|
||||
std::vector<RegTree::FVec> feat_vecs;
|
||||
InitThreadTemp(n_threads * (blocked ? kBlockOfRowsSize : 1), &feat_vecs);
|
||||
std::vector<Entry> workspace(p_fmat->Info().num_col_ * kUnroll * n_threads);
|
||||
auto ft = p_fmat->Info().feature_types.ConstHostVector();
|
||||
for (auto const &batch : p_fmat->GetBatches<GHistIndexMatrix>({})) {
|
||||
if (blocked) {
|
||||
PredictBatchByBlockOfRowsKernel<GHistIndexMatrixView, kBlockOfRowsSize>(
|
||||
GHistIndexMatrixView{batch, p_fmat->Info().num_col_, ft, workspace, n_threads},
|
||||
out_preds, model, tree_begin, tree_end, &feat_vecs, n_threads);
|
||||
} else {
|
||||
PredictBatchByBlockOfRowsKernel<GHistIndexMatrixView, 1>(
|
||||
GHistIndexMatrixView{batch, p_fmat->Info().num_col_, ft, workspace, n_threads},
|
||||
out_preds, model, tree_begin, tree_end, &feat_vecs, n_threads);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void PredictDMatrix(DMatrix *p_fmat, std::vector<bst_float> *out_preds,
|
||||
gbm::GBTreeModel const &model, int32_t tree_begin, int32_t tree_end) const {
|
||||
if (p_fmat->IsColumnSplit()) {
|
||||
@ -592,11 +613,6 @@ class CPUPredictor : public Predictor {
|
||||
return;
|
||||
}
|
||||
|
||||
if (!p_fmat->PageExists<SparsePage>()) {
|
||||
this->PredictGHistIndex(p_fmat, model, tree_begin, tree_end, out_preds);
|
||||
return;
|
||||
}
|
||||
|
||||
auto const n_threads = this->ctx_->Threads();
|
||||
constexpr double kDensityThresh = .5;
|
||||
size_t total =
|
||||
@ -606,16 +622,38 @@ class CPUPredictor : public Predictor {
|
||||
|
||||
std::vector<RegTree::FVec> feat_vecs;
|
||||
InitThreadTemp(n_threads * (blocked ? kBlockOfRowsSize : 1), &feat_vecs);
|
||||
|
||||
std::size_t n_samples = p_fmat->Info().num_row_;
|
||||
std::size_t n_groups = model.learner_model_param->OutputLength();
|
||||
CHECK_EQ(out_preds->size(), n_samples * n_groups);
|
||||
linalg::TensorView<float, 2> out_predt{*out_preds, {n_samples, n_groups}, ctx_->gpu_id};
|
||||
|
||||
if (!p_fmat->PageExists<SparsePage>()) {
|
||||
std::vector<Entry> workspace(p_fmat->Info().num_col_ * kUnroll * n_threads);
|
||||
auto ft = p_fmat->Info().feature_types.ConstHostVector();
|
||||
for (auto const &batch : p_fmat->GetBatches<GHistIndexMatrix>({})) {
|
||||
if (blocked) {
|
||||
PredictBatchByBlockOfRowsKernel<GHistIndexMatrixView, kBlockOfRowsSize>(
|
||||
GHistIndexMatrixView{batch, p_fmat->Info().num_col_, ft, workspace, n_threads}, model,
|
||||
tree_begin, tree_end, &feat_vecs, n_threads, out_predt);
|
||||
} else {
|
||||
PredictBatchByBlockOfRowsKernel<GHistIndexMatrixView, 1>(
|
||||
GHistIndexMatrixView{batch, p_fmat->Info().num_col_, ft, workspace, n_threads}, model,
|
||||
tree_begin, tree_end, &feat_vecs, n_threads, out_predt);
|
||||
}
|
||||
}
|
||||
} else {
|
||||
for (auto const &batch : p_fmat->GetBatches<SparsePage>()) {
|
||||
CHECK_EQ(out_preds->size(),
|
||||
p_fmat->Info().num_row_ * model.learner_model_param->num_output_group);
|
||||
if (blocked) {
|
||||
PredictBatchByBlockOfRowsKernel<SparsePageView, kBlockOfRowsSize>(
|
||||
SparsePageView{&batch}, out_preds, model, tree_begin, tree_end, &feat_vecs, n_threads);
|
||||
SparsePageView{&batch}, model, tree_begin, tree_end, &feat_vecs, n_threads,
|
||||
out_predt);
|
||||
|
||||
} else {
|
||||
PredictBatchByBlockOfRowsKernel<SparsePageView, 1>(
|
||||
SparsePageView{&batch}, out_preds, model, tree_begin, tree_end, &feat_vecs, n_threads);
|
||||
PredictBatchByBlockOfRowsKernel<SparsePageView, 1>(SparsePageView{&batch}, model,
|
||||
tree_begin, tree_end, &feat_vecs,
|
||||
n_threads, out_predt);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
@ -623,26 +661,24 @@ class CPUPredictor : public Predictor {
|
||||
public:
|
||||
explicit CPUPredictor(Context const *ctx) : Predictor::Predictor{ctx} {}
|
||||
|
||||
void PredictBatch(DMatrix *dmat, PredictionCacheEntry *predts,
|
||||
const gbm::GBTreeModel &model, uint32_t tree_begin,
|
||||
uint32_t tree_end = 0) const override {
|
||||
void PredictBatch(DMatrix *dmat, PredictionCacheEntry *predts, const gbm::GBTreeModel &model,
|
||||
uint32_t tree_begin, uint32_t tree_end = 0) const override {
|
||||
auto *out_preds = &predts->predictions;
|
||||
// This is actually already handled in gbm, but large amount of tests rely on the
|
||||
// behaviour.
|
||||
if (tree_end == 0) {
|
||||
tree_end = model.trees.size();
|
||||
}
|
||||
this->PredictDMatrix(dmat, &out_preds->HostVector(), model, tree_begin,
|
||||
tree_end);
|
||||
this->PredictDMatrix(dmat, &out_preds->HostVector(), model, tree_begin, tree_end);
|
||||
}
|
||||
|
||||
template <typename Adapter, size_t kBlockSize>
|
||||
void DispatchedInplacePredict(dmlc::any const &x, std::shared_ptr<DMatrix> p_m,
|
||||
void DispatchedInplacePredict(std::any const &x, std::shared_ptr<DMatrix> p_m,
|
||||
const gbm::GBTreeModel &model, float missing,
|
||||
PredictionCacheEntry *out_preds,
|
||||
uint32_t tree_begin, uint32_t tree_end) const {
|
||||
PredictionCacheEntry *out_preds, uint32_t tree_begin,
|
||||
uint32_t tree_end) const {
|
||||
auto const n_threads = this->ctx_->Threads();
|
||||
auto m = dmlc::get<std::shared_ptr<Adapter>>(x);
|
||||
auto m = std::any_cast<std::shared_ptr<Adapter>>(x);
|
||||
CHECK_EQ(m->NumColumns(), model.learner_model_param->num_feature)
|
||||
<< "Number of columns in data must equal to trained model.";
|
||||
if (p_m) {
|
||||
@ -653,13 +689,16 @@ class CPUPredictor : public Predictor {
|
||||
info.num_row_ = m->NumRows();
|
||||
this->InitOutPredictions(info, &(out_preds->predictions), model);
|
||||
}
|
||||
|
||||
std::vector<Entry> workspace(m->NumColumns() * kUnroll * n_threads);
|
||||
auto &predictions = out_preds->predictions.HostVector();
|
||||
std::vector<RegTree::FVec> thread_temp;
|
||||
InitThreadTemp(n_threads * kBlockSize, &thread_temp);
|
||||
std::size_t n_groups = model.learner_model_param->OutputLength();
|
||||
linalg::TensorView<float, 2> out_predt{predictions, {m->NumRows(), n_groups}, Context::kCpuId};
|
||||
PredictBatchByBlockOfRowsKernel<AdapterView<Adapter>, kBlockSize>(
|
||||
AdapterView<Adapter>(m.get(), missing, common::Span<Entry>{workspace}, n_threads),
|
||||
&predictions, model, tree_begin, tree_end, &thread_temp, n_threads);
|
||||
AdapterView<Adapter>(m.get(), missing, common::Span<Entry>{workspace}, n_threads), model,
|
||||
tree_begin, tree_end, &thread_temp, n_threads, out_predt);
|
||||
}
|
||||
|
||||
bool InplacePredict(std::shared_ptr<DMatrix> p_m, const gbm::GBTreeModel &model, float missing,
|
||||
@ -689,6 +728,7 @@ class CPUPredictor : public Predictor {
|
||||
void PredictInstance(const SparsePage::Inst& inst,
|
||||
std::vector<bst_float>* out_preds,
|
||||
const gbm::GBTreeModel& model, unsigned ntree_limit) const override {
|
||||
CHECK(!model.learner_model_param->IsVectorLeaf()) << "predict instance" << MTNotImplemented();
|
||||
std::vector<RegTree::FVec> feat_vecs;
|
||||
feat_vecs.resize(1, RegTree::FVec());
|
||||
feat_vecs[0].Init(model.learner_model_param->num_feature);
|
||||
@ -701,8 +741,8 @@ class CPUPredictor : public Predictor {
|
||||
auto base_score = model.learner_model_param->BaseScore(ctx_)(0);
|
||||
// loop over output groups
|
||||
for (uint32_t gid = 0; gid < model.learner_model_param->num_output_group; ++gid) {
|
||||
(*out_preds)[gid] =
|
||||
PredValue(inst, model.trees, model.tree_info, gid, &feat_vecs[0], 0, ntree_limit) +
|
||||
(*out_preds)[gid] = scalar::PredValue(inst, model.trees, model.tree_info, gid, &feat_vecs[0],
|
||||
0, ntree_limit) +
|
||||
base_score;
|
||||
}
|
||||
}
|
||||
@ -724,8 +764,7 @@ class CPUPredictor : public Predictor {
|
||||
for (const auto &batch : p_fmat->GetBatches<SparsePage>()) {
|
||||
// parallel over local batch
|
||||
auto page = batch.GetView();
|
||||
const auto nsize = static_cast<bst_omp_uint>(batch.Size());
|
||||
common::ParallelFor(nsize, n_threads, [&](bst_omp_uint i) {
|
||||
common::ParallelFor(page.Size(), n_threads, [&](auto i) {
|
||||
const int tid = omp_get_thread_num();
|
||||
auto ridx = static_cast<size_t>(batch.base_rowid + i);
|
||||
RegTree::FVec &feats = feat_vecs[tid];
|
||||
@ -733,23 +772,28 @@ class CPUPredictor : public Predictor {
|
||||
feats.Init(num_feature);
|
||||
}
|
||||
feats.Fill(page[i]);
|
||||
for (unsigned j = 0; j < ntree_limit; ++j) {
|
||||
for (std::uint32_t j = 0; j < ntree_limit; ++j) {
|
||||
auto const &tree = *model.trees[j];
|
||||
auto const &cats = tree.GetCategoriesMatrix();
|
||||
bst_node_t tid = GetLeafIndex<true, true>(tree, feats, cats);
|
||||
preds[ridx * ntree_limit + j] = static_cast<bst_float>(tid);
|
||||
bst_node_t nidx;
|
||||
if (tree.IsMultiTarget()) {
|
||||
nidx = multi::GetLeafIndex<true, true>(*tree.GetMultiTargetTree(), feats, cats);
|
||||
} else {
|
||||
nidx = scalar::GetLeafIndex<true, true>(tree, feats, cats);
|
||||
}
|
||||
preds[ridx * ntree_limit + j] = static_cast<bst_float>(nidx);
|
||||
}
|
||||
feats.Drop(page[i]);
|
||||
});
|
||||
}
|
||||
}
|
||||
|
||||
void PredictContribution(DMatrix *p_fmat,
|
||||
HostDeviceVector<float> *out_contribs,
|
||||
void PredictContribution(DMatrix *p_fmat, HostDeviceVector<float> *out_contribs,
|
||||
const gbm::GBTreeModel &model, uint32_t ntree_limit,
|
||||
std::vector<bst_float> const *tree_weights,
|
||||
bool approximate, int condition,
|
||||
unsigned condition_feature) const override {
|
||||
std::vector<bst_float> const *tree_weights, bool approximate,
|
||||
int condition, unsigned condition_feature) const override {
|
||||
CHECK(!model.learner_model_param->IsVectorLeaf())
|
||||
<< "Predict contribution" << MTNotImplemented();
|
||||
auto const n_threads = this->ctx_->Threads();
|
||||
const int num_feature = model.learner_model_param->num_feature;
|
||||
std::vector<RegTree::FVec> feat_vecs;
|
||||
@ -825,11 +869,12 @@ class CPUPredictor : public Predictor {
|
||||
}
|
||||
}
|
||||
|
||||
void PredictInteractionContributions(
|
||||
DMatrix *p_fmat, HostDeviceVector<bst_float> *out_contribs,
|
||||
void PredictInteractionContributions(DMatrix *p_fmat, HostDeviceVector<bst_float> *out_contribs,
|
||||
const gbm::GBTreeModel &model, unsigned ntree_limit,
|
||||
std::vector<bst_float> const *tree_weights,
|
||||
bool approximate) const override {
|
||||
CHECK(!model.learner_model_param->IsVectorLeaf())
|
||||
<< "Predict interaction contribution" << MTNotImplemented();
|
||||
const MetaInfo& info = p_fmat->Info();
|
||||
const int ngroup = model.learner_model_param->num_output_group;
|
||||
size_t const ncolumns = model.learner_model_param->num_feature;
|
||||
@ -884,5 +929,4 @@ class CPUPredictor : public Predictor {
|
||||
XGBOOST_REGISTER_PREDICTOR(CPUPredictor, "cpu_predictor")
|
||||
.describe("Make predictions using CPU.")
|
||||
.set_body([](Context const *ctx) { return new CPUPredictor(ctx); });
|
||||
} // namespace predictor
|
||||
} // namespace xgboost
|
||||
} // namespace xgboost::predictor
|
||||
|
||||
@ -9,6 +9,7 @@
|
||||
#include <thrust/fill.h>
|
||||
#include <thrust/host_vector.h>
|
||||
|
||||
#include <any> // for any, any_cast
|
||||
#include <memory>
|
||||
|
||||
#include "../common/bitfield.h"
|
||||
@ -431,7 +432,7 @@ class DeviceModel {
|
||||
|
||||
this->tree_beg_ = tree_begin;
|
||||
this->tree_end_ = tree_end;
|
||||
this->num_group = model.learner_model_param->num_output_group;
|
||||
this->num_group = model.learner_model_param->OutputLength();
|
||||
}
|
||||
};
|
||||
|
||||
@ -792,13 +793,13 @@ class GPUPredictor : public xgboost::Predictor {
|
||||
}
|
||||
|
||||
template <typename Adapter, typename Loader>
|
||||
void DispatchedInplacePredict(dmlc::any const &x, std::shared_ptr<DMatrix> p_m,
|
||||
void DispatchedInplacePredict(std::any const& x, std::shared_ptr<DMatrix> p_m,
|
||||
const gbm::GBTreeModel& model, float missing,
|
||||
PredictionCacheEntry *out_preds,
|
||||
uint32_t tree_begin, uint32_t tree_end) const {
|
||||
PredictionCacheEntry* out_preds, uint32_t tree_begin,
|
||||
uint32_t tree_end) const {
|
||||
uint32_t const output_groups = model.learner_model_param->num_output_group;
|
||||
|
||||
auto m = dmlc::get<std::shared_ptr<Adapter>>(x);
|
||||
auto m = std::any_cast<std::shared_ptr<Adapter>>(x);
|
||||
CHECK_EQ(m->NumColumns(), model.learner_model_param->num_feature)
|
||||
<< "Number of columns in data must equal to trained model.";
|
||||
CHECK_EQ(dh::CurrentDevice(), m->DeviceIdx())
|
||||
|
||||
@ -1,13 +1,12 @@
|
||||
/*!
|
||||
* Copyright 2021 by XGBoost Contributors
|
||||
/**
|
||||
* Copyright 2021-2023 by XGBoost Contributors
|
||||
*/
|
||||
#ifndef XGBOOST_PREDICTOR_PREDICT_FN_H_
|
||||
#define XGBOOST_PREDICTOR_PREDICT_FN_H_
|
||||
#include "../common/categorical.h"
|
||||
#include "xgboost/tree_model.h"
|
||||
|
||||
namespace xgboost {
|
||||
namespace predictor {
|
||||
namespace xgboost::predictor {
|
||||
template <bool has_missing, bool has_categorical>
|
||||
inline XGBOOST_DEVICE bst_node_t GetNextNode(const RegTree::Node &node, const bst_node_t nid,
|
||||
float fvalue, bool is_missing,
|
||||
@ -24,6 +23,25 @@ inline XGBOOST_DEVICE bst_node_t GetNextNode(const RegTree::Node &node, const bs
|
||||
}
|
||||
}
|
||||
}
|
||||
} // namespace predictor
|
||||
} // namespace xgboost
|
||||
|
||||
template <bool has_missing, bool has_categorical>
|
||||
inline XGBOOST_DEVICE bst_node_t GetNextNodeMulti(MultiTargetTree const &tree,
|
||||
bst_node_t const nidx, float fvalue,
|
||||
bool is_missing,
|
||||
RegTree::CategoricalSplitMatrix const &cats) {
|
||||
if (has_missing && is_missing) {
|
||||
return tree.DefaultChild(nidx);
|
||||
} else {
|
||||
if (has_categorical && common::IsCat(cats.split_type, nidx)) {
|
||||
auto node_categories =
|
||||
cats.categories.subspan(cats.node_ptr[nidx].beg, cats.node_ptr[nidx].size);
|
||||
return common::Decision(node_categories, fvalue) ? tree.LeftChild(nidx)
|
||||
: tree.RightChild(nidx);
|
||||
} else {
|
||||
return tree.LeftChild(nidx) + !(fvalue < tree.SplitCond(nidx));
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
} // namespace xgboost::predictor
|
||||
#endif // XGBOOST_PREDICTOR_PREDICT_FN_H_
|
||||
|
||||
@ -1,22 +1,26 @@
|
||||
/*!
|
||||
* Copyright 2021-2022 XGBoost contributors
|
||||
/**
|
||||
* Copyright 2021-2023 XGBoost contributors
|
||||
* \file common_row_partitioner.h
|
||||
* \brief Common partitioner logic for hist and approx methods.
|
||||
*/
|
||||
#ifndef XGBOOST_TREE_COMMON_ROW_PARTITIONER_H_
|
||||
#define XGBOOST_TREE_COMMON_ROW_PARTITIONER_H_
|
||||
|
||||
#include <algorithm> // std::all_of
|
||||
#include <cinttypes> // std::uint32_t
|
||||
#include <limits> // std::numeric_limits
|
||||
#include <vector>
|
||||
|
||||
#include "../collective/communicator-inl.h"
|
||||
#include "../common/linalg_op.h" // cbegin
|
||||
#include "../common/numeric.h" // Iota
|
||||
#include "../common/partition_builder.h"
|
||||
#include "hist/expand_entry.h" // CPUExpandEntry
|
||||
#include "xgboost/base.h"
|
||||
#include "xgboost/context.h" // Context
|
||||
#include "xgboost/linalg.h" // TensorView
|
||||
|
||||
namespace xgboost {
|
||||
namespace tree {
|
||||
namespace xgboost::tree {
|
||||
|
||||
static constexpr size_t kPartitionBlockSize = 2048;
|
||||
|
||||
@ -34,9 +38,10 @@ class ColumnSplitHelper {
|
||||
missing_bits_ = BitVector(common::Span<BitVector::value_type>(missing_storage_));
|
||||
}
|
||||
|
||||
template <typename ExpandEntry>
|
||||
void Partition(common::BlockedSpace2d const& space, std::int32_t n_threads,
|
||||
GHistIndexMatrix const& gmat, common::ColumnMatrix const& column_matrix,
|
||||
std::vector<CPUExpandEntry> const& nodes, RegTree const* p_tree) {
|
||||
std::vector<ExpandEntry> const& nodes, RegTree const* p_tree) {
|
||||
// When data is split by column, we don't have all the feature values in the local worker, so
|
||||
// we first collect all the decisions and whether the feature is missing into bit vectors.
|
||||
std::fill(decision_storage_.begin(), decision_storage_.end(), 0);
|
||||
@ -97,41 +102,47 @@ class CommonRowPartitioner {
|
||||
}
|
||||
}
|
||||
|
||||
void FindSplitConditions(const std::vector<CPUExpandEntry>& nodes, const RegTree& tree,
|
||||
template <typename ExpandEntry>
|
||||
void FindSplitConditions(const std::vector<ExpandEntry>& nodes, const RegTree& tree,
|
||||
const GHistIndexMatrix& gmat, std::vector<int32_t>* split_conditions) {
|
||||
for (size_t i = 0; i < nodes.size(); ++i) {
|
||||
const int32_t nid = nodes[i].nid;
|
||||
const bst_uint fid = tree[nid].SplitIndex();
|
||||
const bst_float split_pt = tree[nid].SplitCond();
|
||||
const uint32_t lower_bound = gmat.cut.Ptrs()[fid];
|
||||
const uint32_t upper_bound = gmat.cut.Ptrs()[fid + 1];
|
||||
auto const& ptrs = gmat.cut.Ptrs();
|
||||
auto const& vals = gmat.cut.Values();
|
||||
|
||||
for (std::size_t i = 0; i < nodes.size(); ++i) {
|
||||
bst_node_t const nidx = nodes[i].nid;
|
||||
bst_feature_t const fidx = tree.SplitIndex(nidx);
|
||||
float const split_pt = tree.SplitCond(nidx);
|
||||
std::uint32_t const lower_bound = ptrs[fidx];
|
||||
std::uint32_t const upper_bound = ptrs[fidx + 1];
|
||||
bst_bin_t split_cond = -1;
|
||||
// convert floating-point split_pt into corresponding bin_id
|
||||
// split_cond = -1 indicates that split_pt is less than all known cut points
|
||||
CHECK_LT(upper_bound, static_cast<uint32_t>(std::numeric_limits<int32_t>::max()));
|
||||
for (auto bound = lower_bound; bound < upper_bound; ++bound) {
|
||||
if (split_pt == gmat.cut.Values()[bound]) {
|
||||
split_cond = static_cast<int32_t>(bound);
|
||||
if (split_pt == vals[bound]) {
|
||||
split_cond = static_cast<bst_bin_t>(bound);
|
||||
}
|
||||
}
|
||||
(*split_conditions).at(i) = split_cond;
|
||||
(*split_conditions)[i] = split_cond;
|
||||
}
|
||||
}
|
||||
|
||||
void AddSplitsToRowSet(const std::vector<CPUExpandEntry>& nodes, RegTree const* p_tree) {
|
||||
template <typename ExpandEntry>
|
||||
void AddSplitsToRowSet(const std::vector<ExpandEntry>& nodes, RegTree const* p_tree) {
|
||||
const size_t n_nodes = nodes.size();
|
||||
for (unsigned int i = 0; i < n_nodes; ++i) {
|
||||
const int32_t nid = nodes[i].nid;
|
||||
const int32_t nidx = nodes[i].nid;
|
||||
const size_t n_left = partition_builder_.GetNLeftElems(i);
|
||||
const size_t n_right = partition_builder_.GetNRightElems(i);
|
||||
CHECK_EQ((*p_tree)[nid].LeftChild() + 1, (*p_tree)[nid].RightChild());
|
||||
row_set_collection_.AddSplit(nid, (*p_tree)[nid].LeftChild(), (*p_tree)[nid].RightChild(),
|
||||
n_left, n_right);
|
||||
CHECK_EQ(p_tree->LeftChild(nidx) + 1, p_tree->RightChild(nidx));
|
||||
row_set_collection_.AddSplit(nidx, p_tree->LeftChild(nidx), p_tree->RightChild(nidx), n_left,
|
||||
n_right);
|
||||
}
|
||||
}
|
||||
|
||||
template <typename ExpandEntry>
|
||||
void UpdatePosition(Context const* ctx, GHistIndexMatrix const& gmat,
|
||||
std::vector<CPUExpandEntry> const& nodes, RegTree const* p_tree) {
|
||||
std::vector<ExpandEntry> const& nodes, RegTree const* p_tree) {
|
||||
auto const& column_matrix = gmat.Transpose();
|
||||
if (column_matrix.IsInitialized()) {
|
||||
if (gmat.cut.HasCategorical()) {
|
||||
@ -149,10 +160,10 @@ class CommonRowPartitioner {
|
||||
}
|
||||
}
|
||||
|
||||
template <bool any_cat>
|
||||
template <bool any_cat, typename ExpandEntry>
|
||||
void UpdatePosition(Context const* ctx, GHistIndexMatrix const& gmat,
|
||||
const common::ColumnMatrix& column_matrix,
|
||||
std::vector<CPUExpandEntry> const& nodes, RegTree const* p_tree) {
|
||||
std::vector<ExpandEntry> const& nodes, RegTree const* p_tree) {
|
||||
if (column_matrix.AnyMissing()) {
|
||||
this->template UpdatePosition<true, any_cat>(ctx, gmat, column_matrix, nodes, p_tree);
|
||||
} else {
|
||||
@ -160,33 +171,21 @@ class CommonRowPartitioner {
|
||||
}
|
||||
}
|
||||
|
||||
template <bool any_missing, bool any_cat>
|
||||
template <bool any_missing, bool any_cat, typename ExpandEntry>
|
||||
void UpdatePosition(Context const* ctx, GHistIndexMatrix const& gmat,
|
||||
const common::ColumnMatrix& column_matrix,
|
||||
std::vector<CPUExpandEntry> const& nodes, RegTree const* p_tree) {
|
||||
switch (column_matrix.GetTypeSize()) {
|
||||
case common::kUint8BinsTypeSize:
|
||||
this->template UpdatePosition<uint8_t, any_missing, any_cat>(ctx, gmat, column_matrix,
|
||||
nodes, p_tree);
|
||||
break;
|
||||
case common::kUint16BinsTypeSize:
|
||||
this->template UpdatePosition<uint16_t, any_missing, any_cat>(ctx, gmat, column_matrix,
|
||||
nodes, p_tree);
|
||||
break;
|
||||
case common::kUint32BinsTypeSize:
|
||||
this->template UpdatePosition<uint32_t, any_missing, any_cat>(ctx, gmat, column_matrix,
|
||||
nodes, p_tree);
|
||||
break;
|
||||
default:
|
||||
// no default behavior
|
||||
CHECK(false) << column_matrix.GetTypeSize();
|
||||
}
|
||||
std::vector<ExpandEntry> const& nodes, RegTree const* p_tree) {
|
||||
common::DispatchBinType(column_matrix.GetTypeSize(), [&](auto t) {
|
||||
using T = decltype(t);
|
||||
this->template UpdatePosition<T, any_missing, any_cat>(ctx, gmat, column_matrix, nodes,
|
||||
p_tree);
|
||||
});
|
||||
}
|
||||
|
||||
template <typename BinIdxType, bool any_missing, bool any_cat>
|
||||
template <typename BinIdxType, bool any_missing, bool any_cat, typename ExpandEntry>
|
||||
void UpdatePosition(Context const* ctx, GHistIndexMatrix const& gmat,
|
||||
const common::ColumnMatrix& column_matrix,
|
||||
std::vector<CPUExpandEntry> const& nodes, RegTree const* p_tree) {
|
||||
std::vector<ExpandEntry> const& nodes, RegTree const* p_tree) {
|
||||
// 1. Find split condition for each split
|
||||
size_t n_nodes = nodes.size();
|
||||
|
||||
@ -248,9 +247,9 @@ class CommonRowPartitioner {
|
||||
AddSplitsToRowSet(nodes, p_tree);
|
||||
}
|
||||
|
||||
auto const& Partitions() const { return row_set_collection_; }
|
||||
[[nodiscard]] auto const& Partitions() const { return row_set_collection_; }
|
||||
|
||||
size_t Size() const {
|
||||
[[nodiscard]] std::size_t Size() const {
|
||||
return std::distance(row_set_collection_.begin(), row_set_collection_.end());
|
||||
}
|
||||
|
||||
@ -263,12 +262,29 @@ class CommonRowPartitioner {
|
||||
[&](size_t idx) -> bool { return hess[idx] - .0f == .0f; });
|
||||
}
|
||||
|
||||
void LeafPartition(Context const* ctx, RegTree const& tree,
|
||||
linalg::TensorView<GradientPair const, 2> gpair,
|
||||
std::vector<bst_node_t>* p_out_position) const {
|
||||
if (gpair.Shape(1) > 1) {
|
||||
partition_builder_.LeafPartition(
|
||||
ctx, tree, this->Partitions(), p_out_position, [&](std::size_t idx) -> bool {
|
||||
auto sample = gpair.Slice(idx, linalg::All());
|
||||
return std::all_of(linalg::cbegin(sample), linalg::cend(sample),
|
||||
[](GradientPair const& g) { return g.GetHess() - .0f == .0f; });
|
||||
});
|
||||
} else {
|
||||
auto s = gpair.Slice(linalg::All(), 0);
|
||||
partition_builder_.LeafPartition(
|
||||
ctx, tree, this->Partitions(), p_out_position,
|
||||
[&](std::size_t idx) -> bool { return s(idx).GetHess() - .0f == .0f; });
|
||||
}
|
||||
}
|
||||
void LeafPartition(Context const* ctx, RegTree const& tree,
|
||||
common::Span<GradientPair const> gpair,
|
||||
std::vector<bst_node_t>* p_out_position) const {
|
||||
partition_builder_.LeafPartition(
|
||||
ctx, tree, this->Partitions(), p_out_position,
|
||||
[&](size_t idx) -> bool { return gpair[idx].GetHess() - .0f == .0f; });
|
||||
[&](std::size_t idx) -> bool { return gpair[idx].GetHess() - .0f == .0f; });
|
||||
}
|
||||
|
||||
private:
|
||||
@ -278,6 +294,5 @@ class CommonRowPartitioner {
|
||||
ColumnSplitHelper column_split_helper_;
|
||||
};
|
||||
|
||||
} // namespace tree
|
||||
} // namespace xgboost
|
||||
} // namespace xgboost::tree
|
||||
#endif // XGBOOST_TREE_COMMON_ROW_PARTITIONER_H_
|
||||
|
||||
@ -21,7 +21,8 @@
|
||||
namespace xgboost {
|
||||
namespace tree {
|
||||
namespace cpu_impl {
|
||||
void FitStump(Context const* ctx, linalg::TensorView<GradientPair const, 2> gpair,
|
||||
void FitStump(Context const* ctx, MetaInfo const& info,
|
||||
linalg::TensorView<GradientPair const, 2> gpair,
|
||||
linalg::VectorView<float> out) {
|
||||
auto n_targets = out.Size();
|
||||
CHECK_EQ(n_targets, gpair.Shape(1));
|
||||
@ -43,8 +44,12 @@ void FitStump(Context const* ctx, linalg::TensorView<GradientPair const, 2> gpai
|
||||
}
|
||||
}
|
||||
CHECK(h_sum.CContiguous());
|
||||
|
||||
// In vertical federated learning, only worker 0 needs to call this, no need to do an allreduce.
|
||||
if (!collective::IsFederated() || info.data_split_mode != DataSplitMode::kCol) {
|
||||
collective::Allreduce<collective::Operation::kSum>(
|
||||
reinterpret_cast<double*>(h_sum.Values().data()), h_sum.Size() * 2);
|
||||
}
|
||||
|
||||
for (std::size_t i = 0; i < h_sum.Size(); ++i) {
|
||||
out(i) = static_cast<float>(CalcUnregularizedWeight(h_sum(i).GetGrad(), h_sum(i).GetHess()));
|
||||
@ -64,7 +69,7 @@ inline void FitStump(Context const*, linalg::TensorView<GradientPair const, 2>,
|
||||
#endif // !defined(XGBOOST_USE_CUDA) && !defined(XGBOOST_USE_HIP)
|
||||
} // namespace cuda_impl
|
||||
|
||||
void FitStump(Context const* ctx, HostDeviceVector<GradientPair> const& gpair,
|
||||
void FitStump(Context const* ctx, MetaInfo const& info, HostDeviceVector<GradientPair> const& gpair,
|
||||
bst_target_t n_targets, linalg::Vector<float>* out) {
|
||||
out->SetDevice(ctx->gpu_id);
|
||||
out->Reshape(n_targets);
|
||||
@ -72,7 +77,7 @@ void FitStump(Context const* ctx, HostDeviceVector<GradientPair> const& gpair,
|
||||
|
||||
gpair.SetDevice(ctx->gpu_id);
|
||||
auto gpair_t = linalg::MakeTensorView(ctx, &gpair, n_samples, n_targets);
|
||||
ctx->IsCPU() ? cpu_impl::FitStump(ctx, gpair_t, out->HostView())
|
||||
ctx->IsCPU() ? cpu_impl::FitStump(ctx, info, gpair_t, out->HostView())
|
||||
: cuda_impl::FitStump(ctx, gpair_t, out->View(ctx->gpu_id));
|
||||
}
|
||||
} // namespace tree
|
||||
|
||||
@ -16,6 +16,7 @@
|
||||
#include "../common/common.h" // AssertGPUSupport
|
||||
#include "xgboost/base.h" // GradientPair
|
||||
#include "xgboost/context.h" // Context
|
||||
#include "xgboost/data.h" // MetaInfo
|
||||
#include "xgboost/host_device_vector.h" // HostDeviceVector
|
||||
#include "xgboost/linalg.h" // TensorView
|
||||
|
||||
@ -30,7 +31,7 @@ XGBOOST_DEVICE inline double CalcUnregularizedWeight(T sum_grad, T sum_hess) {
|
||||
/**
|
||||
* @brief Fit a tree stump as an estimation of base_score.
|
||||
*/
|
||||
void FitStump(Context const* ctx, HostDeviceVector<GradientPair> const& gpair,
|
||||
void FitStump(Context const* ctx, MetaInfo const& info, HostDeviceVector<GradientPair> const& gpair,
|
||||
bst_target_t n_targets, linalg::Vector<float>* out);
|
||||
} // namespace tree
|
||||
} // namespace xgboost
|
||||
|
||||
@ -4,22 +4,25 @@
|
||||
#ifndef XGBOOST_TREE_HIST_EVALUATE_SPLITS_H_
|
||||
#define XGBOOST_TREE_HIST_EVALUATE_SPLITS_H_
|
||||
|
||||
#include <algorithm>
|
||||
#include <algorithm> // for copy
|
||||
#include <cstddef> // for size_t
|
||||
#include <limits>
|
||||
#include <memory>
|
||||
#include <numeric>
|
||||
#include <utility>
|
||||
#include <vector>
|
||||
#include <limits> // for numeric_limits
|
||||
#include <memory> // for shared_ptr
|
||||
#include <numeric> // for accumulate
|
||||
#include <utility> // for move
|
||||
#include <vector> // for vector
|
||||
|
||||
#include "../../common/categorical.h"
|
||||
#include "../../common/hist_util.h"
|
||||
#include "../../common/random.h"
|
||||
#include "../../data/gradient_index.h"
|
||||
#include "../constraints.h"
|
||||
#include "../../common/categorical.h" // for CatBitField
|
||||
#include "../../common/hist_util.h" // for GHistRow, HistogramCuts
|
||||
#include "../../common/linalg_op.h" // for cbegin, cend, begin
|
||||
#include "../../common/random.h" // for ColumnSampler
|
||||
#include "../constraints.h" // for FeatureInteractionConstraintHost
|
||||
#include "../param.h" // for TrainParam
|
||||
#include "../split_evaluator.h"
|
||||
#include "xgboost/context.h"
|
||||
#include "../split_evaluator.h" // for TreeEvaluator
|
||||
#include "expand_entry.h" // for MultiExpandEntry
|
||||
#include "xgboost/base.h" // for bst_node_t, bst_target_t, bst_feature_t
|
||||
#include "xgboost/context.h" // for COntext
|
||||
#include "xgboost/linalg.h" // for Constants, Vector
|
||||
|
||||
namespace xgboost::tree {
|
||||
template <typename ExpandEntry>
|
||||
@ -410,8 +413,6 @@ class HistEvaluator {
|
||||
tree[candidate.nid].SplitIndex(), left_weight,
|
||||
right_weight);
|
||||
|
||||
auto max_node = std::max(left_child, tree[candidate.nid].RightChild());
|
||||
max_node = std::max(candidate.nid, max_node);
|
||||
snode_.resize(tree.GetNodes().size());
|
||||
snode_.at(left_child).stats = candidate.split.left_sum;
|
||||
snode_.at(left_child).root_gain =
|
||||
@ -456,6 +457,216 @@ class HistEvaluator {
|
||||
}
|
||||
};
|
||||
|
||||
class HistMultiEvaluator {
|
||||
std::vector<double> gain_;
|
||||
linalg::Matrix<GradientPairPrecise> stats_;
|
||||
TrainParam const *param_;
|
||||
FeatureInteractionConstraintHost interaction_constraints_;
|
||||
std::shared_ptr<common::ColumnSampler> column_sampler_;
|
||||
Context const *ctx_;
|
||||
|
||||
private:
|
||||
static double MultiCalcSplitGain(TrainParam const ¶m,
|
||||
linalg::VectorView<GradientPairPrecise const> left_sum,
|
||||
linalg::VectorView<GradientPairPrecise const> right_sum,
|
||||
linalg::VectorView<float> left_weight,
|
||||
linalg::VectorView<float> right_weight) {
|
||||
CalcWeight(param, left_sum, left_weight);
|
||||
CalcWeight(param, right_sum, right_weight);
|
||||
|
||||
auto left_gain = CalcGainGivenWeight(param, left_sum, left_weight);
|
||||
auto right_gain = CalcGainGivenWeight(param, right_sum, right_weight);
|
||||
return left_gain + right_gain;
|
||||
}
|
||||
|
||||
template <bst_bin_t d_step>
|
||||
bool EnumerateSplit(common::HistogramCuts const &cut, bst_feature_t fidx,
|
||||
common::Span<common::GHistRow const> hist,
|
||||
linalg::VectorView<GradientPairPrecise const> parent_sum, double parent_gain,
|
||||
SplitEntryContainer<std::vector<GradientPairPrecise>> *p_best) const {
|
||||
auto const &cut_ptr = cut.Ptrs();
|
||||
auto const &cut_val = cut.Values();
|
||||
auto const &min_val = cut.MinValues();
|
||||
|
||||
auto sum = linalg::Empty<GradientPairPrecise>(ctx_, 2, hist.size());
|
||||
auto left_sum = sum.Slice(0, linalg::All());
|
||||
auto right_sum = sum.Slice(1, linalg::All());
|
||||
|
||||
bst_bin_t ibegin, iend;
|
||||
if (d_step > 0) {
|
||||
ibegin = static_cast<bst_bin_t>(cut_ptr[fidx]);
|
||||
iend = static_cast<bst_bin_t>(cut_ptr[fidx + 1]);
|
||||
} else {
|
||||
ibegin = static_cast<bst_bin_t>(cut_ptr[fidx + 1]) - 1;
|
||||
iend = static_cast<bst_bin_t>(cut_ptr[fidx]) - 1;
|
||||
}
|
||||
const auto imin = static_cast<bst_bin_t>(cut_ptr[fidx]);
|
||||
|
||||
auto n_targets = hist.size();
|
||||
auto weight = linalg::Empty<float>(ctx_, 2, n_targets);
|
||||
auto left_weight = weight.Slice(0, linalg::All());
|
||||
auto right_weight = weight.Slice(1, linalg::All());
|
||||
|
||||
for (bst_bin_t i = ibegin; i != iend; i += d_step) {
|
||||
for (bst_target_t t = 0; t < n_targets; ++t) {
|
||||
auto t_hist = hist[t];
|
||||
auto t_p = parent_sum(t);
|
||||
left_sum(t) += t_hist[i];
|
||||
right_sum(t) = t_p - left_sum(t);
|
||||
}
|
||||
|
||||
if (d_step > 0) {
|
||||
auto split_pt = cut_val[i];
|
||||
auto loss_chg =
|
||||
MultiCalcSplitGain(*param_, right_sum, left_sum, right_weight, left_weight) -
|
||||
parent_gain;
|
||||
p_best->Update(loss_chg, fidx, split_pt, d_step == -1, false, left_sum, right_sum);
|
||||
} else {
|
||||
float split_pt;
|
||||
if (i == imin) {
|
||||
split_pt = min_val[fidx];
|
||||
} else {
|
||||
split_pt = cut_val[i - 1];
|
||||
}
|
||||
auto loss_chg =
|
||||
MultiCalcSplitGain(*param_, right_sum, left_sum, left_weight, right_weight) -
|
||||
parent_gain;
|
||||
p_best->Update(loss_chg, fidx, split_pt, d_step == -1, false, right_sum, left_sum);
|
||||
}
|
||||
}
|
||||
// return true if there's missing. Doesn't handle floating-point error well.
|
||||
if (d_step == +1) {
|
||||
return !std::equal(linalg::cbegin(left_sum), linalg::cend(left_sum),
|
||||
linalg::cbegin(parent_sum));
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
public:
|
||||
void EvaluateSplits(RegTree const &tree, common::Span<const common::HistCollection *> hist,
|
||||
common::HistogramCuts const &cut, std::vector<MultiExpandEntry> *p_entries) {
|
||||
auto &entries = *p_entries;
|
||||
std::vector<std::shared_ptr<HostDeviceVector<bst_feature_t>>> features(entries.size());
|
||||
|
||||
for (std::size_t nidx_in_set = 0; nidx_in_set < entries.size(); ++nidx_in_set) {
|
||||
auto nidx = entries[nidx_in_set].nid;
|
||||
features[nidx_in_set] = column_sampler_->GetFeatureSet(tree.GetDepth(nidx));
|
||||
}
|
||||
CHECK(!features.empty());
|
||||
|
||||
std::int32_t n_threads = ctx_->Threads();
|
||||
std::size_t const grain_size = std::max<std::size_t>(1, features.front()->Size() / n_threads);
|
||||
common::BlockedSpace2d space(
|
||||
entries.size(), [&](std::size_t nidx_in_set) { return features[nidx_in_set]->Size(); },
|
||||
grain_size);
|
||||
|
||||
std::vector<MultiExpandEntry> tloc_candidates(n_threads * entries.size());
|
||||
for (std::size_t i = 0; i < entries.size(); ++i) {
|
||||
for (std::int32_t j = 0; j < n_threads; ++j) {
|
||||
tloc_candidates[i * n_threads + j] = entries[i];
|
||||
}
|
||||
}
|
||||
common::ParallelFor2d(space, n_threads, [&](std::size_t nidx_in_set, common::Range1d r) {
|
||||
auto tidx = omp_get_thread_num();
|
||||
auto entry = &tloc_candidates[n_threads * nidx_in_set + tidx];
|
||||
auto best = &entry->split;
|
||||
auto parent_sum = stats_.Slice(entry->nid, linalg::All());
|
||||
std::vector<common::GHistRow> node_hist;
|
||||
for (auto t_hist : hist) {
|
||||
node_hist.push_back((*t_hist)[entry->nid]);
|
||||
}
|
||||
auto features_set = features[nidx_in_set]->ConstHostSpan();
|
||||
|
||||
for (auto fidx_in_set = r.begin(); fidx_in_set < r.end(); fidx_in_set++) {
|
||||
auto fidx = features_set[fidx_in_set];
|
||||
if (!interaction_constraints_.Query(entry->nid, fidx)) {
|
||||
continue;
|
||||
}
|
||||
auto parent_gain = gain_[entry->nid];
|
||||
bool missing =
|
||||
this->EnumerateSplit<+1>(cut, fidx, node_hist, parent_sum, parent_gain, best);
|
||||
if (missing) {
|
||||
this->EnumerateSplit<-1>(cut, fidx, node_hist, parent_sum, parent_gain, best);
|
||||
}
|
||||
}
|
||||
});
|
||||
|
||||
for (std::size_t nidx_in_set = 0; nidx_in_set < entries.size(); ++nidx_in_set) {
|
||||
for (auto tidx = 0; tidx < n_threads; ++tidx) {
|
||||
entries[nidx_in_set].split.Update(tloc_candidates[n_threads * nidx_in_set + tidx].split);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
linalg::Vector<float> InitRoot(linalg::VectorView<GradientPairPrecise const> root_sum) {
|
||||
auto n_targets = root_sum.Size();
|
||||
stats_ = linalg::Constant(ctx_, GradientPairPrecise{}, 1, n_targets);
|
||||
gain_.resize(1);
|
||||
|
||||
linalg::Vector<float> weight({n_targets}, ctx_->gpu_id);
|
||||
CalcWeight(*param_, root_sum, weight.HostView());
|
||||
auto root_gain = CalcGainGivenWeight(*param_, root_sum, weight.HostView());
|
||||
gain_.front() = root_gain;
|
||||
|
||||
auto h_stats = stats_.HostView();
|
||||
std::copy(linalg::cbegin(root_sum), linalg::cend(root_sum), linalg::begin(h_stats));
|
||||
|
||||
return weight;
|
||||
}
|
||||
|
||||
void ApplyTreeSplit(MultiExpandEntry const &candidate, RegTree *p_tree) {
|
||||
auto n_targets = p_tree->NumTargets();
|
||||
auto parent_sum = stats_.Slice(candidate.nid, linalg::All());
|
||||
|
||||
auto weight = linalg::Empty<float>(ctx_, 3, n_targets);
|
||||
auto base_weight = weight.Slice(0, linalg::All());
|
||||
CalcWeight(*param_, parent_sum, base_weight);
|
||||
|
||||
auto left_weight = weight.Slice(1, linalg::All());
|
||||
auto left_sum =
|
||||
linalg::MakeVec(candidate.split.left_sum.data(), candidate.split.left_sum.size());
|
||||
CalcWeight(*param_, left_sum, param_->learning_rate, left_weight);
|
||||
|
||||
auto right_weight = weight.Slice(2, linalg::All());
|
||||
auto right_sum =
|
||||
linalg::MakeVec(candidate.split.right_sum.data(), candidate.split.right_sum.size());
|
||||
CalcWeight(*param_, right_sum, param_->learning_rate, right_weight);
|
||||
|
||||
p_tree->ExpandNode(candidate.nid, candidate.split.SplitIndex(), candidate.split.split_value,
|
||||
candidate.split.DefaultLeft(), base_weight, left_weight, right_weight);
|
||||
CHECK(p_tree->IsMultiTarget());
|
||||
auto left_child = p_tree->LeftChild(candidate.nid);
|
||||
CHECK_GT(left_child, candidate.nid);
|
||||
auto right_child = p_tree->RightChild(candidate.nid);
|
||||
CHECK_GT(right_child, candidate.nid);
|
||||
|
||||
std::size_t n_nodes = p_tree->Size();
|
||||
gain_.resize(n_nodes);
|
||||
gain_[left_child] = CalcGainGivenWeight(*param_, left_sum, left_weight);
|
||||
gain_[right_child] = CalcGainGivenWeight(*param_, right_sum, right_weight);
|
||||
|
||||
if (n_nodes >= stats_.Shape(0)) {
|
||||
stats_.Reshape(n_nodes * 2, stats_.Shape(1));
|
||||
}
|
||||
CHECK_EQ(stats_.Shape(1), n_targets);
|
||||
auto left_sum_stat = stats_.Slice(left_child, linalg::All());
|
||||
std::copy(candidate.split.left_sum.cbegin(), candidate.split.left_sum.cend(),
|
||||
linalg::begin(left_sum_stat));
|
||||
auto right_sum_stat = stats_.Slice(right_child, linalg::All());
|
||||
std::copy(candidate.split.right_sum.cbegin(), candidate.split.right_sum.cend(),
|
||||
linalg::begin(right_sum_stat));
|
||||
}
|
||||
|
||||
explicit HistMultiEvaluator(Context const *ctx, MetaInfo const &info, TrainParam const *param,
|
||||
std::shared_ptr<common::ColumnSampler> sampler)
|
||||
: param_{param}, column_sampler_{std::move(sampler)}, ctx_{ctx} {
|
||||
interaction_constraints_.Configure(*param, info.num_col_);
|
||||
column_sampler_->Init(ctx, info.num_col_, info.feature_weights.HostVector(),
|
||||
param_->colsample_bynode, param_->colsample_bylevel,
|
||||
param_->colsample_bytree);
|
||||
}
|
||||
};
|
||||
|
||||
/**
|
||||
* \brief CPU implementation of update prediction cache, which calculates the leaf value
|
||||
* for the last tree and accumulates it to prediction vector.
|
||||
|
||||
@ -1,29 +1,51 @@
|
||||
/*!
|
||||
* Copyright 2021 XGBoost contributors
|
||||
/**
|
||||
* Copyright 2021-2023 XGBoost contributors
|
||||
*/
|
||||
#ifndef XGBOOST_TREE_HIST_EXPAND_ENTRY_H_
|
||||
#define XGBOOST_TREE_HIST_EXPAND_ENTRY_H_
|
||||
|
||||
#include <utility>
|
||||
#include "../param.h"
|
||||
#include <algorithm> // for all_of
|
||||
#include <ostream> // for ostream
|
||||
#include <utility> // for move
|
||||
#include <vector> // for vector
|
||||
|
||||
namespace xgboost {
|
||||
namespace tree {
|
||||
#include "../param.h" // for SplitEntry, SplitEntryContainer, TrainParam
|
||||
#include "xgboost/base.h" // for GradientPairPrecise, bst_node_t
|
||||
|
||||
struct CPUExpandEntry {
|
||||
int nid;
|
||||
int depth;
|
||||
SplitEntry split;
|
||||
CPUExpandEntry() = default;
|
||||
XGBOOST_DEVICE
|
||||
CPUExpandEntry(int nid, int depth, SplitEntry split)
|
||||
: nid(nid), depth(depth), split(std::move(split)) {}
|
||||
CPUExpandEntry(int nid, int depth, float loss_chg)
|
||||
: nid(nid), depth(depth) {
|
||||
split.loss_chg = loss_chg;
|
||||
namespace xgboost::tree {
|
||||
/**
|
||||
* \brief Structure for storing tree split candidate.
|
||||
*/
|
||||
template <typename Impl>
|
||||
struct ExpandEntryImpl {
|
||||
bst_node_t nid;
|
||||
bst_node_t depth;
|
||||
|
||||
[[nodiscard]] float GetLossChange() const {
|
||||
return static_cast<Impl const*>(this)->split.loss_chg;
|
||||
}
|
||||
[[nodiscard]] bst_node_t GetNodeId() const { return nid; }
|
||||
|
||||
static bool ChildIsValid(TrainParam const& param, bst_node_t depth, bst_node_t num_leaves) {
|
||||
if (param.max_depth > 0 && depth >= param.max_depth) return false;
|
||||
if (param.max_leaves > 0 && num_leaves >= param.max_leaves) return false;
|
||||
return true;
|
||||
}
|
||||
|
||||
bool IsValid(const TrainParam& param, int num_leaves) const {
|
||||
[[nodiscard]] bool IsValid(TrainParam const& param, bst_node_t num_leaves) const {
|
||||
return static_cast<Impl const*>(this)->IsValidImpl(param, num_leaves);
|
||||
}
|
||||
};
|
||||
|
||||
struct CPUExpandEntry : public ExpandEntryImpl<CPUExpandEntry> {
|
||||
SplitEntry split;
|
||||
|
||||
CPUExpandEntry() = default;
|
||||
CPUExpandEntry(bst_node_t nidx, bst_node_t depth, SplitEntry split)
|
||||
: ExpandEntryImpl{nidx, depth}, split(std::move(split)) {}
|
||||
CPUExpandEntry(bst_node_t nidx, bst_node_t depth) : ExpandEntryImpl{nidx, depth} {}
|
||||
|
||||
[[nodiscard]] bool IsValidImpl(TrainParam const& param, bst_node_t num_leaves) const {
|
||||
if (split.loss_chg <= kRtEps) return false;
|
||||
if (split.left_sum.GetHess() == 0 || split.right_sum.GetHess() == 0) {
|
||||
return false;
|
||||
@ -40,16 +62,7 @@ struct CPUExpandEntry {
|
||||
return true;
|
||||
}
|
||||
|
||||
float GetLossChange() const { return split.loss_chg; }
|
||||
bst_node_t GetNodeId() const { return nid; }
|
||||
|
||||
static bool ChildIsValid(const TrainParam& param, int depth, int num_leaves) {
|
||||
if (param.max_depth > 0 && depth >= param.max_depth) return false;
|
||||
if (param.max_leaves > 0 && num_leaves >= param.max_leaves) return false;
|
||||
return true;
|
||||
}
|
||||
|
||||
friend std::ostream& operator<<(std::ostream& os, const CPUExpandEntry& e) {
|
||||
friend std::ostream& operator<<(std::ostream& os, CPUExpandEntry const& e) {
|
||||
os << "ExpandEntry:\n";
|
||||
os << "nidx: " << e.nid << "\n";
|
||||
os << "depth: " << e.depth << "\n";
|
||||
@ -58,6 +71,54 @@ struct CPUExpandEntry {
|
||||
return os;
|
||||
}
|
||||
};
|
||||
} // namespace tree
|
||||
} // namespace xgboost
|
||||
|
||||
struct MultiExpandEntry : public ExpandEntryImpl<MultiExpandEntry> {
|
||||
SplitEntryContainer<std::vector<GradientPairPrecise>> split;
|
||||
|
||||
MultiExpandEntry() = default;
|
||||
MultiExpandEntry(bst_node_t nidx, bst_node_t depth) : ExpandEntryImpl{nidx, depth} {}
|
||||
|
||||
[[nodiscard]] bool IsValidImpl(TrainParam const& param, bst_node_t num_leaves) const {
|
||||
if (split.loss_chg <= kRtEps) return false;
|
||||
auto is_zero = [](auto const& sum) {
|
||||
return std::all_of(sum.cbegin(), sum.cend(),
|
||||
[&](auto const& g) { return g.GetHess() - .0 == .0; });
|
||||
};
|
||||
if (is_zero(split.left_sum) || is_zero(split.right_sum)) {
|
||||
return false;
|
||||
}
|
||||
if (split.loss_chg < param.min_split_loss) {
|
||||
return false;
|
||||
}
|
||||
if (param.max_depth > 0 && depth == param.max_depth) {
|
||||
return false;
|
||||
}
|
||||
if (param.max_leaves > 0 && num_leaves == param.max_leaves) {
|
||||
return false;
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
friend std::ostream& operator<<(std::ostream& os, MultiExpandEntry const& e) {
|
||||
os << "ExpandEntry: \n";
|
||||
os << "nidx: " << e.nid << "\n";
|
||||
os << "depth: " << e.depth << "\n";
|
||||
os << "loss: " << e.split.loss_chg << "\n";
|
||||
os << "split cond:" << e.split.split_value << "\n";
|
||||
os << "split ind:" << e.split.SplitIndex() << "\n";
|
||||
os << "left_sum: [";
|
||||
for (auto v : e.split.left_sum) {
|
||||
os << v << ", ";
|
||||
}
|
||||
os << "]\n";
|
||||
|
||||
os << "right_sum: [";
|
||||
for (auto v : e.split.right_sum) {
|
||||
os << v << ", ";
|
||||
}
|
||||
os << "]\n";
|
||||
return os;
|
||||
}
|
||||
};
|
||||
} // namespace xgboost::tree
|
||||
#endif // XGBOOST_TREE_HIST_EXPAND_ENTRY_H_
|
||||
|
||||
@ -306,9 +306,9 @@ class HistogramBuilder {
|
||||
|
||||
// Construct a work space for building histogram. Eventually we should move this
|
||||
// function into histogram builder once hist tree method supports external memory.
|
||||
template <typename Partitioner>
|
||||
template <typename Partitioner, typename ExpandEntry = CPUExpandEntry>
|
||||
common::BlockedSpace2d ConstructHistSpace(Partitioner const &partitioners,
|
||||
std::vector<CPUExpandEntry> const &nodes_to_build) {
|
||||
std::vector<ExpandEntry> const &nodes_to_build) {
|
||||
std::vector<size_t> partition_size(nodes_to_build.size(), 0);
|
||||
for (auto const &partition : partitioners) {
|
||||
size_t k = 0;
|
||||
|
||||
@ -14,10 +14,12 @@
|
||||
#include <string>
|
||||
#include <vector>
|
||||
|
||||
#include "xgboost/parameter.h"
|
||||
#include "xgboost/data.h"
|
||||
#include "../common/categorical.h"
|
||||
#include "../common/linalg_op.h"
|
||||
#include "../common/math.h"
|
||||
#include "xgboost/data.h"
|
||||
#include "xgboost/linalg.h"
|
||||
#include "xgboost/parameter.h"
|
||||
|
||||
namespace xgboost {
|
||||
namespace tree {
|
||||
@ -197,12 +199,11 @@ struct TrainParam : public XGBoostParameter<TrainParam> {
|
||||
}
|
||||
|
||||
/*! \brief given the loss change, whether we need to invoke pruning */
|
||||
bool NeedPrune(double loss_chg, int depth) const {
|
||||
return loss_chg < this->min_split_loss ||
|
||||
(this->max_depth != 0 && depth > this->max_depth);
|
||||
[[nodiscard]] bool NeedPrune(double loss_chg, int depth) const {
|
||||
return loss_chg < this->min_split_loss || (this->max_depth != 0 && depth > this->max_depth);
|
||||
}
|
||||
|
||||
bst_node_t MaxNodes() const {
|
||||
[[nodiscard]] bst_node_t MaxNodes() const {
|
||||
if (this->max_depth == 0 && this->max_leaves == 0) {
|
||||
LOG(FATAL) << "Max leaves and max depth cannot both be unconstrained.";
|
||||
}
|
||||
@ -292,6 +293,34 @@ XGBOOST_DEVICE inline float CalcWeight(const TrainingParams &p, GpairT sum_grad)
|
||||
return CalcWeight(p, sum_grad.GetGrad(), sum_grad.GetHess());
|
||||
}
|
||||
|
||||
/**
|
||||
* \brief multi-target weight, calculated with learning rate.
|
||||
*/
|
||||
inline void CalcWeight(TrainParam const &p, linalg::VectorView<GradientPairPrecise const> grad_sum,
|
||||
float eta, linalg::VectorView<float> out_w) {
|
||||
for (bst_target_t i = 0; i < out_w.Size(); ++i) {
|
||||
out_w(i) = CalcWeight(p, grad_sum(i).GetGrad(), grad_sum(i).GetHess()) * eta;
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* \brief multi-target weight
|
||||
*/
|
||||
inline void CalcWeight(TrainParam const &p, linalg::VectorView<GradientPairPrecise const> grad_sum,
|
||||
linalg::VectorView<float> out_w) {
|
||||
return CalcWeight(p, grad_sum, 1.0f, out_w);
|
||||
}
|
||||
|
||||
inline double CalcGainGivenWeight(TrainParam const &p,
|
||||
linalg::VectorView<GradientPairPrecise const> sum_grad,
|
||||
linalg::VectorView<float const> weight) {
|
||||
double gain{0};
|
||||
for (bst_target_t i = 0; i < weight.Size(); ++i) {
|
||||
gain += -weight(i) * ThresholdL1(sum_grad(i).GetGrad(), p.reg_alpha);
|
||||
}
|
||||
return gain;
|
||||
}
|
||||
|
||||
/*! \brief core statistics used for tree construction */
|
||||
struct XGBOOST_ALIGNAS(16) GradStats {
|
||||
using GradType = double;
|
||||
@ -301,8 +330,8 @@ struct XGBOOST_ALIGNAS(16) GradStats {
|
||||
GradType sum_hess { 0 };
|
||||
|
||||
public:
|
||||
XGBOOST_DEVICE GradType GetGrad() const { return sum_grad; }
|
||||
XGBOOST_DEVICE GradType GetHess() const { return sum_hess; }
|
||||
[[nodiscard]] XGBOOST_DEVICE GradType GetGrad() const { return sum_grad; }
|
||||
[[nodiscard]] XGBOOST_DEVICE GradType GetHess() const { return sum_hess; }
|
||||
|
||||
friend std::ostream& operator<<(std::ostream& os, GradStats s) {
|
||||
os << s.GetGrad() << "/" << s.GetHess();
|
||||
@ -340,7 +369,7 @@ struct XGBOOST_ALIGNAS(16) GradStats {
|
||||
sum_hess = a.sum_hess - b.sum_hess;
|
||||
}
|
||||
/*! \return whether the statistics is not used yet */
|
||||
inline bool Empty() const { return sum_hess == 0.0; }
|
||||
[[nodiscard]] bool Empty() const { return sum_hess == 0.0; }
|
||||
/*! \brief add statistics to the data */
|
||||
inline void Add(GradType grad, GradType hess) {
|
||||
sum_grad += grad;
|
||||
@ -348,6 +377,19 @@ struct XGBOOST_ALIGNAS(16) GradStats {
|
||||
}
|
||||
};
|
||||
|
||||
// Helper functions for copying gradient statistic, one for vector leaf, another for normal scalar.
|
||||
template <typename T, typename U>
|
||||
std::vector<T> &CopyStats(linalg::VectorView<U> const &src, std::vector<T> *dst) { // NOLINT
|
||||
dst->resize(src.Size());
|
||||
std::copy(linalg::cbegin(src), linalg::cend(src), dst->begin());
|
||||
return *dst;
|
||||
}
|
||||
|
||||
inline GradStats &CopyStats(GradStats const &src, GradStats *dst) { // NOLINT
|
||||
*dst = src;
|
||||
return *dst;
|
||||
}
|
||||
|
||||
/*!
|
||||
* \brief statistics that is helpful to store
|
||||
* and represent a split solution for the tree
|
||||
@ -378,9 +420,9 @@ struct SplitEntryContainer {
|
||||
return os;
|
||||
}
|
||||
/*!\return feature index to split on */
|
||||
bst_feature_t SplitIndex() const { return sindex & ((1U << 31) - 1U); }
|
||||
[[nodiscard]] bst_feature_t SplitIndex() const { return sindex & ((1U << 31) - 1U); }
|
||||
/*!\return whether missing value goes to left branch */
|
||||
bool DefaultLeft() const { return (sindex >> 31) != 0; }
|
||||
[[nodiscard]] bool DefaultLeft() const { return (sindex >> 31) != 0; }
|
||||
/*!
|
||||
* \brief decides whether we can replace current entry with the given statistics
|
||||
*
|
||||
@ -391,7 +433,7 @@ struct SplitEntryContainer {
|
||||
* \param new_loss_chg the loss reduction get through the split
|
||||
* \param split_index the feature index where the split is on
|
||||
*/
|
||||
bool NeedReplace(bst_float new_loss_chg, unsigned split_index) const {
|
||||
[[nodiscard]] bool NeedReplace(bst_float new_loss_chg, unsigned split_index) const {
|
||||
if (std::isinf(new_loss_chg)) { // in some cases new_loss_chg can be NaN or Inf,
|
||||
// for example when lambda = 0 & min_child_weight = 0
|
||||
// skip value in this case
|
||||
@ -429,9 +471,10 @@ struct SplitEntryContainer {
|
||||
* \param default_left whether the missing value goes to left
|
||||
* \return whether the proposed split is better and can replace current split
|
||||
*/
|
||||
bool Update(bst_float new_loss_chg, unsigned split_index,
|
||||
bst_float new_split_value, bool default_left, bool is_cat,
|
||||
const GradientT &left_sum, const GradientT &right_sum) {
|
||||
template <typename GradientSumT>
|
||||
bool Update(bst_float new_loss_chg, unsigned split_index, bst_float new_split_value,
|
||||
bool default_left, bool is_cat, GradientSumT const &left_sum,
|
||||
GradientSumT const &right_sum) {
|
||||
if (this->NeedReplace(new_loss_chg, split_index)) {
|
||||
this->loss_chg = new_loss_chg;
|
||||
if (default_left) {
|
||||
@ -440,8 +483,8 @@ struct SplitEntryContainer {
|
||||
this->sindex = split_index;
|
||||
this->split_value = new_split_value;
|
||||
this->is_cat = is_cat;
|
||||
this->left_sum = left_sum;
|
||||
this->right_sum = right_sum;
|
||||
CopyStats(left_sum, &this->left_sum);
|
||||
CopyStats(right_sum, &this->right_sum);
|
||||
return true;
|
||||
} else {
|
||||
return false;
|
||||
|
||||
@ -815,9 +815,9 @@ void RegTree::ExpandNode(bst_node_t nidx, bst_feature_t split_index, float split
|
||||
linalg::VectorView<float const> left_weight,
|
||||
linalg::VectorView<float const> right_weight) {
|
||||
CHECK(IsMultiTarget());
|
||||
CHECK_LT(split_index, this->param.num_feature);
|
||||
CHECK_LT(split_index, this->param_.num_feature);
|
||||
CHECK(this->p_mt_tree_);
|
||||
CHECK_GT(param.size_leaf_vector, 1);
|
||||
CHECK_GT(param_.size_leaf_vector, 1);
|
||||
|
||||
this->p_mt_tree_->Expand(nidx, split_index, split_cond, default_left, base_weight, left_weight,
|
||||
right_weight);
|
||||
@ -826,7 +826,7 @@ void RegTree::ExpandNode(bst_node_t nidx, bst_feature_t split_index, float split
|
||||
split_categories_segments_.resize(this->Size());
|
||||
this->split_types_.at(nidx) = FeatureType::kNumerical;
|
||||
|
||||
this->param.num_nodes = this->p_mt_tree_->Size();
|
||||
this->param_.num_nodes = this->p_mt_tree_->Size();
|
||||
}
|
||||
|
||||
void RegTree::ExpandCategorical(bst_node_t nid, bst_feature_t split_index,
|
||||
@ -850,13 +850,13 @@ void RegTree::ExpandCategorical(bst_node_t nid, bst_feature_t split_index,
|
||||
}
|
||||
|
||||
void RegTree::Load(dmlc::Stream* fi) {
|
||||
CHECK_EQ(fi->Read(¶m, sizeof(TreeParam)), sizeof(TreeParam));
|
||||
CHECK_EQ(fi->Read(¶m_, sizeof(TreeParam)), sizeof(TreeParam));
|
||||
if (!DMLC_IO_NO_ENDIAN_SWAP) {
|
||||
param = param.ByteSwap();
|
||||
param_ = param_.ByteSwap();
|
||||
}
|
||||
nodes_.resize(param.num_nodes);
|
||||
stats_.resize(param.num_nodes);
|
||||
CHECK_NE(param.num_nodes, 0);
|
||||
nodes_.resize(param_.num_nodes);
|
||||
stats_.resize(param_.num_nodes);
|
||||
CHECK_NE(param_.num_nodes, 0);
|
||||
CHECK_EQ(fi->Read(dmlc::BeginPtr(nodes_), sizeof(Node) * nodes_.size()),
|
||||
sizeof(Node) * nodes_.size());
|
||||
if (!DMLC_IO_NO_ENDIAN_SWAP) {
|
||||
@ -873,29 +873,31 @@ void RegTree::Load(dmlc::Stream* fi) {
|
||||
}
|
||||
// chg deleted nodes
|
||||
deleted_nodes_.resize(0);
|
||||
for (int i = 1; i < param.num_nodes; ++i) {
|
||||
for (int i = 1; i < param_.num_nodes; ++i) {
|
||||
if (nodes_[i].IsDeleted()) {
|
||||
deleted_nodes_.push_back(i);
|
||||
}
|
||||
}
|
||||
CHECK_EQ(static_cast<int>(deleted_nodes_.size()), param.num_deleted);
|
||||
CHECK_EQ(static_cast<int>(deleted_nodes_.size()), param_.num_deleted);
|
||||
|
||||
split_types_.resize(param.num_nodes, FeatureType::kNumerical);
|
||||
split_categories_segments_.resize(param.num_nodes);
|
||||
split_types_.resize(param_.num_nodes, FeatureType::kNumerical);
|
||||
split_categories_segments_.resize(param_.num_nodes);
|
||||
}
|
||||
|
||||
void RegTree::Save(dmlc::Stream* fo) const {
|
||||
CHECK_EQ(param.num_nodes, static_cast<int>(nodes_.size()));
|
||||
CHECK_EQ(param.num_nodes, static_cast<int>(stats_.size()));
|
||||
CHECK_EQ(param.deprecated_num_roots, 1);
|
||||
CHECK_NE(param.num_nodes, 0);
|
||||
CHECK_EQ(param_.num_nodes, static_cast<int>(nodes_.size()));
|
||||
CHECK_EQ(param_.num_nodes, static_cast<int>(stats_.size()));
|
||||
CHECK_EQ(param_.deprecated_num_roots, 1);
|
||||
CHECK_NE(param_.num_nodes, 0);
|
||||
CHECK(!IsMultiTarget())
|
||||
<< "Please use JSON/UBJSON for saving models with multi-target trees.";
|
||||
CHECK(!HasCategoricalSplit())
|
||||
<< "Please use JSON/UBJSON for saving models with categorical splits.";
|
||||
|
||||
if (DMLC_IO_NO_ENDIAN_SWAP) {
|
||||
fo->Write(¶m, sizeof(TreeParam));
|
||||
fo->Write(¶m_, sizeof(TreeParam));
|
||||
} else {
|
||||
TreeParam x = param.ByteSwap();
|
||||
TreeParam x = param_.ByteSwap();
|
||||
fo->Write(&x, sizeof(x));
|
||||
}
|
||||
|
||||
@ -1081,7 +1083,7 @@ void RegTree::LoadModel(Json const& in) {
|
||||
bool typed = IsA<I32Array>(in[tf::kParent]);
|
||||
auto const& in_obj = get<Object const>(in);
|
||||
// basic properties
|
||||
FromJson(in["tree_param"], ¶m);
|
||||
FromJson(in["tree_param"], ¶m_);
|
||||
// categorical splits
|
||||
bool has_cat = in_obj.find("split_type") != in_obj.cend();
|
||||
if (has_cat) {
|
||||
@ -1092,55 +1094,55 @@ void RegTree::LoadModel(Json const& in) {
|
||||
}
|
||||
}
|
||||
// multi-target
|
||||
if (param.size_leaf_vector > 1) {
|
||||
this->p_mt_tree_.reset(new MultiTargetTree{¶m});
|
||||
if (param_.size_leaf_vector > 1) {
|
||||
this->p_mt_tree_.reset(new MultiTargetTree{¶m_});
|
||||
this->GetMultiTargetTree()->LoadModel(in);
|
||||
return;
|
||||
}
|
||||
|
||||
bool feature_is_64 = IsA<I64Array>(in["split_indices"]);
|
||||
if (typed && feature_is_64) {
|
||||
LoadModelImpl<true, true>(in, param, &stats_, &nodes_);
|
||||
LoadModelImpl<true, true>(in, param_, &stats_, &nodes_);
|
||||
} else if (typed && !feature_is_64) {
|
||||
LoadModelImpl<true, false>(in, param, &stats_, &nodes_);
|
||||
LoadModelImpl<true, false>(in, param_, &stats_, &nodes_);
|
||||
} else if (!typed && feature_is_64) {
|
||||
LoadModelImpl<false, true>(in, param, &stats_, &nodes_);
|
||||
LoadModelImpl<false, true>(in, param_, &stats_, &nodes_);
|
||||
} else {
|
||||
LoadModelImpl<false, false>(in, param, &stats_, &nodes_);
|
||||
LoadModelImpl<false, false>(in, param_, &stats_, &nodes_);
|
||||
}
|
||||
|
||||
if (!has_cat) {
|
||||
this->split_categories_segments_.resize(this->param.num_nodes);
|
||||
this->split_types_.resize(this->param.num_nodes);
|
||||
this->split_categories_segments_.resize(this->param_.num_nodes);
|
||||
this->split_types_.resize(this->param_.num_nodes);
|
||||
std::fill(split_types_.begin(), split_types_.end(), FeatureType::kNumerical);
|
||||
}
|
||||
|
||||
deleted_nodes_.clear();
|
||||
for (bst_node_t i = 1; i < param.num_nodes; ++i) {
|
||||
for (bst_node_t i = 1; i < param_.num_nodes; ++i) {
|
||||
if (nodes_[i].IsDeleted()) {
|
||||
deleted_nodes_.push_back(i);
|
||||
}
|
||||
}
|
||||
// easier access to [] operator
|
||||
auto& self = *this;
|
||||
for (auto nid = 1; nid < param.num_nodes; ++nid) {
|
||||
for (auto nid = 1; nid < param_.num_nodes; ++nid) {
|
||||
auto parent = self[nid].Parent();
|
||||
CHECK_NE(parent, RegTree::kInvalidNodeId);
|
||||
self[nid].SetParent(self[nid].Parent(), self[parent].LeftChild() == nid);
|
||||
}
|
||||
CHECK_EQ(static_cast<bst_node_t>(deleted_nodes_.size()), param.num_deleted);
|
||||
CHECK_EQ(this->split_categories_segments_.size(), param.num_nodes);
|
||||
CHECK_EQ(static_cast<bst_node_t>(deleted_nodes_.size()), param_.num_deleted);
|
||||
CHECK_EQ(this->split_categories_segments_.size(), param_.num_nodes);
|
||||
}
|
||||
|
||||
void RegTree::SaveModel(Json* p_out) const {
|
||||
auto& out = *p_out;
|
||||
// basic properties
|
||||
out["tree_param"] = ToJson(param);
|
||||
out["tree_param"] = ToJson(param_);
|
||||
// categorical splits
|
||||
this->SaveCategoricalSplit(p_out);
|
||||
// multi-target
|
||||
if (this->IsMultiTarget()) {
|
||||
CHECK_GT(param.size_leaf_vector, 1);
|
||||
CHECK_GT(param_.size_leaf_vector, 1);
|
||||
this->GetMultiTargetTree()->SaveModel(p_out);
|
||||
return;
|
||||
}
|
||||
@ -1150,11 +1152,11 @@ void RegTree::SaveModel(Json* p_out) const {
|
||||
* pruner, and this pruner can be used inside another updater so leaf are not necessary
|
||||
* at the end of node array.
|
||||
*/
|
||||
CHECK_EQ(param.num_nodes, static_cast<int>(nodes_.size()));
|
||||
CHECK_EQ(param.num_nodes, static_cast<int>(stats_.size()));
|
||||
CHECK_EQ(param_.num_nodes, static_cast<int>(nodes_.size()));
|
||||
CHECK_EQ(param_.num_nodes, static_cast<int>(stats_.size()));
|
||||
|
||||
CHECK_EQ(get<String>(out["tree_param"]["num_nodes"]), std::to_string(param.num_nodes));
|
||||
auto n_nodes = param.num_nodes;
|
||||
CHECK_EQ(get<String>(out["tree_param"]["num_nodes"]), std::to_string(param_.num_nodes));
|
||||
auto n_nodes = param_.num_nodes;
|
||||
|
||||
// stats
|
||||
F32Array loss_changes(n_nodes);
|
||||
@ -1168,7 +1170,7 @@ void RegTree::SaveModel(Json* p_out) const {
|
||||
|
||||
F32Array conds(n_nodes);
|
||||
U8Array default_left(n_nodes);
|
||||
CHECK_EQ(this->split_types_.size(), param.num_nodes);
|
||||
CHECK_EQ(this->split_types_.size(), param_.num_nodes);
|
||||
|
||||
namespace tf = tree_field;
|
||||
|
||||
@ -1189,7 +1191,7 @@ void RegTree::SaveModel(Json* p_out) const {
|
||||
default_left.Set(i, static_cast<uint8_t>(!!n.DefaultLeft()));
|
||||
}
|
||||
};
|
||||
if (this->param.num_feature > static_cast<bst_feature_t>(std::numeric_limits<int32_t>::max())) {
|
||||
if (this->param_.num_feature > static_cast<bst_feature_t>(std::numeric_limits<int32_t>::max())) {
|
||||
I64Array indices_64(n_nodes);
|
||||
save_tree(&indices_64);
|
||||
out[tf::kSplitIdx] = std::move(indices_64);
|
||||
|
||||
@ -226,8 +226,8 @@ class GloablApproxBuilder {
|
||||
for (auto const &candidate : valid_candidates) {
|
||||
int left_child_nidx = tree[candidate.nid].LeftChild();
|
||||
int right_child_nidx = tree[candidate.nid].RightChild();
|
||||
CPUExpandEntry l_best{left_child_nidx, tree.GetDepth(left_child_nidx), {}};
|
||||
CPUExpandEntry r_best{right_child_nidx, tree.GetDepth(right_child_nidx), {}};
|
||||
CPUExpandEntry l_best{left_child_nidx, tree.GetDepth(left_child_nidx)};
|
||||
CPUExpandEntry r_best{right_child_nidx, tree.GetDepth(right_child_nidx)};
|
||||
best_splits.push_back(l_best);
|
||||
best_splits.push_back(r_best);
|
||||
}
|
||||
|
||||
@ -190,7 +190,7 @@ class ColMaker: public TreeUpdater {
|
||||
(*p_tree)[nid].SetLeaf(snode_[nid].weight * param_.learning_rate);
|
||||
}
|
||||
// remember auxiliary statistics in the tree node
|
||||
for (int nid = 0; nid < p_tree->param.num_nodes; ++nid) {
|
||||
for (int nid = 0; nid < p_tree->NumNodes(); ++nid) {
|
||||
p_tree->Stat(nid).loss_chg = snode_[nid].best.loss_chg;
|
||||
p_tree->Stat(nid).base_weight = snode_[nid].weight;
|
||||
p_tree->Stat(nid).sum_hess = static_cast<float>(snode_[nid].stats.sum_hess);
|
||||
@ -255,9 +255,9 @@ class ColMaker: public TreeUpdater {
|
||||
{
|
||||
// setup statistics space for each tree node
|
||||
for (auto& i : stemp_) {
|
||||
i.resize(tree.param.num_nodes, ThreadEntry());
|
||||
i.resize(tree.NumNodes(), ThreadEntry());
|
||||
}
|
||||
snode_.resize(tree.param.num_nodes, NodeEntry());
|
||||
snode_.resize(tree.NumNodes(), NodeEntry());
|
||||
}
|
||||
const MetaInfo& info = fmat.Info();
|
||||
// setup position
|
||||
|
||||
@ -72,7 +72,7 @@ class TreePruner : public TreeUpdater {
|
||||
void DoPrune(TrainParam const* param, RegTree* p_tree) {
|
||||
auto& tree = *p_tree;
|
||||
bst_node_t npruned = 0;
|
||||
for (int nid = 0; nid < tree.param.num_nodes; ++nid) {
|
||||
for (int nid = 0; nid < tree.NumNodes(); ++nid) {
|
||||
if (tree[nid].IsLeaf() && !tree[nid].IsDeleted()) {
|
||||
npruned = this->TryPruneLeaf(param, p_tree, nid, tree.GetDepth(nid), npruned);
|
||||
}
|
||||
|
||||
@ -4,69 +4,413 @@
|
||||
* \brief use quantized feature values to construct a tree
|
||||
* \author Philip Cho, Tianqi Checn, Egor Smirnov
|
||||
*/
|
||||
#include "./updater_quantile_hist.h"
|
||||
#include <algorithm> // for max, copy, transform
|
||||
#include <cstddef> // for size_t
|
||||
#include <cstdint> // for uint32_t, int32_t
|
||||
#include <memory> // for unique_ptr, allocator, make_unique, shared_ptr
|
||||
#include <numeric> // for accumulate
|
||||
#include <ostream> // for basic_ostream, char_traits, operator<<
|
||||
#include <utility> // for move, swap
|
||||
#include <vector> // for vector
|
||||
|
||||
#include <algorithm>
|
||||
#include <cstddef>
|
||||
#include <memory>
|
||||
#include <string>
|
||||
#include <utility>
|
||||
#include <vector>
|
||||
#include "../collective/communicator-inl.h" // for Allreduce, IsDistributed
|
||||
#include "../collective/communicator.h" // for Operation
|
||||
#include "../common/hist_util.h" // for HistogramCuts, HistCollection
|
||||
#include "../common/linalg_op.h" // for begin, cbegin, cend
|
||||
#include "../common/random.h" // for ColumnSampler
|
||||
#include "../common/threading_utils.h" // for ParallelFor
|
||||
#include "../common/timer.h" // for Monitor
|
||||
#include "../common/transform_iterator.h" // for IndexTransformIter, MakeIndexTransformIter
|
||||
#include "../data/gradient_index.h" // for GHistIndexMatrix
|
||||
#include "common_row_partitioner.h" // for CommonRowPartitioner
|
||||
#include "dmlc/omp.h" // for omp_get_thread_num
|
||||
#include "dmlc/registry.h" // for DMLC_REGISTRY_FILE_TAG
|
||||
#include "driver.h" // for Driver
|
||||
#include "hist/evaluate_splits.h" // for HistEvaluator, HistMultiEvaluator, UpdatePre...
|
||||
#include "hist/expand_entry.h" // for MultiExpandEntry, CPUExpandEntry
|
||||
#include "hist/histogram.h" // for HistogramBuilder, ConstructHistSpace
|
||||
#include "hist/sampler.h" // for SampleGradient
|
||||
#include "param.h" // for TrainParam, SplitEntryContainer, GradStats
|
||||
#include "xgboost/base.h" // for GradientPairInternal, GradientPair, bst_targ...
|
||||
#include "xgboost/context.h" // for Context
|
||||
#include "xgboost/data.h" // for BatchIterator, BatchSet, DMatrix, MetaInfo
|
||||
#include "xgboost/host_device_vector.h" // for HostDeviceVector
|
||||
#include "xgboost/linalg.h" // for All, MatrixView, TensorView, Matrix, Empty
|
||||
#include "xgboost/logging.h" // for LogCheck_EQ, CHECK_EQ, CHECK, LogCheck_GE
|
||||
#include "xgboost/span.h" // for Span, operator!=, SpanIterator
|
||||
#include "xgboost/string_view.h" // for operator<<
|
||||
#include "xgboost/task.h" // for ObjInfo
|
||||
#include "xgboost/tree_model.h" // for RegTree, MTNotImplemented, RTreeNodeStat
|
||||
#include "xgboost/tree_updater.h" // for TreeUpdater, TreeUpdaterReg, XGBOOST_REGISTE...
|
||||
|
||||
#include "common_row_partitioner.h"
|
||||
#include "constraints.h"
|
||||
#include "hist/evaluate_splits.h"
|
||||
#include "hist/histogram.h"
|
||||
#include "hist/sampler.h"
|
||||
#include "param.h"
|
||||
#include "xgboost/linalg.h"
|
||||
#include "xgboost/logging.h"
|
||||
#include "xgboost/tree_updater.h"
|
||||
|
||||
namespace xgboost {
|
||||
namespace tree {
|
||||
namespace xgboost::tree {
|
||||
|
||||
DMLC_REGISTRY_FILE_TAG(updater_quantile_hist);
|
||||
|
||||
void QuantileHistMaker::Update(TrainParam const *param, HostDeviceVector<GradientPair> *gpair,
|
||||
DMatrix *dmat,
|
||||
common::Span<HostDeviceVector<bst_node_t>> out_position,
|
||||
const std::vector<RegTree *> &trees) {
|
||||
// build tree
|
||||
const size_t n_trees = trees.size();
|
||||
if (!pimpl_) {
|
||||
pimpl_.reset(new Builder(n_trees, param, dmat, *task_, ctx_));
|
||||
}
|
||||
BatchParam HistBatch(TrainParam const *param) { return {param->max_bin, param->sparse_threshold}; }
|
||||
|
||||
size_t t_idx{0};
|
||||
for (auto p_tree : trees) {
|
||||
auto &t_row_position = out_position[t_idx];
|
||||
this->pimpl_->UpdateTree(gpair, dmat, p_tree, &t_row_position);
|
||||
++t_idx;
|
||||
template <typename ExpandEntry, typename Updater>
|
||||
void UpdateTree(common::Monitor *monitor_, linalg::MatrixView<GradientPair const> gpair,
|
||||
Updater *updater, DMatrix *p_fmat, TrainParam const *param,
|
||||
HostDeviceVector<bst_node_t> *p_out_position, RegTree *p_tree) {
|
||||
monitor_->Start(__func__);
|
||||
updater->InitData(p_fmat, p_tree);
|
||||
|
||||
Driver<ExpandEntry> driver{*param};
|
||||
auto const &tree = *p_tree;
|
||||
driver.Push(updater->InitRoot(p_fmat, gpair, p_tree));
|
||||
auto expand_set = driver.Pop();
|
||||
|
||||
/**
|
||||
* Note for update position
|
||||
* Root:
|
||||
* Not applied: No need to update position as initialization has got all the rows ordered.
|
||||
* Applied: Update position is run on applied nodes so the rows are partitioned.
|
||||
* Non-root:
|
||||
* Not applied: That node is root of the subtree, same rule as root.
|
||||
* Applied: Ditto
|
||||
*/
|
||||
while (!expand_set.empty()) {
|
||||
// candidates that can be further splited.
|
||||
std::vector<ExpandEntry> valid_candidates;
|
||||
// candidaates that can be applied.
|
||||
std::vector<ExpandEntry> applied;
|
||||
for (auto const &candidate : expand_set) {
|
||||
updater->ApplyTreeSplit(candidate, p_tree);
|
||||
CHECK_GT(p_tree->LeftChild(candidate.nid), candidate.nid);
|
||||
applied.push_back(candidate);
|
||||
if (driver.IsChildValid(candidate)) {
|
||||
valid_candidates.emplace_back(candidate);
|
||||
}
|
||||
}
|
||||
|
||||
bool QuantileHistMaker::UpdatePredictionCache(const DMatrix *data,
|
||||
linalg::VectorView<float> out_preds) {
|
||||
if (pimpl_) {
|
||||
return pimpl_->UpdatePredictionCache(data, out_preds);
|
||||
updater->UpdatePosition(p_fmat, p_tree, applied);
|
||||
|
||||
std::vector<ExpandEntry> best_splits;
|
||||
if (!valid_candidates.empty()) {
|
||||
updater->BuildHistogram(p_fmat, p_tree, valid_candidates, gpair);
|
||||
for (auto const &candidate : valid_candidates) {
|
||||
auto left_child_nidx = tree.LeftChild(candidate.nid);
|
||||
auto right_child_nidx = tree.RightChild(candidate.nid);
|
||||
ExpandEntry l_best{left_child_nidx, tree.GetDepth(left_child_nidx)};
|
||||
ExpandEntry r_best{right_child_nidx, tree.GetDepth(right_child_nidx)};
|
||||
best_splits.push_back(l_best);
|
||||
best_splits.push_back(r_best);
|
||||
}
|
||||
updater->EvaluateSplits(p_fmat, p_tree, &best_splits);
|
||||
}
|
||||
driver.Push(best_splits.begin(), best_splits.end());
|
||||
expand_set = driver.Pop();
|
||||
}
|
||||
|
||||
auto &h_out_position = p_out_position->HostVector();
|
||||
updater->LeafPartition(tree, gpair, &h_out_position);
|
||||
monitor_->Stop(__func__);
|
||||
}
|
||||
|
||||
/**
|
||||
* \brief Updater for building multi-target trees. The implementation simply iterates over
|
||||
* each target.
|
||||
*/
|
||||
class MultiTargetHistBuilder {
|
||||
private:
|
||||
common::Monitor *monitor_{nullptr};
|
||||
TrainParam const *param_{nullptr};
|
||||
std::shared_ptr<common::ColumnSampler> col_sampler_;
|
||||
std::unique_ptr<HistMultiEvaluator> evaluator_;
|
||||
// Histogram builder for each target.
|
||||
std::vector<HistogramBuilder<MultiExpandEntry>> histogram_builder_;
|
||||
Context const *ctx_{nullptr};
|
||||
// Partitioner for each data batch.
|
||||
std::vector<CommonRowPartitioner> partitioner_;
|
||||
// Pointer to last updated tree, used for update prediction cache.
|
||||
RegTree const *p_last_tree_{nullptr};
|
||||
|
||||
ObjInfo const *task_{nullptr};
|
||||
|
||||
public:
|
||||
void UpdatePosition(DMatrix *p_fmat, RegTree const *p_tree,
|
||||
std::vector<MultiExpandEntry> const &applied) {
|
||||
monitor_->Start(__func__);
|
||||
std::size_t page_id{0};
|
||||
for (auto const &page : p_fmat->GetBatches<GHistIndexMatrix>(HistBatch(this->param_))) {
|
||||
this->partitioner_.at(page_id).UpdatePosition(this->ctx_, page, applied, p_tree);
|
||||
page_id++;
|
||||
}
|
||||
monitor_->Stop(__func__);
|
||||
}
|
||||
|
||||
void ApplyTreeSplit(MultiExpandEntry const &candidate, RegTree *p_tree) {
|
||||
this->evaluator_->ApplyTreeSplit(candidate, p_tree);
|
||||
}
|
||||
|
||||
void InitData(DMatrix *p_fmat, RegTree const *p_tree) {
|
||||
monitor_->Start(__func__);
|
||||
|
||||
std::size_t page_id = 0;
|
||||
bst_bin_t n_total_bins = 0;
|
||||
partitioner_.clear();
|
||||
for (auto const &page : p_fmat->GetBatches<GHistIndexMatrix>(HistBatch(param_))) {
|
||||
if (n_total_bins == 0) {
|
||||
n_total_bins = page.cut.TotalBins();
|
||||
} else {
|
||||
CHECK_EQ(n_total_bins, page.cut.TotalBins());
|
||||
}
|
||||
partitioner_.emplace_back(ctx_, page.Size(), page.base_rowid, p_fmat->IsColumnSplit());
|
||||
page_id++;
|
||||
}
|
||||
|
||||
bst_target_t n_targets = p_tree->NumTargets();
|
||||
histogram_builder_.clear();
|
||||
for (std::size_t i = 0; i < n_targets; ++i) {
|
||||
histogram_builder_.emplace_back();
|
||||
histogram_builder_.back().Reset(n_total_bins, HistBatch(param_), ctx_->Threads(), page_id,
|
||||
collective::IsDistributed(), p_fmat->IsColumnSplit());
|
||||
}
|
||||
|
||||
evaluator_ = std::make_unique<HistMultiEvaluator>(ctx_, p_fmat->Info(), param_, col_sampler_);
|
||||
p_last_tree_ = p_tree;
|
||||
monitor_->Stop(__func__);
|
||||
}
|
||||
|
||||
MultiExpandEntry InitRoot(DMatrix *p_fmat, linalg::MatrixView<GradientPair const> gpair,
|
||||
RegTree *p_tree) {
|
||||
monitor_->Start(__func__);
|
||||
MultiExpandEntry best;
|
||||
best.nid = RegTree::kRoot;
|
||||
best.depth = 0;
|
||||
|
||||
auto n_targets = p_tree->NumTargets();
|
||||
linalg::Matrix<GradientPairPrecise> root_sum_tloc =
|
||||
linalg::Empty<GradientPairPrecise>(ctx_, ctx_->Threads(), n_targets);
|
||||
CHECK_EQ(root_sum_tloc.Shape(1), gpair.Shape(1));
|
||||
auto h_root_sum_tloc = root_sum_tloc.HostView();
|
||||
common::ParallelFor(gpair.Shape(0), ctx_->Threads(), [&](auto i) {
|
||||
for (bst_target_t t{0}; t < n_targets; ++t) {
|
||||
h_root_sum_tloc(omp_get_thread_num(), t) += GradientPairPrecise{gpair(i, t)};
|
||||
}
|
||||
});
|
||||
// Aggregate to the first row.
|
||||
auto root_sum = h_root_sum_tloc.Slice(0, linalg::All());
|
||||
for (std::int32_t tidx{1}; tidx < ctx_->Threads(); ++tidx) {
|
||||
for (bst_target_t t{0}; t < n_targets; ++t) {
|
||||
root_sum(t) += h_root_sum_tloc(tidx, t);
|
||||
}
|
||||
}
|
||||
CHECK(root_sum.CContiguous());
|
||||
collective::Allreduce<collective::Operation::kSum>(
|
||||
reinterpret_cast<double *>(root_sum.Values().data()), root_sum.Size() * 2);
|
||||
|
||||
std::vector<MultiExpandEntry> nodes{best};
|
||||
std::size_t i = 0;
|
||||
auto space = ConstructHistSpace(partitioner_, nodes);
|
||||
for (auto const &page : p_fmat->GetBatches<GHistIndexMatrix>(HistBatch(param_))) {
|
||||
for (bst_target_t t{0}; t < n_targets; ++t) {
|
||||
auto t_gpair = gpair.Slice(linalg::All(), t);
|
||||
histogram_builder_[t].BuildHist(i, space, page, p_tree, partitioner_.at(i).Partitions(),
|
||||
nodes, {}, t_gpair.Values());
|
||||
}
|
||||
i++;
|
||||
}
|
||||
|
||||
auto weight = evaluator_->InitRoot(root_sum);
|
||||
auto weight_t = weight.HostView();
|
||||
std::transform(linalg::cbegin(weight_t), linalg::cend(weight_t), linalg::begin(weight_t),
|
||||
[&](float w) { return w * param_->learning_rate; });
|
||||
|
||||
p_tree->SetLeaf(RegTree::kRoot, weight_t);
|
||||
std::vector<common::HistCollection const *> hists;
|
||||
for (bst_target_t t{0}; t < p_tree->NumTargets(); ++t) {
|
||||
hists.push_back(&histogram_builder_[t].Histogram());
|
||||
}
|
||||
for (auto const &gmat : p_fmat->GetBatches<GHistIndexMatrix>(HistBatch(param_))) {
|
||||
evaluator_->EvaluateSplits(*p_tree, hists, gmat.cut, &nodes);
|
||||
break;
|
||||
}
|
||||
monitor_->Stop(__func__);
|
||||
|
||||
return nodes.front();
|
||||
}
|
||||
|
||||
void BuildHistogram(DMatrix *p_fmat, RegTree const *p_tree,
|
||||
std::vector<MultiExpandEntry> const &valid_candidates,
|
||||
linalg::MatrixView<GradientPair const> gpair) {
|
||||
monitor_->Start(__func__);
|
||||
std::vector<MultiExpandEntry> nodes_to_build;
|
||||
std::vector<MultiExpandEntry> nodes_to_sub;
|
||||
|
||||
for (auto const &c : valid_candidates) {
|
||||
auto left_nidx = p_tree->LeftChild(c.nid);
|
||||
auto right_nidx = p_tree->RightChild(c.nid);
|
||||
|
||||
auto build_nidx = left_nidx;
|
||||
auto subtract_nidx = right_nidx;
|
||||
auto lit =
|
||||
common::MakeIndexTransformIter([&](auto i) { return c.split.left_sum[i].GetHess(); });
|
||||
auto left_sum = std::accumulate(lit, lit + c.split.left_sum.size(), .0);
|
||||
auto rit =
|
||||
common::MakeIndexTransformIter([&](auto i) { return c.split.right_sum[i].GetHess(); });
|
||||
auto right_sum = std::accumulate(rit, rit + c.split.right_sum.size(), .0);
|
||||
auto fewer_right = right_sum < left_sum;
|
||||
if (fewer_right) {
|
||||
std::swap(build_nidx, subtract_nidx);
|
||||
}
|
||||
nodes_to_build.emplace_back(build_nidx, p_tree->GetDepth(build_nidx));
|
||||
nodes_to_sub.emplace_back(subtract_nidx, p_tree->GetDepth(subtract_nidx));
|
||||
}
|
||||
|
||||
std::size_t i = 0;
|
||||
auto space = ConstructHistSpace(partitioner_, nodes_to_build);
|
||||
for (auto const &page : p_fmat->GetBatches<GHistIndexMatrix>(HistBatch(param_))) {
|
||||
for (std::size_t t = 0; t < p_tree->NumTargets(); ++t) {
|
||||
auto t_gpair = gpair.Slice(linalg::All(), t);
|
||||
// Make sure the gradient matrix is f-order.
|
||||
CHECK(t_gpair.Contiguous());
|
||||
histogram_builder_[t].BuildHist(i, space, page, p_tree, partitioner_.at(i).Partitions(),
|
||||
nodes_to_build, nodes_to_sub, t_gpair.Values());
|
||||
}
|
||||
i++;
|
||||
}
|
||||
monitor_->Stop(__func__);
|
||||
}
|
||||
|
||||
void EvaluateSplits(DMatrix *p_fmat, RegTree const *p_tree,
|
||||
std::vector<MultiExpandEntry> *best_splits) {
|
||||
monitor_->Start(__func__);
|
||||
std::vector<common::HistCollection const *> hists;
|
||||
for (bst_target_t t{0}; t < p_tree->NumTargets(); ++t) {
|
||||
hists.push_back(&histogram_builder_[t].Histogram());
|
||||
}
|
||||
for (auto const &gmat : p_fmat->GetBatches<GHistIndexMatrix>(HistBatch(param_))) {
|
||||
evaluator_->EvaluateSplits(*p_tree, hists, gmat.cut, best_splits);
|
||||
break;
|
||||
}
|
||||
monitor_->Stop(__func__);
|
||||
}
|
||||
|
||||
void LeafPartition(RegTree const &tree, linalg::MatrixView<GradientPair const> gpair,
|
||||
std::vector<bst_node_t> *p_out_position) {
|
||||
monitor_->Start(__func__);
|
||||
if (!task_->UpdateTreeLeaf()) {
|
||||
return;
|
||||
}
|
||||
for (auto const &part : partitioner_) {
|
||||
part.LeafPartition(ctx_, tree, gpair, p_out_position);
|
||||
}
|
||||
monitor_->Stop(__func__);
|
||||
}
|
||||
|
||||
public:
|
||||
explicit MultiTargetHistBuilder(Context const *ctx, MetaInfo const &info, TrainParam const *param,
|
||||
std::shared_ptr<common::ColumnSampler> column_sampler,
|
||||
ObjInfo const *task, common::Monitor *monitor)
|
||||
: monitor_{monitor},
|
||||
param_{param},
|
||||
col_sampler_{std::move(column_sampler)},
|
||||
evaluator_{std::make_unique<HistMultiEvaluator>(ctx, info, param, col_sampler_)},
|
||||
ctx_{ctx},
|
||||
task_{task} {
|
||||
monitor_->Init(__func__);
|
||||
}
|
||||
};
|
||||
|
||||
class HistBuilder {
|
||||
private:
|
||||
common::Monitor *monitor_;
|
||||
TrainParam const *param_;
|
||||
std::shared_ptr<common::ColumnSampler> col_sampler_;
|
||||
std::unique_ptr<HistEvaluator<CPUExpandEntry>> evaluator_;
|
||||
std::vector<CommonRowPartitioner> partitioner_;
|
||||
|
||||
// back pointers to tree and data matrix
|
||||
const RegTree *p_last_tree_{nullptr};
|
||||
DMatrix const *const p_last_fmat_{nullptr};
|
||||
|
||||
std::unique_ptr<HistogramBuilder<CPUExpandEntry>> histogram_builder_;
|
||||
ObjInfo const *task_{nullptr};
|
||||
// Context for number of threads
|
||||
Context const *ctx_{nullptr};
|
||||
|
||||
public:
|
||||
explicit HistBuilder(Context const *ctx, std::shared_ptr<common::ColumnSampler> column_sampler,
|
||||
TrainParam const *param, DMatrix const *fmat, ObjInfo const *task,
|
||||
common::Monitor *monitor)
|
||||
: monitor_{monitor},
|
||||
param_{param},
|
||||
col_sampler_{std::move(column_sampler)},
|
||||
evaluator_{std::make_unique<HistEvaluator<CPUExpandEntry>>(ctx, param, fmat->Info(),
|
||||
col_sampler_)},
|
||||
p_last_fmat_(fmat),
|
||||
histogram_builder_{new HistogramBuilder<CPUExpandEntry>},
|
||||
task_{task},
|
||||
ctx_{ctx} {
|
||||
monitor_->Init(__func__);
|
||||
}
|
||||
|
||||
bool UpdatePredictionCache(DMatrix const *data, linalg::VectorView<float> out_preds) const {
|
||||
// p_last_fmat_ is a valid pointer as long as UpdatePredictionCache() is called in
|
||||
// conjunction with Update().
|
||||
if (!p_last_fmat_ || !p_last_tree_ || data != p_last_fmat_) {
|
||||
return false;
|
||||
}
|
||||
monitor_->Start(__func__);
|
||||
CHECK_EQ(out_preds.Size(), data->Info().num_row_);
|
||||
UpdatePredictionCacheImpl(ctx_, p_last_tree_, partitioner_, out_preds);
|
||||
monitor_->Stop(__func__);
|
||||
return true;
|
||||
}
|
||||
|
||||
CPUExpandEntry QuantileHistMaker::Builder::InitRoot(
|
||||
DMatrix *p_fmat, RegTree *p_tree, const std::vector<GradientPair> &gpair_h) {
|
||||
CPUExpandEntry node(RegTree::kRoot, p_tree->GetDepth(0), 0.0f);
|
||||
public:
|
||||
// initialize temp data structure
|
||||
void InitData(DMatrix *fmat, RegTree const *p_tree) {
|
||||
monitor_->Start(__func__);
|
||||
std::size_t page_id{0};
|
||||
bst_bin_t n_total_bins{0};
|
||||
partitioner_.clear();
|
||||
for (auto const &page : fmat->GetBatches<GHistIndexMatrix>(HistBatch(param_))) {
|
||||
if (n_total_bins == 0) {
|
||||
n_total_bins = page.cut.TotalBins();
|
||||
} else {
|
||||
CHECK_EQ(n_total_bins, page.cut.TotalBins());
|
||||
}
|
||||
partitioner_.emplace_back(this->ctx_, page.Size(), page.base_rowid, fmat->IsColumnSplit());
|
||||
++page_id;
|
||||
}
|
||||
histogram_builder_->Reset(n_total_bins, HistBatch(param_), ctx_->Threads(), page_id,
|
||||
collective::IsDistributed(), fmat->IsColumnSplit());
|
||||
evaluator_ = std::make_unique<HistEvaluator<CPUExpandEntry>>(ctx_, this->param_, fmat->Info(),
|
||||
col_sampler_);
|
||||
p_last_tree_ = p_tree;
|
||||
}
|
||||
|
||||
size_t page_id = 0;
|
||||
void EvaluateSplits(DMatrix *p_fmat, RegTree const *p_tree,
|
||||
std::vector<CPUExpandEntry> *best_splits) {
|
||||
monitor_->Start(__func__);
|
||||
auto const &histograms = histogram_builder_->Histogram();
|
||||
auto ft = p_fmat->Info().feature_types.ConstHostSpan();
|
||||
for (auto const &gmat : p_fmat->GetBatches<GHistIndexMatrix>(HistBatch(param_))) {
|
||||
evaluator_->EvaluateSplits(histograms, gmat.cut, ft, *p_tree, best_splits);
|
||||
break;
|
||||
}
|
||||
monitor_->Stop(__func__);
|
||||
}
|
||||
|
||||
void ApplyTreeSplit(CPUExpandEntry const &candidate, RegTree *p_tree) {
|
||||
this->evaluator_->ApplyTreeSplit(candidate, p_tree);
|
||||
}
|
||||
|
||||
CPUExpandEntry InitRoot(DMatrix *p_fmat, linalg::MatrixView<GradientPair const> gpair,
|
||||
RegTree *p_tree) {
|
||||
CPUExpandEntry node(RegTree::kRoot, p_tree->GetDepth(0));
|
||||
|
||||
std::size_t page_id = 0;
|
||||
auto space = ConstructHistSpace(partitioner_, {node});
|
||||
for (auto const &gidx : p_fmat->GetBatches<GHistIndexMatrix>(HistBatch(param_))) {
|
||||
std::vector<CPUExpandEntry> nodes_to_build{node};
|
||||
std::vector<CPUExpandEntry> nodes_to_sub;
|
||||
this->histogram_builder_->BuildHist(page_id, space, gidx, p_tree,
|
||||
partitioner_.at(page_id).Partitions(), nodes_to_build,
|
||||
nodes_to_sub, gpair_h);
|
||||
nodes_to_sub, gpair.Slice(linalg::All(), 0).Values());
|
||||
++page_id;
|
||||
}
|
||||
|
||||
@ -78,21 +422,23 @@ CPUExpandEntry QuantileHistMaker::Builder::InitRoot(
|
||||
* of gradient histogram is equal to snode[nid]
|
||||
*/
|
||||
auto const &gmat = *(p_fmat->GetBatches<GHistIndexMatrix>(HistBatch(param_)).begin());
|
||||
std::vector<uint32_t> const &row_ptr = gmat.cut.Ptrs();
|
||||
std::vector<std::uint32_t> const &row_ptr = gmat.cut.Ptrs();
|
||||
CHECK_GE(row_ptr.size(), 2);
|
||||
uint32_t const ibegin = row_ptr[0];
|
||||
uint32_t const iend = row_ptr[1];
|
||||
std::uint32_t const ibegin = row_ptr[0];
|
||||
std::uint32_t const iend = row_ptr[1];
|
||||
auto hist = this->histogram_builder_->Histogram()[RegTree::kRoot];
|
||||
auto begin = hist.data();
|
||||
for (uint32_t i = ibegin; i < iend; ++i) {
|
||||
for (std::uint32_t i = ibegin; i < iend; ++i) {
|
||||
GradientPairPrecise const &et = begin[i];
|
||||
grad_stat.Add(et.GetGrad(), et.GetHess());
|
||||
}
|
||||
} else {
|
||||
auto gpair_h = gpair.Slice(linalg::All(), 0).Values();
|
||||
for (auto const &grad : gpair_h) {
|
||||
grad_stat.Add(grad.GetGrad(), grad.GetHess());
|
||||
}
|
||||
collective::Allreduce<collective::Operation::kSum>(reinterpret_cast<double *>(&grad_stat), 2);
|
||||
collective::Allreduce<collective::Operation::kSum>(reinterpret_cast<double *>(&grad_stat),
|
||||
2);
|
||||
}
|
||||
|
||||
auto weight = evaluator_->InitRoot(GradStats{grad_stat});
|
||||
@ -104,7 +450,8 @@ CPUExpandEntry QuantileHistMaker::Builder::InitRoot(
|
||||
monitor_->Start("EvaluateSplits");
|
||||
auto ft = p_fmat->Info().feature_types.ConstHostSpan();
|
||||
for (auto const &gmat : p_fmat->GetBatches<GHistIndexMatrix>(HistBatch(param_))) {
|
||||
evaluator_->EvaluateSplits(histogram_builder_->Histogram(), gmat.cut, ft, *p_tree, &entries);
|
||||
evaluator_->EvaluateSplits(histogram_builder_->Histogram(), gmat.cut, ft, *p_tree,
|
||||
&entries);
|
||||
break;
|
||||
}
|
||||
monitor_->Stop("EvaluateSplits");
|
||||
@ -114,13 +461,13 @@ CPUExpandEntry QuantileHistMaker::Builder::InitRoot(
|
||||
return node;
|
||||
}
|
||||
|
||||
void QuantileHistMaker::Builder::BuildHistogram(DMatrix *p_fmat, RegTree *p_tree,
|
||||
void BuildHistogram(DMatrix *p_fmat, RegTree *p_tree,
|
||||
std::vector<CPUExpandEntry> const &valid_candidates,
|
||||
std::vector<GradientPair> const &gpair) {
|
||||
linalg::MatrixView<GradientPair const> gpair) {
|
||||
std::vector<CPUExpandEntry> nodes_to_build(valid_candidates.size());
|
||||
std::vector<CPUExpandEntry> nodes_to_sub(valid_candidates.size());
|
||||
|
||||
size_t n_idx = 0;
|
||||
std::size_t n_idx = 0;
|
||||
for (auto const &c : valid_candidates) {
|
||||
auto left_nidx = (*p_tree)[c.nid].LeftChild();
|
||||
auto right_nidx = (*p_tree)[c.nid].RightChild();
|
||||
@ -136,21 +483,31 @@ void QuantileHistMaker::Builder::BuildHistogram(DMatrix *p_fmat, RegTree *p_tree
|
||||
n_idx++;
|
||||
}
|
||||
|
||||
size_t page_id{0};
|
||||
std::size_t page_id{0};
|
||||
auto space = ConstructHistSpace(partitioner_, nodes_to_build);
|
||||
for (auto const &gidx : p_fmat->GetBatches<GHistIndexMatrix>(HistBatch(param_))) {
|
||||
histogram_builder_->BuildHist(page_id, space, gidx, p_tree,
|
||||
partitioner_.at(page_id).Partitions(), nodes_to_build,
|
||||
nodes_to_sub, gpair);
|
||||
nodes_to_sub, gpair.Values());
|
||||
++page_id;
|
||||
}
|
||||
}
|
||||
|
||||
void QuantileHistMaker::Builder::LeafPartition(RegTree const &tree,
|
||||
common::Span<GradientPair const> gpair,
|
||||
void UpdatePosition(DMatrix *p_fmat, RegTree const *p_tree,
|
||||
std::vector<CPUExpandEntry> const &applied) {
|
||||
monitor_->Start(__func__);
|
||||
std::size_t page_id{0};
|
||||
for (auto const &page : p_fmat->GetBatches<GHistIndexMatrix>(HistBatch(this->param_))) {
|
||||
this->partitioner_.at(page_id).UpdatePosition(this->ctx_, page, applied, p_tree);
|
||||
page_id++;
|
||||
}
|
||||
monitor_->Stop(__func__);
|
||||
}
|
||||
|
||||
void LeafPartition(RegTree const &tree, linalg::MatrixView<GradientPair const> gpair,
|
||||
std::vector<bst_node_t> *p_out_position) {
|
||||
monitor_->Start(__func__);
|
||||
if (!task_.UpdateTreeLeaf()) {
|
||||
if (!task_->UpdateTreeLeaf()) {
|
||||
return;
|
||||
}
|
||||
for (auto const &part : partitioner_) {
|
||||
@ -158,137 +515,90 @@ void QuantileHistMaker::Builder::LeafPartition(RegTree const &tree,
|
||||
}
|
||||
monitor_->Stop(__func__);
|
||||
}
|
||||
};
|
||||
|
||||
void QuantileHistMaker::Builder::ExpandTree(DMatrix *p_fmat, RegTree *p_tree,
|
||||
const std::vector<GradientPair> &gpair_h,
|
||||
HostDeviceVector<bst_node_t> *p_out_position) {
|
||||
monitor_->Start(__func__);
|
||||
/*! \brief construct a tree using quantized feature values */
|
||||
class QuantileHistMaker : public TreeUpdater {
|
||||
std::unique_ptr<HistBuilder> p_impl_{nullptr};
|
||||
std::unique_ptr<MultiTargetHistBuilder> p_mtimpl_{nullptr};
|
||||
std::shared_ptr<common::ColumnSampler> column_sampler_ =
|
||||
std::make_shared<common::ColumnSampler>();
|
||||
common::Monitor monitor_;
|
||||
ObjInfo const *task_{nullptr};
|
||||
|
||||
Driver<CPUExpandEntry> driver(*param_);
|
||||
driver.Push(this->InitRoot(p_fmat, p_tree, gpair_h));
|
||||
auto const &tree = *p_tree;
|
||||
auto expand_set = driver.Pop();
|
||||
public:
|
||||
explicit QuantileHistMaker(Context const *ctx, ObjInfo const *task)
|
||||
: TreeUpdater{ctx}, task_{task} {}
|
||||
void Configure(const Args &) override {}
|
||||
|
||||
while (!expand_set.empty()) {
|
||||
// candidates that can be further splited.
|
||||
std::vector<CPUExpandEntry> valid_candidates;
|
||||
// candidaates that can be applied.
|
||||
std::vector<CPUExpandEntry> applied;
|
||||
int32_t depth = expand_set.front().depth + 1;
|
||||
for (auto const& candidate : expand_set) {
|
||||
evaluator_->ApplyTreeSplit(candidate, p_tree);
|
||||
applied.push_back(candidate);
|
||||
if (driver.IsChildValid(candidate)) {
|
||||
valid_candidates.emplace_back(candidate);
|
||||
void LoadConfig(Json const &) override {}
|
||||
void SaveConfig(Json *) const override {}
|
||||
|
||||
[[nodiscard]] char const *Name() const override { return "grow_quantile_histmaker"; }
|
||||
|
||||
void Update(TrainParam const *param, HostDeviceVector<GradientPair> *gpair, DMatrix *p_fmat,
|
||||
common::Span<HostDeviceVector<bst_node_t>> out_position,
|
||||
const std::vector<RegTree *> &trees) override {
|
||||
if (trees.front()->IsMultiTarget()) {
|
||||
CHECK(param->monotone_constraints.empty()) << "monotone constraint" << MTNotImplemented();
|
||||
if (!p_mtimpl_) {
|
||||
this->p_mtimpl_ = std::make_unique<MultiTargetHistBuilder>(
|
||||
ctx_, p_fmat->Info(), param, column_sampler_, task_, &monitor_);
|
||||
}
|
||||
} else {
|
||||
if (!p_impl_) {
|
||||
p_impl_ =
|
||||
std::make_unique<HistBuilder>(ctx_, column_sampler_, param, p_fmat, task_, &monitor_);
|
||||
}
|
||||
}
|
||||
|
||||
monitor_->Start("UpdatePosition");
|
||||
size_t page_id{0};
|
||||
for (auto const &page : p_fmat->GetBatches<GHistIndexMatrix>(HistBatch(param_))) {
|
||||
partitioner_.at(page_id).UpdatePosition(ctx_, page, applied, p_tree);
|
||||
++page_id;
|
||||
}
|
||||
monitor_->Stop("UpdatePosition");
|
||||
bst_target_t n_targets = trees.front()->NumTargets();
|
||||
auto h_gpair =
|
||||
linalg::MakeTensorView(ctx_, gpair->HostSpan(), p_fmat->Info().num_row_, n_targets);
|
||||
|
||||
std::vector<CPUExpandEntry> best_splits;
|
||||
if (!valid_candidates.empty()) {
|
||||
this->BuildHistogram(p_fmat, p_tree, valid_candidates, gpair_h);
|
||||
for (auto const &candidate : valid_candidates) {
|
||||
int left_child_nidx = tree[candidate.nid].LeftChild();
|
||||
int right_child_nidx = tree[candidate.nid].RightChild();
|
||||
CPUExpandEntry l_best{left_child_nidx, depth, 0.0};
|
||||
CPUExpandEntry r_best{right_child_nidx, depth, 0.0};
|
||||
best_splits.push_back(l_best);
|
||||
best_splits.push_back(r_best);
|
||||
}
|
||||
auto const &histograms = histogram_builder_->Histogram();
|
||||
auto ft = p_fmat->Info().feature_types.ConstHostSpan();
|
||||
for (auto const &gmat : p_fmat->GetBatches<GHistIndexMatrix>(HistBatch(param_))) {
|
||||
evaluator_->EvaluateSplits(histograms, gmat.cut, ft, *p_tree, &best_splits);
|
||||
break;
|
||||
}
|
||||
}
|
||||
driver.Push(best_splits.begin(), best_splits.end());
|
||||
expand_set = driver.Pop();
|
||||
linalg::Matrix<GradientPair> sample_out;
|
||||
auto h_sample_out = h_gpair;
|
||||
auto need_copy = [&] { return trees.size() > 1 || n_targets > 1; };
|
||||
if (need_copy()) {
|
||||
// allocate buffer
|
||||
sample_out = decltype(sample_out){h_gpair.Shape(), ctx_->gpu_id, linalg::Order::kF};
|
||||
h_sample_out = sample_out.HostView();
|
||||
}
|
||||
|
||||
auto &h_out_position = p_out_position->HostVector();
|
||||
this->LeafPartition(tree, gpair_h, &h_out_position);
|
||||
monitor_->Stop(__func__);
|
||||
for (auto tree_it = trees.begin(); tree_it != trees.end(); ++tree_it) {
|
||||
if (need_copy()) {
|
||||
// Copy gradient into buffer for sampling. This converts C-order to F-order.
|
||||
std::copy(linalg::cbegin(h_gpair), linalg::cend(h_gpair), linalg::begin(h_sample_out));
|
||||
}
|
||||
SampleGradient(ctx_, *param, h_sample_out);
|
||||
auto *h_out_position = &out_position[tree_it - trees.begin()];
|
||||
if ((*tree_it)->IsMultiTarget()) {
|
||||
UpdateTree<MultiExpandEntry>(&monitor_, h_sample_out, p_mtimpl_.get(), p_fmat, param,
|
||||
h_out_position, *tree_it);
|
||||
} else {
|
||||
UpdateTree<CPUExpandEntry>(&monitor_, h_sample_out, p_impl_.get(), p_fmat, param,
|
||||
h_out_position, *tree_it);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void QuantileHistMaker::Builder::UpdateTree(HostDeviceVector<GradientPair> *gpair, DMatrix *p_fmat,
|
||||
RegTree *p_tree,
|
||||
HostDeviceVector<bst_node_t> *p_out_position) {
|
||||
monitor_->Start(__func__);
|
||||
|
||||
std::vector<GradientPair> *gpair_ptr = &(gpair->HostVector());
|
||||
// in case 'num_parallel_trees != 1' no posibility to change initial gpair
|
||||
if (GetNumberOfTrees() != 1) {
|
||||
gpair_local_.resize(gpair_ptr->size());
|
||||
gpair_local_ = *gpair_ptr;
|
||||
gpair_ptr = &gpair_local_;
|
||||
}
|
||||
|
||||
this->InitData(p_fmat, *p_tree, gpair_ptr);
|
||||
|
||||
ExpandTree(p_fmat, p_tree, *gpair_ptr, p_out_position);
|
||||
monitor_->Stop(__func__);
|
||||
}
|
||||
|
||||
bool QuantileHistMaker::Builder::UpdatePredictionCache(DMatrix const *data,
|
||||
linalg::VectorView<float> out_preds) const {
|
||||
// p_last_fmat_ is a valid pointer as long as UpdatePredictionCache() is called in
|
||||
// conjunction with Update().
|
||||
if (!p_last_fmat_ || !p_last_tree_ || data != p_last_fmat_) {
|
||||
bool UpdatePredictionCache(const DMatrix *data, linalg::VectorView<float> out_preds) override {
|
||||
if (p_impl_) {
|
||||
return p_impl_->UpdatePredictionCache(data, out_preds);
|
||||
} else if (p_mtimpl_) {
|
||||
// Not yet supported.
|
||||
return false;
|
||||
} else {
|
||||
return false;
|
||||
}
|
||||
monitor_->Start(__func__);
|
||||
CHECK_EQ(out_preds.Size(), data->Info().num_row_);
|
||||
UpdatePredictionCacheImpl(ctx_, p_last_tree_, partitioner_, out_preds);
|
||||
monitor_->Stop(__func__);
|
||||
return true;
|
||||
}
|
||||
|
||||
size_t QuantileHistMaker::Builder::GetNumberOfTrees() { return n_trees_; }
|
||||
|
||||
void QuantileHistMaker::Builder::InitData(DMatrix *fmat, const RegTree &tree,
|
||||
std::vector<GradientPair> *gpair) {
|
||||
monitor_->Start(__func__);
|
||||
const auto& info = fmat->Info();
|
||||
|
||||
{
|
||||
size_t page_id{0};
|
||||
int32_t n_total_bins{0};
|
||||
partitioner_.clear();
|
||||
for (auto const &page : fmat->GetBatches<GHistIndexMatrix>(HistBatch(param_))) {
|
||||
if (n_total_bins == 0) {
|
||||
n_total_bins = page.cut.TotalBins();
|
||||
} else {
|
||||
CHECK_EQ(n_total_bins, page.cut.TotalBins());
|
||||
}
|
||||
partitioner_.emplace_back(this->ctx_, page.Size(), page.base_rowid, fmat->IsColumnSplit());
|
||||
++page_id;
|
||||
}
|
||||
histogram_builder_->Reset(n_total_bins, HistBatch(param_), ctx_->Threads(), page_id,
|
||||
collective::IsDistributed(), fmat->IsColumnSplit());
|
||||
|
||||
auto m_gpair = linalg::MakeTensorView(ctx_, *gpair, gpair->size(), static_cast<std::size_t>(1));
|
||||
SampleGradient(ctx_, *param_, m_gpair);
|
||||
}
|
||||
|
||||
// store a pointer to the tree
|
||||
p_last_tree_ = &tree;
|
||||
evaluator_.reset(new HistEvaluator<CPUExpandEntry>{ctx_, param_, info, column_sampler_});
|
||||
|
||||
monitor_->Stop(__func__);
|
||||
}
|
||||
[[nodiscard]] bool HasNodePosition() const override { return true; }
|
||||
};
|
||||
|
||||
XGBOOST_REGISTER_TREE_UPDATER(QuantileHistMaker, "grow_quantile_histmaker")
|
||||
.describe("Grow tree using quantized histogram.")
|
||||
.set_body([](Context const *ctx, ObjInfo const *task) {
|
||||
return new QuantileHistMaker(ctx, task);
|
||||
return new QuantileHistMaker{ctx, task};
|
||||
});
|
||||
} // namespace tree
|
||||
} // namespace xgboost
|
||||
} // namespace xgboost::tree
|
||||
|
||||
@ -1,133 +0,0 @@
|
||||
/*!
|
||||
* Copyright 2017-2022 by XGBoost Contributors
|
||||
* \file updater_quantile_hist.h
|
||||
* \brief use quantized feature values to construct a tree
|
||||
* \author Philip Cho, Tianqi Chen, Egor Smirnov
|
||||
*/
|
||||
#ifndef XGBOOST_TREE_UPDATER_QUANTILE_HIST_H_
|
||||
#define XGBOOST_TREE_UPDATER_QUANTILE_HIST_H_
|
||||
|
||||
#include <xgboost/tree_updater.h>
|
||||
|
||||
#include <algorithm>
|
||||
#include <limits>
|
||||
#include <memory>
|
||||
#include <string>
|
||||
#include <utility>
|
||||
#include <vector>
|
||||
|
||||
#include "xgboost/base.h"
|
||||
#include "xgboost/data.h"
|
||||
#include "xgboost/json.h"
|
||||
|
||||
#include "hist/evaluate_splits.h"
|
||||
#include "hist/histogram.h"
|
||||
#include "hist/expand_entry.h"
|
||||
|
||||
#include "common_row_partitioner.h"
|
||||
#include "constraints.h"
|
||||
#include "./param.h"
|
||||
#include "./driver.h"
|
||||
#include "../common/random.h"
|
||||
#include "../common/timer.h"
|
||||
#include "../common/hist_util.h"
|
||||
#include "../common/row_set.h"
|
||||
#include "../common/partition_builder.h"
|
||||
#include "../common/column_matrix.h"
|
||||
|
||||
namespace xgboost::tree {
|
||||
inline BatchParam HistBatch(TrainParam const* param) {
|
||||
return {param->max_bin, param->sparse_threshold};
|
||||
}
|
||||
|
||||
/*! \brief construct a tree using quantized feature values */
|
||||
class QuantileHistMaker: public TreeUpdater {
|
||||
public:
|
||||
explicit QuantileHistMaker(Context const* ctx, ObjInfo const* task)
|
||||
: TreeUpdater(ctx), task_{task} {}
|
||||
void Configure(const Args&) override {}
|
||||
|
||||
void Update(TrainParam const* param, HostDeviceVector<GradientPair>* gpair, DMatrix* dmat,
|
||||
common::Span<HostDeviceVector<bst_node_t>> out_position,
|
||||
const std::vector<RegTree*>& trees) override;
|
||||
|
||||
bool UpdatePredictionCache(const DMatrix *data,
|
||||
linalg::VectorView<float> out_preds) override;
|
||||
|
||||
void LoadConfig(Json const&) override {}
|
||||
void SaveConfig(Json*) const override {}
|
||||
|
||||
[[nodiscard]] char const* Name() const override { return "grow_quantile_histmaker"; }
|
||||
[[nodiscard]] bool HasNodePosition() const override { return true; }
|
||||
|
||||
protected:
|
||||
// actual builder that runs the algorithm
|
||||
struct Builder {
|
||||
public:
|
||||
// constructor
|
||||
explicit Builder(const size_t n_trees, TrainParam const* param, DMatrix const* fmat,
|
||||
ObjInfo task, Context const* ctx)
|
||||
: n_trees_(n_trees),
|
||||
param_(param),
|
||||
p_last_fmat_(fmat),
|
||||
histogram_builder_{new HistogramBuilder<CPUExpandEntry>},
|
||||
task_{task},
|
||||
ctx_{ctx},
|
||||
monitor_{std::make_unique<common::Monitor>()} {
|
||||
monitor_->Init("Quantile::Builder");
|
||||
}
|
||||
// update one tree, growing
|
||||
void UpdateTree(HostDeviceVector<GradientPair>* gpair, DMatrix* p_fmat, RegTree* p_tree,
|
||||
HostDeviceVector<bst_node_t>* p_out_position);
|
||||
|
||||
bool UpdatePredictionCache(DMatrix const* data, linalg::VectorView<float> out_preds) const;
|
||||
|
||||
private:
|
||||
// initialize temp data structure
|
||||
void InitData(DMatrix* fmat, const RegTree& tree, std::vector<GradientPair>* gpair);
|
||||
|
||||
size_t GetNumberOfTrees();
|
||||
|
||||
CPUExpandEntry InitRoot(DMatrix* p_fmat, RegTree* p_tree,
|
||||
const std::vector<GradientPair>& gpair_h);
|
||||
|
||||
void BuildHistogram(DMatrix* p_fmat, RegTree* p_tree,
|
||||
std::vector<CPUExpandEntry> const& valid_candidates,
|
||||
std::vector<GradientPair> const& gpair);
|
||||
|
||||
void LeafPartition(RegTree const& tree, common::Span<GradientPair const> gpair,
|
||||
std::vector<bst_node_t>* p_out_position);
|
||||
|
||||
void ExpandTree(DMatrix* p_fmat, RegTree* p_tree, const std::vector<GradientPair>& gpair_h,
|
||||
HostDeviceVector<bst_node_t>* p_out_position);
|
||||
|
||||
private:
|
||||
const size_t n_trees_;
|
||||
TrainParam const* param_;
|
||||
std::shared_ptr<common::ColumnSampler> column_sampler_{
|
||||
std::make_shared<common::ColumnSampler>()};
|
||||
|
||||
std::vector<GradientPair> gpair_local_;
|
||||
|
||||
std::unique_ptr<HistEvaluator<CPUExpandEntry>> evaluator_;
|
||||
std::vector<CommonRowPartitioner> partitioner_;
|
||||
|
||||
// back pointers to tree and data matrix
|
||||
const RegTree* p_last_tree_{nullptr};
|
||||
DMatrix const* const p_last_fmat_;
|
||||
|
||||
std::unique_ptr<HistogramBuilder<CPUExpandEntry>> histogram_builder_;
|
||||
ObjInfo task_;
|
||||
// Context for number of threads
|
||||
Context const* ctx_;
|
||||
|
||||
std::unique_ptr<common::Monitor> monitor_;
|
||||
};
|
||||
|
||||
protected:
|
||||
std::unique_ptr<Builder> pimpl_;
|
||||
ObjInfo const* task_;
|
||||
};
|
||||
} // namespace xgboost::tree
|
||||
|
||||
#endif // XGBOOST_TREE_UPDATER_QUANTILE_HIST_H_
|
||||
@ -50,11 +50,11 @@ class TreeRefresher : public TreeUpdater {
|
||||
int tid = omp_get_thread_num();
|
||||
int num_nodes = 0;
|
||||
for (auto tree : trees) {
|
||||
num_nodes += tree->param.num_nodes;
|
||||
num_nodes += tree->NumNodes();
|
||||
}
|
||||
stemp[tid].resize(num_nodes, GradStats());
|
||||
std::fill(stemp[tid].begin(), stemp[tid].end(), GradStats());
|
||||
fvec_temp[tid].Init(trees[0]->param.num_feature);
|
||||
fvec_temp[tid].Init(trees[0]->NumFeatures());
|
||||
});
|
||||
}
|
||||
exc.Rethrow();
|
||||
@ -77,7 +77,7 @@ class TreeRefresher : public TreeUpdater {
|
||||
for (auto tree : trees) {
|
||||
AddStats(*tree, feats, gpair_h, info, ridx,
|
||||
dmlc::BeginPtr(stemp[tid]) + offset);
|
||||
offset += tree->param.num_nodes;
|
||||
offset += tree->NumNodes();
|
||||
}
|
||||
feats.Drop(inst);
|
||||
});
|
||||
@ -96,7 +96,7 @@ class TreeRefresher : public TreeUpdater {
|
||||
int offset = 0;
|
||||
for (auto tree : trees) {
|
||||
this->Refresh(param, dmlc::BeginPtr(stemp[0]) + offset, 0, tree);
|
||||
offset += tree->param.num_nodes;
|
||||
offset += tree->NumNodes();
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
@ -12,13 +12,12 @@ tests/ci_build/ci_build.sh gpu nvidia-docker \
|
||||
--build-arg RAPIDS_VERSION_ARG=$RAPIDS_VERSION \
|
||||
build/testxgboost
|
||||
|
||||
# Disabled until https://github.com/dmlc/xgboost/issues/8619 is resolved
|
||||
# echo "--- Run Google Tests with CUDA, using a GPU, RMM enabled"
|
||||
# rm -rfv build/
|
||||
# buildkite-agent artifact download "build/testxgboost" . --step build-cuda-with-rmm
|
||||
# chmod +x build/testxgboost
|
||||
# tests/ci_build/ci_build.sh rmm nvidia-docker \
|
||||
# --build-arg CUDA_VERSION_ARG=$CUDA_VERSION \
|
||||
# --build-arg RAPIDS_VERSION_ARG=$RAPIDS_VERSION bash -c \
|
||||
# --build-arg NCCL_VERSION_ARG=$NCCL_VERSION bash -c \
|
||||
# "source activate gpu_test && build/testxgboost --use-rmm-pool"
|
||||
echo "--- Run Google Tests with CUDA, using a GPU, RMM enabled"
|
||||
rm -rfv build/
|
||||
buildkite-agent artifact download "build/testxgboost" . --step build-cuda-with-rmm
|
||||
chmod +x build/testxgboost
|
||||
tests/ci_build/ci_build.sh rmm nvidia-docker \
|
||||
--build-arg CUDA_VERSION_ARG=$CUDA_VERSION \
|
||||
--build-arg RAPIDS_VERSION_ARG=$RAPIDS_VERSION \
|
||||
--build-arg NCCL_VERSION_ARG=$NCCL_VERSION bash -c \
|
||||
"source activate gpu_test && build/testxgboost --use-rmm-pool"
|
||||
|
||||
@ -3,7 +3,7 @@ import os
|
||||
import subprocess
|
||||
import sys
|
||||
from multiprocessing import Pool, cpu_count
|
||||
from typing import Dict, Optional, Tuple
|
||||
from typing import Dict, Tuple
|
||||
|
||||
from pylint import epylint
|
||||
from test_utils import PY_PACKAGE, ROOT, cd, print_time, record_time
|
||||
@ -15,7 +15,10 @@ SRCPATH = os.path.normpath(
|
||||
|
||||
|
||||
@record_time
|
||||
def run_black(rel_path: str) -> bool:
|
||||
def run_black(rel_path: str, fix: bool) -> bool:
|
||||
if fix:
|
||||
cmd = ["black", "-q", rel_path]
|
||||
else:
|
||||
cmd = ["black", "-q", "--check", rel_path]
|
||||
ret = subprocess.run(cmd).returncode
|
||||
if ret != 0:
|
||||
@ -31,7 +34,10 @@ Please run the following command on your machine to address the formatting error
|
||||
|
||||
|
||||
@record_time
|
||||
def run_isort(rel_path: str) -> bool:
|
||||
def run_isort(rel_path: str, fix: bool) -> bool:
|
||||
if fix:
|
||||
cmd = ["isort", f"--src={SRCPATH}", "--profile=black", rel_path]
|
||||
else:
|
||||
cmd = ["isort", f"--src={SRCPATH}", "--check", "--profile=black", rel_path]
|
||||
ret = subprocess.run(cmd).returncode
|
||||
if ret != 0:
|
||||
@ -132,7 +138,7 @@ def run_pylint() -> bool:
|
||||
def main(args: argparse.Namespace) -> None:
|
||||
if args.format == 1:
|
||||
black_results = [
|
||||
run_black(path)
|
||||
run_black(path, args.fix)
|
||||
for path in [
|
||||
# core
|
||||
"python-package/",
|
||||
@ -166,7 +172,7 @@ def main(args: argparse.Namespace) -> None:
|
||||
sys.exit(-1)
|
||||
|
||||
isort_results = [
|
||||
run_isort(path)
|
||||
run_isort(path, args.fix)
|
||||
for path in [
|
||||
# core
|
||||
"python-package/",
|
||||
@ -230,6 +236,11 @@ if __name__ == "__main__":
|
||||
parser.add_argument("--format", type=int, choices=[0, 1], default=1)
|
||||
parser.add_argument("--type-check", type=int, choices=[0, 1], default=1)
|
||||
parser.add_argument("--pylint", type=int, choices=[0, 1], default=1)
|
||||
parser.add_argument(
|
||||
"--fix",
|
||||
action="store_true",
|
||||
help="Fix the formatting issues instead of emitting an error.",
|
||||
)
|
||||
args = parser.parse_args()
|
||||
try:
|
||||
main(args)
|
||||
|
||||
@ -1,10 +1,12 @@
|
||||
/*!
|
||||
* Copyright 2022 XGBoost contributors
|
||||
/**
|
||||
* Copyright 2022-2023, XGBoost contributors
|
||||
*/
|
||||
#ifdef XGBOOST_USE_NCCL
|
||||
|
||||
#include <gtest/gtest.h>
|
||||
|
||||
#include <string> // for string
|
||||
|
||||
#include "../../../src/collective/nccl_device_communicator.cuh"
|
||||
|
||||
namespace xgboost {
|
||||
@ -20,7 +22,15 @@ TEST(NcclDeviceCommunicatorSimpleTest, ThrowOnInvalidCommunicator) {
|
||||
EXPECT_THROW(construct(), dmlc::Error);
|
||||
}
|
||||
|
||||
TEST(NcclDeviceCommunicatorSimpleTest, SystemError) {
|
||||
try {
|
||||
dh::safe_nccl(ncclSystemError);
|
||||
} catch (dmlc::Error const& e) {
|
||||
auto str = std::string{e.what()};
|
||||
ASSERT_TRUE(str.find("environment variables") != std::string::npos);
|
||||
}
|
||||
}
|
||||
} // namespace collective
|
||||
} // namespace xgboost
|
||||
|
||||
#endif
|
||||
#endif // XGBOOST_USE_NCCL
|
||||
|
||||
@ -1,15 +1,17 @@
|
||||
/**
|
||||
* Copyright 2020-2023 by XGBoost contributors
|
||||
*/
|
||||
#include <gtest/gtest.h>
|
||||
#include <vector>
|
||||
|
||||
#include <string>
|
||||
#include <utility>
|
||||
#include <vector>
|
||||
|
||||
#include "../../../src/common/row_set.h"
|
||||
#include "../../../src/common/partition_builder.h"
|
||||
#include "../../../src/common/row_set.h"
|
||||
#include "../helpers.h"
|
||||
|
||||
namespace xgboost {
|
||||
namespace common {
|
||||
|
||||
namespace xgboost::common {
|
||||
TEST(PartitionBuilder, BasicTest) {
|
||||
constexpr size_t kBlockSize = 16;
|
||||
constexpr size_t kNodes = 5;
|
||||
@ -74,6 +76,4 @@ TEST(PartitionBuilder, BasicTest) {
|
||||
ASSERT_EQ(n_right, (kBlockSize - rows_for_left_node[nid]) * tasks[nid]);
|
||||
}
|
||||
}
|
||||
|
||||
} // namespace common
|
||||
} // namespace xgboost
|
||||
} // namespace xgboost::common
|
||||
|
||||
@ -1,16 +1,25 @@
|
||||
/**
|
||||
* Copyright 2023 by XGBoost Contributors
|
||||
*/
|
||||
#include <gtest/gtest.h> // for Test, AssertionResult, Message, TestPartR...
|
||||
#include <gtest/gtest.h> // for ASSERT_NEAR, ASSERT_T...
|
||||
#include <xgboost/base.h> // for Args
|
||||
#include "test_ranking_utils.h"
|
||||
|
||||
#include <gtest/gtest.h>
|
||||
#include <xgboost/base.h> // for Args, bst_group_t, kRtEps
|
||||
#include <xgboost/context.h> // for Context
|
||||
#include <xgboost/data.h> // for MetaInfo, DMatrix
|
||||
#include <xgboost/host_device_vector.h> // for HostDeviceVector
|
||||
#include <xgboost/logging.h> // for Error
|
||||
#include <xgboost/string_view.h> // for StringView
|
||||
|
||||
#include <cstddef> // for size_t
|
||||
#include <cstdint> // for uint32_t
|
||||
#include <utility> // for pair
|
||||
#include <numeric> // for iota
|
||||
#include <utility> // for move
|
||||
#include <vector> // for vector
|
||||
|
||||
#include "../../../src/common/numeric.h" // for Iota
|
||||
#include "../../../src/common/ranking_utils.h" // for LambdaRankParam, ParseMetricName, MakeMet...
|
||||
#include "../helpers.h" // for EmptyDMatrix
|
||||
|
||||
namespace xgboost::ltr {
|
||||
TEST(RankingUtils, LambdaRankParam) {
|
||||
@ -66,4 +75,138 @@ TEST(RankingUtils, MakeMetricName) {
|
||||
name = MakeMetricName("map", 2, false);
|
||||
ASSERT_EQ(name, "map@2");
|
||||
}
|
||||
|
||||
void TestRankingCache(Context const* ctx) {
|
||||
auto p_fmat = EmptyDMatrix();
|
||||
MetaInfo& info = p_fmat->Info();
|
||||
|
||||
info.num_row_ = 16;
|
||||
info.labels.Reshape(info.num_row_);
|
||||
auto& h_label = info.labels.Data()->HostVector();
|
||||
for (std::size_t i = 0; i < h_label.size(); ++i) {
|
||||
h_label[i] = i % 2;
|
||||
}
|
||||
|
||||
LambdaRankParam param;
|
||||
param.UpdateAllowUnknown(Args{});
|
||||
|
||||
RankingCache cache{ctx, info, param};
|
||||
|
||||
HostDeviceVector<float> predt(info.num_row_, 0);
|
||||
auto& h_predt = predt.HostVector();
|
||||
std::iota(h_predt.begin(), h_predt.end(), 0.0f);
|
||||
predt.SetDevice(ctx->gpu_id);
|
||||
|
||||
auto rank_idx =
|
||||
cache.SortedIdx(ctx, ctx->IsCPU() ? predt.ConstHostSpan() : predt.ConstDeviceSpan());
|
||||
|
||||
for (std::size_t i = 0; i < rank_idx.size(); ++i) {
|
||||
ASSERT_EQ(rank_idx[i], rank_idx.size() - i - 1);
|
||||
}
|
||||
}
|
||||
|
||||
TEST(RankingCache, InitFromCPU) {
|
||||
Context ctx;
|
||||
TestRankingCache(&ctx);
|
||||
}
|
||||
|
||||
void TestNDCGCache(Context const* ctx) {
|
||||
auto p_fmat = EmptyDMatrix();
|
||||
MetaInfo& info = p_fmat->Info();
|
||||
LambdaRankParam param;
|
||||
param.UpdateAllowUnknown(Args{});
|
||||
|
||||
{
|
||||
// empty
|
||||
NDCGCache cache{ctx, info, param};
|
||||
ASSERT_EQ(cache.DataGroupPtr(ctx).size(), 2);
|
||||
}
|
||||
|
||||
info.num_row_ = 3;
|
||||
info.group_ptr_ = {static_cast<bst_group_t>(0), static_cast<bst_group_t>(info.num_row_)};
|
||||
|
||||
{
|
||||
auto fail = [&]() { NDCGCache cache{ctx, info, param}; };
|
||||
// empty label
|
||||
ASSERT_THROW(fail(), dmlc::Error);
|
||||
info.labels = linalg::Matrix<float>{{0.0f, 0.1f, 0.2f}, {3}, Context::kCpuId};
|
||||
// invalid label
|
||||
ASSERT_THROW(fail(), dmlc::Error);
|
||||
auto h_labels = info.labels.HostView();
|
||||
for (std::size_t i = 0; i < h_labels.Size(); ++i) {
|
||||
h_labels(i) *= 10;
|
||||
}
|
||||
param.UpdateAllowUnknown(Args{{"ndcg_exp_gain", "false"}});
|
||||
NDCGCache cache{ctx, info, param};
|
||||
Context cpuctx;
|
||||
auto inv_idcg = cache.InvIDCG(&cpuctx);
|
||||
ASSERT_EQ(inv_idcg.Size(), 1);
|
||||
ASSERT_NEAR(1.0 / inv_idcg(0), 2.63093, kRtEps);
|
||||
}
|
||||
|
||||
{
|
||||
param.UpdateAllowUnknown(Args{{"lambdarank_unbiased", "false"}});
|
||||
|
||||
std::vector<float> h_data(32);
|
||||
|
||||
common::Iota(ctx, h_data.begin(), h_data.end(), 0.0f);
|
||||
info.labels.Reshape(h_data.size());
|
||||
info.num_row_ = h_data.size();
|
||||
info.group_ptr_.back() = info.num_row_;
|
||||
info.labels.Data()->HostVector() = std::move(h_data);
|
||||
|
||||
{
|
||||
NDCGCache cache{ctx, info, param};
|
||||
Context cpuctx;
|
||||
auto inv_idcg = cache.InvIDCG(&cpuctx);
|
||||
ASSERT_NEAR(inv_idcg(0), 0.00551782, kRtEps);
|
||||
}
|
||||
|
||||
param.UpdateAllowUnknown(
|
||||
Args{{"lambdarank_num_pair_per_sample", "3"}, {"lambdarank_pair_method", "topk"}});
|
||||
{
|
||||
NDCGCache cache{ctx, info, param};
|
||||
Context cpuctx;
|
||||
auto inv_idcg = cache.InvIDCG(&cpuctx);
|
||||
ASSERT_NEAR(inv_idcg(0), 0.01552123, kRtEps);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
TEST(NDCGCache, InitFromCPU) {
|
||||
Context ctx;
|
||||
TestNDCGCache(&ctx);
|
||||
}
|
||||
|
||||
void TestMAPCache(Context const* ctx) {
|
||||
auto p_fmat = EmptyDMatrix();
|
||||
MetaInfo& info = p_fmat->Info();
|
||||
LambdaRankParam param;
|
||||
param.UpdateAllowUnknown(Args{});
|
||||
|
||||
std::vector<float> h_data(32);
|
||||
|
||||
common::Iota(ctx, h_data.begin(), h_data.end(), 0.0f);
|
||||
info.labels.Reshape(h_data.size());
|
||||
info.num_row_ = h_data.size();
|
||||
info.labels.Data()->HostVector() = std::move(h_data);
|
||||
|
||||
auto fail = [&]() { std::make_shared<MAPCache>(ctx, info, param); };
|
||||
// binary label
|
||||
ASSERT_THROW(fail(), dmlc::Error);
|
||||
|
||||
h_data = std::vector<float>(32, 0.0f);
|
||||
h_data[1] = 1.0f;
|
||||
info.labels.Data()->HostVector() = h_data;
|
||||
auto p_cache = std::make_shared<MAPCache>(ctx, info, param);
|
||||
|
||||
ASSERT_EQ(p_cache->Acc(ctx).size(), info.num_row_);
|
||||
ASSERT_EQ(p_cache->NumRelevant(ctx).size(), info.num_row_);
|
||||
}
|
||||
|
||||
TEST(MAPCache, InitFromCPU) {
|
||||
Context ctx;
|
||||
ctx.Init(Args{});
|
||||
TestMAPCache(&ctx);
|
||||
}
|
||||
} // namespace xgboost::ltr
|
||||
|
||||
104
tests/cpp/common/test_ranking_utils.cu
Normal file
104
tests/cpp/common/test_ranking_utils.cu
Normal file
@ -0,0 +1,104 @@
|
||||
/**
|
||||
* Copyright 2023 by XGBoost Contributors
|
||||
*/
|
||||
#include <gtest/gtest.h>
|
||||
#include <xgboost/base.h> // for Args, XGBOOST_DEVICE, bst_group_t, kRtEps
|
||||
#include <xgboost/context.h> // for Context
|
||||
#include <xgboost/linalg.h> // for MakeTensorView, Vector
|
||||
|
||||
#include <cstddef> // for size_t
|
||||
#include <memory> // for shared_ptr
|
||||
#include <numeric> // for iota
|
||||
#include <vector> // for vector
|
||||
|
||||
#include "../../../src/common/algorithm.cuh" // for SegmentedSequence
|
||||
#include "../../../src/common/cuda_context.cuh" // for CUDAContext
|
||||
#include "../../../src/common/device_helpers.cuh" // for device_vector, ToSpan
|
||||
#include "../../../src/common/ranking_utils.cuh" // for CalcQueriesInvIDCG
|
||||
#include "../../../src/common/ranking_utils.h" // for LambdaRankParam, RankingCache
|
||||
#include "../helpers.h" // for EmptyDMatrix
|
||||
#include "test_ranking_utils.h" // for TestNDCGCache
|
||||
#include "xgboost/data.h" // for MetaInfo
|
||||
#include "xgboost/host_device_vector.h" // for HostDeviceVector
|
||||
|
||||
namespace xgboost::ltr {
|
||||
void TestCalcQueriesInvIDCG() {
|
||||
Context ctx;
|
||||
ctx.UpdateAllowUnknown(Args{{"gpu_id", "0"}});
|
||||
std::size_t n_groups = 5, n_samples_per_group = 32;
|
||||
|
||||
dh::device_vector<float> scores(n_samples_per_group * n_groups);
|
||||
dh::device_vector<bst_group_t> group_ptr(n_groups + 1);
|
||||
auto d_group_ptr = dh::ToSpan(group_ptr);
|
||||
dh::LaunchN(d_group_ptr.size(), ctx.CUDACtx()->Stream(),
|
||||
[=] XGBOOST_DEVICE(std::size_t i) { d_group_ptr[i] = i * n_samples_per_group; });
|
||||
|
||||
auto d_scores = dh::ToSpan(scores);
|
||||
common::SegmentedSequence(&ctx, d_group_ptr, d_scores);
|
||||
|
||||
linalg::Vector<double> inv_IDCG({n_groups}, ctx.gpu_id);
|
||||
|
||||
ltr::LambdaRankParam p;
|
||||
p.UpdateAllowUnknown(Args{{"ndcg_exp_gain", "false"}});
|
||||
|
||||
cuda_impl::CalcQueriesInvIDCG(&ctx, linalg::MakeTensorView(&ctx, d_scores, d_scores.size()),
|
||||
dh::ToSpan(group_ptr), inv_IDCG.View(ctx.gpu_id), p);
|
||||
for (std::size_t i = 0; i < n_groups; ++i) {
|
||||
double inv_idcg = inv_IDCG(i);
|
||||
ASSERT_NEAR(inv_idcg, 0.00551782, kRtEps);
|
||||
}
|
||||
}
|
||||
|
||||
TEST(RankingUtils, CalcQueriesInvIDCG) { TestCalcQueriesInvIDCG(); }
|
||||
|
||||
namespace {
|
||||
void TestRankingCache(Context const* ctx) {
|
||||
auto p_fmat = EmptyDMatrix();
|
||||
MetaInfo& info = p_fmat->Info();
|
||||
|
||||
info.num_row_ = 16;
|
||||
info.labels.Reshape(info.num_row_);
|
||||
auto& h_label = info.labels.Data()->HostVector();
|
||||
for (std::size_t i = 0; i < h_label.size(); ++i) {
|
||||
h_label[i] = i % 2;
|
||||
}
|
||||
|
||||
LambdaRankParam param;
|
||||
param.UpdateAllowUnknown(Args{});
|
||||
|
||||
RankingCache cache{ctx, info, param};
|
||||
|
||||
HostDeviceVector<float> predt(info.num_row_, 0);
|
||||
auto& h_predt = predt.HostVector();
|
||||
std::iota(h_predt.begin(), h_predt.end(), 0.0f);
|
||||
predt.SetDevice(ctx->gpu_id);
|
||||
|
||||
auto rank_idx =
|
||||
cache.SortedIdx(ctx, ctx->IsCPU() ? predt.ConstHostSpan() : predt.ConstDeviceSpan());
|
||||
|
||||
std::vector<std::size_t> h_rank_idx(rank_idx.size());
|
||||
dh::CopyDeviceSpanToVector(&h_rank_idx, rank_idx);
|
||||
for (std::size_t i = 0; i < rank_idx.size(); ++i) {
|
||||
ASSERT_EQ(h_rank_idx[i], h_rank_idx.size() - i - 1);
|
||||
}
|
||||
}
|
||||
} // namespace
|
||||
|
||||
TEST(RankingCache, InitFromGPU) {
|
||||
Context ctx;
|
||||
ctx.UpdateAllowUnknown(Args{{"gpu_id", "0"}});
|
||||
TestRankingCache(&ctx);
|
||||
}
|
||||
|
||||
TEST(NDCGCache, InitFromGPU) {
|
||||
Context ctx;
|
||||
ctx.UpdateAllowUnknown(Args{{"gpu_id", "0"}});
|
||||
TestNDCGCache(&ctx);
|
||||
}
|
||||
|
||||
TEST(MAPCache, InitFromGPU) {
|
||||
Context ctx;
|
||||
ctx.UpdateAllowUnknown(Args{{"gpu_id", "0"}});
|
||||
TestMAPCache(&ctx);
|
||||
}
|
||||
} // namespace xgboost::ltr
|
||||
11
tests/cpp/common/test_ranking_utils.h
Normal file
11
tests/cpp/common/test_ranking_utils.h
Normal file
@ -0,0 +1,11 @@
|
||||
/**
|
||||
* Copyright 2023 by XGBoost Contributors
|
||||
*/
|
||||
#pragma once
|
||||
#include <xgboost/context.h> // for Context
|
||||
|
||||
namespace xgboost::ltr {
|
||||
void TestNDCGCache(Context const* ctx);
|
||||
|
||||
void TestMAPCache(Context const* ctx);
|
||||
} // namespace xgboost::ltr
|
||||
@ -112,31 +112,12 @@ TEST(SparsePage, SortIndices) {
|
||||
}
|
||||
|
||||
TEST(DMatrix, Uri) {
|
||||
size_t constexpr kRows {16};
|
||||
size_t constexpr kCols {8};
|
||||
std::vector<float> data (kRows * kCols);
|
||||
|
||||
for (size_t i = 0; i < kRows * kCols; ++i) {
|
||||
data[i] = i;
|
||||
}
|
||||
auto constexpr kRows {16};
|
||||
auto constexpr kCols {8};
|
||||
|
||||
dmlc::TemporaryDirectory tmpdir;
|
||||
std::string path = tmpdir.path + "/small.csv";
|
||||
|
||||
std::ofstream fout(path);
|
||||
size_t i = 0;
|
||||
for (size_t r = 0; r < kRows; ++r) {
|
||||
for (size_t c = 0; c < kCols; ++c) {
|
||||
fout << data[i];
|
||||
i++;
|
||||
if (c != kCols - 1) {
|
||||
fout << ",";
|
||||
}
|
||||
}
|
||||
fout << "\n";
|
||||
}
|
||||
fout.flush();
|
||||
fout.close();
|
||||
auto const path = tmpdir.path + "/small.csv";
|
||||
CreateTestCSV(path, kRows, kCols);
|
||||
|
||||
std::unique_ptr<DMatrix> dmat;
|
||||
// FIXME(trivialfis): Enable the following test by restricting csv parser in dmlc-core.
|
||||
|
||||
@ -1,8 +1,9 @@
|
||||
/*!
|
||||
* Copyright 2021 XGBoost contributors
|
||||
/**
|
||||
* Copyright 2021-2023 XGBoost contributors
|
||||
*/
|
||||
#include <gtest/gtest.h>
|
||||
|
||||
#include <any> // for any_cast
|
||||
#include <memory>
|
||||
|
||||
#include "../../../src/data/adapter.h"
|
||||
@ -11,15 +12,14 @@
|
||||
#include "../filesystem.h" // dmlc::TemporaryDirectory
|
||||
#include "../helpers.h"
|
||||
|
||||
namespace xgboost {
|
||||
namespace data {
|
||||
namespace xgboost::data {
|
||||
TEST(FileIterator, Basic) {
|
||||
auto check_n_features = [](FileIterator *iter) {
|
||||
size_t n_features = 0;
|
||||
iter->Reset();
|
||||
while (iter->Next()) {
|
||||
auto proxy = MakeProxy(iter->Proxy());
|
||||
auto csr = dmlc::get<std::shared_ptr<CSRArrayAdapter>>(proxy->Adapter());
|
||||
auto csr = std::any_cast<std::shared_ptr<CSRArrayAdapter>>(proxy->Adapter());
|
||||
n_features = std::max(n_features, csr->NumColumns());
|
||||
}
|
||||
ASSERT_EQ(n_features, 5);
|
||||
@ -42,5 +42,4 @@ TEST(FileIterator, Basic) {
|
||||
check_n_features(&iter);
|
||||
}
|
||||
}
|
||||
} // namespace data
|
||||
} // namespace xgboost
|
||||
} // namespace xgboost::data
|
||||
|
||||
Some files were not shown because too many files have changed in this diff Show More
Loading…
x
Reference in New Issue
Block a user