xgboost/src/c_api/c_api_utils.h
2023-03-25 04:31:55 +01:00

340 lines
11 KiB
C++

/**
* Copyright 2021-2023 by XGBoost Contributors
*/
#ifndef XGBOOST_C_API_C_API_UTILS_H_
#define XGBOOST_C_API_C_API_UTILS_H_
#include <algorithm>
#include <cstddef>
#include <functional>
#include <memory> // std::shared_ptr
#include <string>
#include <vector>
#include "xgboost/c_api.h"
#include "xgboost/data.h" // DMatrix
#include "xgboost/feature_map.h" // for FeatureMap
#include "xgboost/json.h"
#include "xgboost/learner.h"
#include "xgboost/linalg.h" // ArrayInterfaceHandler
#include "xgboost/logging.h"
#include "xgboost/string_view.h" // StringView
namespace xgboost {
/* \brief Determine the output shape of prediction.
*
* \param strict_shape Whether should we reshape the output with consideration of groups
* and forest.
* \param type Prediction type
* \param rows Input samples
* \param cols Input features
* \param chunksize Total elements of output / rows
* \param groups Number of output groups from Learner
* \param rounds end_iteration - beg_iteration
* \param out_shape Output shape
* \param out_dim Output dimension
*/
inline void CalcPredictShape(bool strict_shape, PredictionType type, size_t rows, size_t cols,
size_t chunksize, size_t groups, size_t rounds,
std::vector<bst_ulong> *out_shape,
xgboost::bst_ulong *out_dim) {
auto &shape = *out_shape;
if (type == PredictionType::kMargin && rows != 0) {
// When kValue is used, softmax can change the chunksize.
CHECK_EQ(chunksize, groups);
}
switch (type) {
case PredictionType::kValue:
case PredictionType::kMargin: {
if (chunksize == 1 && !strict_shape) {
*out_dim = 1;
shape.resize(*out_dim);
shape.front() = rows;
} else {
*out_dim = 2;
shape.resize(*out_dim);
shape.front() = rows;
// chunksize can be 1 if it's softmax
shape.back() = std::min(groups, chunksize);
}
break;
}
case PredictionType::kApproxContribution:
case PredictionType::kContribution: {
if (groups == 1 && !strict_shape) {
*out_dim = 2;
shape.resize(*out_dim);
shape.front() = rows;
shape.back() = cols + 1;
} else {
*out_dim = 3;
shape.resize(*out_dim);
shape[0] = rows;
shape[1] = groups;
shape[2] = cols + 1;
}
break;
}
case PredictionType::kApproxInteraction:
case PredictionType::kInteraction: {
if (groups == 1 && !strict_shape) {
*out_dim = 3;
shape.resize(*out_dim);
shape[0] = rows;
shape[1] = cols + 1;
shape[2] = cols + 1;
} else {
*out_dim = 4;
shape.resize(*out_dim);
shape[0] = rows;
shape[1] = groups;
shape[2] = cols + 1;
shape[3] = cols + 1;
}
break;
}
case PredictionType::kLeaf: {
if (strict_shape) {
shape.resize(4);
shape[0] = rows;
shape[1] = rounds;
shape[2] = groups;
auto forest = chunksize / (shape[1] * shape[2]);
forest = std::max(static_cast<decltype(forest)>(1), forest);
shape[3] = forest;
*out_dim = shape.size();
} else if (chunksize == 1) {
*out_dim = 1;
shape.resize(*out_dim);
shape.front() = rows;
} else {
*out_dim = 2;
shape.resize(*out_dim);
shape.front() = rows;
shape.back() = chunksize;
}
break;
}
default: {
LOG(FATAL) << "Unknown prediction type:" << static_cast<int>(type);
}
}
CHECK_EQ(
std::accumulate(shape.cbegin(), shape.cend(), static_cast<bst_ulong>(1), std::multiplies<>{}),
chunksize * rows);
}
// Reverse the ntree_limit in old prediction API.
inline uint32_t GetIterationFromTreeLimit(uint32_t ntree_limit, Learner *learner) {
// On Python and R, `best_ntree_limit` is set to `best_iteration * num_parallel_tree`.
// To reverse it we just divide it by `num_parallel_tree`.
if (ntree_limit != 0) {
learner->Configure();
uint32_t num_parallel_tree = 0;
Json config{Object()};
learner->SaveConfig(&config);
auto const &booster = get<String const>(config["learner"]["gradient_booster"]["name"]);
if (booster == "gblinear") {
num_parallel_tree = 0;
} else if (booster == "dart") {
num_parallel_tree =
std::stoi(get<String const>(config["learner"]["gradient_booster"]["gbtree"]
["gbtree_model_param"]["num_parallel_tree"]));
} else if (booster == "gbtree") {
num_parallel_tree = std::stoi(get<String const>(
(config["learner"]["gradient_booster"]["gbtree_model_param"]["num_parallel_tree"])));
} else {
LOG(FATAL) << "Unknown booster:" << booster;
}
ntree_limit /= std::max(num_parallel_tree, 1u);
}
return ntree_limit;
}
inline float GetMissing(Json const &config) {
float missing;
auto const &obj = get<Object const>(config);
auto it = obj.find("missing");
if (it == obj.cend()) {
LOG(FATAL) << "Argument `missing` is required.";
}
auto const &j_missing = it->second;
if (IsA<Number const>(j_missing)) {
missing = get<Number const>(j_missing);
} else if (IsA<Integer const>(j_missing)) {
missing = get<Integer const>(j_missing);
} else {
missing = nan("");
TypeCheck<Number, Integer>(j_missing, "missing");
}
return missing;
}
// Safe guard some global variables from being changed by XGBoost.
class XGBoostAPIGuard {
#if defined(XGBOOST_USE_CUDA) || defined(XGBOOST_USE_HIP)
int32_t device_id_ {0};
void SetGPUAttribute();
void RestoreGPUAttribute();
#else
void SetGPUAttribute() {}
void RestoreGPUAttribute() {}
#endif
public:
XGBoostAPIGuard() {
SetGPUAttribute();
}
~XGBoostAPIGuard() {
RestoreGPUAttribute();
}
};
inline FeatureMap LoadFeatureMap(std::string const& uri) {
FeatureMap feat;
if (uri.size() != 0) {
std::unique_ptr<dmlc::Stream> fs(dmlc::Stream::Create(uri.c_str(), "r"));
dmlc::istream is(fs.get());
feat.LoadText(is);
}
return feat;
}
inline void GenerateFeatureMap(Learner const *learner,
std::vector<Json> const &custom_feature_names,
size_t n_features, FeatureMap *out_feature_map) {
auto &feature_map = *out_feature_map;
auto maybe = [&](std::vector<std::string> const &values, size_t i,
std::string const &dft) {
return values.empty() ? dft : values[i];
};
if (feature_map.Size() == 0) {
// Use the feature names and types from booster.
std::vector<std::string> feature_names;
// priority:
// 1. feature map.
// 2. customized feature name.
// 3. from booster
// 4. default feature name.
if (!custom_feature_names.empty()) {
CHECK_EQ(custom_feature_names.size(), n_features)
<< "Incorrect number of feature names.";
feature_names.resize(custom_feature_names.size());
std::transform(custom_feature_names.begin(), custom_feature_names.end(),
feature_names.begin(),
[](Json const &name) { return get<String const>(name); });
} else {
learner->GetFeatureNames(&feature_names);
}
if (!feature_names.empty()) {
CHECK_EQ(feature_names.size(), n_features) << "Incorrect number of feature names.";
}
std::vector<std::string> feature_types;
learner->GetFeatureTypes(&feature_types);
if (!feature_types.empty()) {
CHECK_EQ(feature_types.size(), n_features) << "Incorrect number of feature types.";
}
for (size_t i = 0; i < n_features; ++i) {
feature_map.PushBack(
i,
maybe(feature_names, i, "f" + std::to_string(i)).data(),
maybe(feature_types, i, "q").data());
}
}
CHECK_EQ(feature_map.Size(), n_features);
}
void XGBBuildInfoDevice(Json* p_info);
template <typename JT>
auto const &RequiredArg(Json const &in, StringView key, StringView func) {
auto const &obj = get<Object const>(in);
auto it = obj.find(key);
if (it == obj.cend() || IsA<Null>(it->second)) {
LOG(FATAL) << "Argument `" << key << "` is required for `" << func << "`.";
}
TypeCheck<JT>(it->second, StringView{key});
return get<std::remove_const_t<JT> const>(it->second);
}
template <typename JT, typename T>
auto const &OptionalArg(Json const &in, StringView key, T const &dft) {
auto const &obj = get<Object const>(in);
auto it = obj.find(key);
if (it != obj.cend() && !IsA<Null>(it->second)) {
TypeCheck<JT>(it->second, key);
return get<std::remove_const_t<JT> const>(it->second);
}
return dft;
}
/**
* \brief Get shared ptr from DMatrix C handle with additional checks.
*/
inline std::shared_ptr<DMatrix> CastDMatrixHandle(DMatrixHandle const handle) {
auto pp_m = static_cast<std::shared_ptr<DMatrix> *>(handle);
StringView msg{"Invalid DMatrix handle"};
CHECK(pp_m) << msg;
auto p_m = *pp_m;
CHECK(p_m) << msg;
return p_m;
}
namespace detail {
template <typename PtrT, typename I, typename T>
void MakeSparseFromPtr(PtrT const *p_indptr, I const *p_indices, T const *p_data,
std::size_t nindptr, std::string *indptr_str, std::string *indices_str,
std::string *data_str) {
auto ndata = static_cast<Integer::Int>(p_indptr[nindptr - 1]);
// Construct array interfaces
Json jindptr{Object{}};
Json jindices{Object{}};
Json jdata{Object{}};
CHECK(p_indptr);
jindptr["data"] =
Array{std::vector<Json>{Json{reinterpret_cast<Integer::Int>(p_indptr)}, Json{true}}};
jindptr["shape"] = std::vector<Json>{Json{nindptr}};
jindptr["version"] = Integer{3};
CHECK(p_indices);
jindices["data"] =
Array{std::vector<Json>{Json{reinterpret_cast<Integer::Int>(p_indices)}, Json{true}}};
jindices["shape"] = std::vector<Json>{Json{ndata}};
jindices["version"] = Integer{3};
CHECK(p_data);
jdata["data"] =
Array{std::vector<Json>{Json{reinterpret_cast<Integer::Int>(p_data)}, Json{true}}};
jdata["shape"] = std::vector<Json>{Json{ndata}};
jdata["version"] = Integer{3};
std::string pindptr_typestr =
linalg::detail::ArrayInterfaceHandler::TypeChar<PtrT>() + std::to_string(sizeof(PtrT));
std::string ind_typestr =
linalg::detail::ArrayInterfaceHandler::TypeChar<I>() + std::to_string(sizeof(I));
std::string data_typestr =
linalg::detail::ArrayInterfaceHandler::TypeChar<T>() + std::to_string(sizeof(T));
if (DMLC_LITTLE_ENDIAN) {
jindptr["typestr"] = String{"<" + pindptr_typestr};
jindices["typestr"] = String{"<" + ind_typestr};
jdata["typestr"] = String{"<" + data_typestr};
} else {
jindptr["typestr"] = String{">" + pindptr_typestr};
jindices["typestr"] = String{">" + ind_typestr};
jdata["typestr"] = String{">" + data_typestr};
}
Json::Dump(jindptr, indptr_str);
Json::Dump(jindices, indices_str);
Json::Dump(jdata, data_str);
}
} // namespace detail
} // namespace xgboost
#endif // XGBOOST_C_API_C_API_UTILS_H_