Merge branch 'unity' of ssh://github.com/tqchen/xgboost into unity
This commit is contained in:
commit
7d0d3f07ef
@ -41,6 +41,25 @@ struct LossType {
|
||||
default: utils::Error("unknown loss_type"); return 0.0f;
|
||||
}
|
||||
}
|
||||
/*!
|
||||
* \brief check if label range is valid
|
||||
*/
|
||||
inline bool CheckLabel(float x) const {
|
||||
if (loss_type != kLinearSquare) {
|
||||
return x >= 0.0f && x <= 1.0f;
|
||||
}
|
||||
return true;
|
||||
}
|
||||
/*!
|
||||
* \brief error message displayed when check label fail
|
||||
*/
|
||||
inline const char * CheckLabelErrorMsg(void) const {
|
||||
if (loss_type != kLinearSquare) {
|
||||
return "label must be in [0,1] for logistic regression";
|
||||
} else {
|
||||
return "";
|
||||
}
|
||||
}
|
||||
/*!
|
||||
* \brief calculate first order gradient of loss, given transformed prediction
|
||||
* \param predt transformed prediction
|
||||
@ -115,6 +134,8 @@ class RegLossObj : public IObjFunction{
|
||||
"labels are not correctly provided");
|
||||
std::vector<bst_gpair> &gpair = *out_gpair;
|
||||
gpair.resize(preds.size());
|
||||
// check if label in range
|
||||
bool label_correct = true;
|
||||
// start calculating gradient
|
||||
const unsigned nstep = static_cast<unsigned>(info.labels.size());
|
||||
const bst_omp_uint ndata = static_cast<bst_omp_uint>(preds.size());
|
||||
@ -124,9 +145,11 @@ class RegLossObj : public IObjFunction{
|
||||
float p = loss.PredTransform(preds[i]);
|
||||
float w = info.GetWeight(j);
|
||||
if (info.labels[j] == 1.0f) w *= scale_pos_weight;
|
||||
if (!loss.CheckLabel(info.labels[j])) label_correct = false;
|
||||
gpair[i] = bst_gpair(loss.FirstOrderGradient(p, info.labels[j]) * w,
|
||||
loss.SecondOrderGradient(p, info.labels[j]) * w);
|
||||
}
|
||||
utils::Check(label_correct, loss.CheckLabelErrorMsg());
|
||||
}
|
||||
virtual const char* DefaultEvalMetric(void) const {
|
||||
return loss.DefaultEvalMetric();
|
||||
|
||||
@ -227,71 +227,6 @@ class DMatrix:
|
||||
self.handle, (ctypes.c_int*len(rindex))(*rindex), len(rindex)))
|
||||
return res
|
||||
|
||||
class CVPack:
|
||||
def __init__(self, dtrain, dtest, param):
|
||||
self.dtrain = dtrain
|
||||
self.dtest = dtest
|
||||
self.watchlist = watchlist = [ (dtrain,'train'), (dtest, 'test') ]
|
||||
self.bst = Booster(param, [dtrain,dtest])
|
||||
def update(self,r):
|
||||
self.bst.update(self.dtrain, r)
|
||||
def eval(self,r):
|
||||
return self.bst.eval_set(self.watchlist, r)
|
||||
|
||||
def mknfold(dall, nfold, param, seed, weightscale=None):
|
||||
"""
|
||||
mk nfold list of cvpack from randidx
|
||||
"""
|
||||
randidx = range(dall.num_row())
|
||||
random.seed(seed)
|
||||
random.shuffle(randidx)
|
||||
|
||||
idxset = []
|
||||
kstep = len(randidx) / nfold
|
||||
for i in range(nfold):
|
||||
idxset.append(randidx[ (i*kstep) : min(len(randidx),(i+1)*kstep) ])
|
||||
|
||||
ret = []
|
||||
for k in range(nfold):
|
||||
trainlst = []
|
||||
for j in range(nfold):
|
||||
if j == k:
|
||||
testlst = idxset[j]
|
||||
else:
|
||||
trainlst += idxset[j]
|
||||
dtrain = dall.slice(trainlst)
|
||||
dtest = dall.slice(testlst)
|
||||
# rescale weight of dtrain and dtest
|
||||
if weightscale != None:
|
||||
dtrain.set_weight( dtrain.get_weight() * weightscale * dall.num_row() / dtrain.num_row() )
|
||||
dtest.set_weight( dtest.get_weight() * weightscale * dall.num_row() / dtest.num_row() )
|
||||
|
||||
ret.append(CVPack(dtrain, dtest, param))
|
||||
return ret
|
||||
|
||||
def aggcv(rlist):
|
||||
"""
|
||||
aggregate cross validation results
|
||||
"""
|
||||
cvmap = {}
|
||||
arr = rlist[0].split()
|
||||
ret = arr[0]
|
||||
for it in arr[1:]:
|
||||
k, v = it.split(':')
|
||||
cvmap[k] = [float(v)]
|
||||
for line in rlist[1:]:
|
||||
arr = line.split()
|
||||
assert ret == arr[0]
|
||||
for it in arr[1:]:
|
||||
k, v = it.split(':')
|
||||
cvmap[k].append(float(v))
|
||||
|
||||
for k, v in sorted(cvmap.items(), key = lambda x:x[0]):
|
||||
v = np.array(v)
|
||||
ret += '\t%s:%f+%f' % (k, np.mean(v), np.std(v))
|
||||
return ret
|
||||
|
||||
|
||||
class Booster:
|
||||
"""learner class """
|
||||
def __init__(self, params={}, cache=[], model_file = None):
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user