Added more thorough test for early stopping (+1 squashed commit)
Squashed commits: [4f78cc0] Added test for early stopping (+1 squashed commit)
This commit is contained in:
parent
166e878830
commit
7d297b418f
@ -2,18 +2,31 @@ import xgboost as xgb
|
||||
import numpy as np
|
||||
from sklearn.datasets import load_digits
|
||||
from sklearn.cross_validation import KFold, train_test_split
|
||||
import unittest
|
||||
|
||||
rng = np.random.RandomState(1994)
|
||||
|
||||
def test_early_stopping_nonparallel():
|
||||
# digits = load_digits(2)
|
||||
# X = digits['data']
|
||||
# y = digits['target']
|
||||
# X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0)
|
||||
# clf = xgb.XGBClassifier()
|
||||
# clf.fit(X_train, y_train, early_stopping_rounds=10, eval_metric="auc",
|
||||
# eval_set=[(X_test, y_test)])
|
||||
print("This test will be re-visited later. ")
|
||||
class TestEarlyStopping(unittest.TestCase):
|
||||
|
||||
def test_early_stopping_nonparallel(self):
|
||||
digits = load_digits(2)
|
||||
X = digits['data']
|
||||
y = digits['target']
|
||||
X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0)
|
||||
clf1 = xgb.XGBClassifier()
|
||||
clf1.fit(X_train, y_train, early_stopping_rounds=5, eval_metric="auc",
|
||||
eval_set=[(X_test, y_test)])
|
||||
clf2 = xgb.XGBClassifier()
|
||||
clf2.fit(X_train, y_train, early_stopping_rounds=4, eval_metric="auc",
|
||||
eval_set=[(X_test, y_test)])
|
||||
# should be the same
|
||||
assert clf1.best_score == clf2.best_score
|
||||
assert clf1.best_score != 1
|
||||
# check overfit
|
||||
clf3 = xgb.XGBClassifier()
|
||||
clf3.fit(X_train, y_train, early_stopping_rounds=10, eval_metric="auc",
|
||||
eval_set=[(X_test, y_test)])
|
||||
assert clf3.best_score == 1
|
||||
|
||||
# TODO: parallel test for early stopping
|
||||
# TODO: comment out for now. Will re-visit later
|
||||
@ -4,65 +4,61 @@ from sklearn.cross_validation import KFold, train_test_split
|
||||
from sklearn.metrics import mean_squared_error
|
||||
from sklearn.grid_search import GridSearchCV
|
||||
from sklearn.datasets import load_iris, load_digits, load_boston
|
||||
import unittest
|
||||
|
||||
rng = np.random.RandomState(1994)
|
||||
|
||||
class TestSklearn(unittest.TestCase):
|
||||
def test_binary_classification():
|
||||
digits = load_digits(2)
|
||||
y = digits['target']
|
||||
X = digits['data']
|
||||
kf = KFold(y.shape[0], n_folds=2, shuffle=True, random_state=rng)
|
||||
for train_index, test_index in kf:
|
||||
xgb_model = xgb.XGBClassifier().fit(X[train_index],y[train_index])
|
||||
preds = xgb_model.predict(X[test_index])
|
||||
labels = y[test_index]
|
||||
err = sum(1 for i in range(len(preds)) if int(preds[i]>0.5)!=labels[i]) / float(len(preds))
|
||||
assert err < 0.1
|
||||
|
||||
def test_binary_classification():
|
||||
digits = load_digits(2)
|
||||
y = digits['target']
|
||||
X = digits['data']
|
||||
kf = KFold(y.shape[0], n_folds=2, shuffle=True, random_state=rng)
|
||||
for train_index, test_index in kf:
|
||||
xgb_model = xgb.XGBClassifier().fit(X[train_index],y[train_index])
|
||||
preds = xgb_model.predict(X[test_index])
|
||||
labels = y[test_index]
|
||||
err = sum(1 for i in range(len(preds)) if int(preds[i]>0.5)!=labels[i]) / float(len(preds))
|
||||
assert err < 0.1
|
||||
def test_multiclass_classification():
|
||||
iris = load_iris()
|
||||
y = iris['target']
|
||||
X = iris['data']
|
||||
kf = KFold(y.shape[0], n_folds=2, shuffle=True, random_state=rng)
|
||||
for train_index, test_index in kf:
|
||||
xgb_model = xgb.XGBClassifier().fit(X[train_index],y[train_index])
|
||||
preds = xgb_model.predict(X[test_index])
|
||||
# test other params in XGBClassifier().fit
|
||||
preds2 = xgb_model.predict(X[test_index], output_margin=True, ntree_limit=3)
|
||||
preds3 = xgb_model.predict(X[test_index], output_margin=True, ntree_limit=0)
|
||||
preds4 = xgb_model.predict(X[test_index], output_margin=False, ntree_limit=3)
|
||||
labels = y[test_index]
|
||||
err = sum(1 for i in range(len(preds)) if int(preds[i]>0.5)!=labels[i]) / float(len(preds))
|
||||
assert err < 0.4
|
||||
|
||||
def test_multiclass_classification():
|
||||
iris = load_iris()
|
||||
y = iris['target']
|
||||
X = iris['data']
|
||||
kf = KFold(y.shape[0], n_folds=2, shuffle=True, random_state=rng)
|
||||
for train_index, test_index in kf:
|
||||
xgb_model = xgb.XGBClassifier().fit(X[train_index],y[train_index])
|
||||
preds = xgb_model.predict(X[test_index])
|
||||
# test other params in XGBClassifier().fit
|
||||
preds2 = xgb_model.predict(X[test_index], output_margin=True, ntree_limit=3)
|
||||
preds3 = xgb_model.predict(X[test_index], output_margin=True, ntree_limit=0)
|
||||
preds4 = xgb_model.predict(X[test_index], output_margin=False, ntree_limit=3)
|
||||
labels = y[test_index]
|
||||
err = sum(1 for i in range(len(preds)) if int(preds[i]>0.5)!=labels[i]) / float(len(preds))
|
||||
assert err < 0.4
|
||||
|
||||
def test_boston_housing_regression():
|
||||
boston = load_boston()
|
||||
y = boston['target']
|
||||
X = boston['data']
|
||||
kf = KFold(y.shape[0], n_folds=2, shuffle=True, random_state=rng)
|
||||
for train_index, test_index in kf:
|
||||
xgb_model = xgb.XGBRegressor().fit(X[train_index],y[train_index])
|
||||
preds = xgb_model.predict(X[test_index])
|
||||
# test other params in XGBRegressor().fit
|
||||
preds2 = xgb_model.predict(X[test_index], output_margin=True, ntree_limit=3)
|
||||
preds3 = xgb_model.predict(X[test_index], output_margin=True, ntree_limit=0)
|
||||
preds4 = xgb_model.predict(X[test_index], output_margin=False, ntree_limit=3)
|
||||
labels = y[test_index]
|
||||
assert mean_squared_error(preds, labels) < 15
|
||||
|
||||
def test_parameter_tuning():
|
||||
boston = load_boston()
|
||||
y = boston['target']
|
||||
X = boston['data']
|
||||
xgb_model = xgb.XGBRegressor()
|
||||
clf = GridSearchCV(xgb_model,
|
||||
{'max_depth': [2,4,6],
|
||||
'n_estimators': [50,100,200]}, verbose=1)
|
||||
clf.fit(X,y)
|
||||
assert clf.best_score_ < 0.7
|
||||
assert clf.best_params_ == {'n_estimators': 100, 'max_depth': 4}
|
||||
def test_boston_housing_regression():
|
||||
boston = load_boston()
|
||||
y = boston['target']
|
||||
X = boston['data']
|
||||
kf = KFold(y.shape[0], n_folds=2, shuffle=True, random_state=rng)
|
||||
for train_index, test_index in kf:
|
||||
xgb_model = xgb.XGBRegressor().fit(X[train_index],y[train_index])
|
||||
preds = xgb_model.predict(X[test_index])
|
||||
# test other params in XGBRegressor().fit
|
||||
preds2 = xgb_model.predict(X[test_index], output_margin=True, ntree_limit=3)
|
||||
preds3 = xgb_model.predict(X[test_index], output_margin=True, ntree_limit=0)
|
||||
preds4 = xgb_model.predict(X[test_index], output_margin=False, ntree_limit=3)
|
||||
labels = y[test_index]
|
||||
assert mean_squared_error(preds, labels) < 25
|
||||
|
||||
def test_parameter_tuning():
|
||||
boston = load_boston()
|
||||
y = boston['target']
|
||||
X = boston['data']
|
||||
xgb_model = xgb.XGBRegressor()
|
||||
clf = GridSearchCV(xgb_model,
|
||||
{'max_depth': [2,4,6],
|
||||
'n_estimators': [50,100,200]}, verbose=1)
|
||||
clf.fit(X,y)
|
||||
assert clf.best_score_ < 0.7
|
||||
assert clf.best_params_ == {'n_estimators': 100, 'max_depth': 4}
|
||||
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user