moved the external graphing packages to Suggested in order to trim the dependencies
This commit is contained in:
parent
e91bacd378
commit
76cef701ab
@ -18,7 +18,12 @@ License: Apache License (== 2.0) | file LICENSE
|
||||
URL: https://github.com/dmlc/xgboost
|
||||
BugReports: https://github.com/dmlc/xgboost/issues
|
||||
VignetteBuilder: knitr
|
||||
Suggests: knitr
|
||||
Suggests:
|
||||
knitr,
|
||||
ggplot2 (>= 1.0.0),
|
||||
DiagrammeR (>= 0.4),
|
||||
Ckmeans.1d.dp (>= 3.3.1),
|
||||
vcd (>= 1.3)
|
||||
Depends:
|
||||
R (>= 2.10)
|
||||
Imports:
|
||||
@ -26,8 +31,4 @@ Imports:
|
||||
methods,
|
||||
data.table (>= 1.9.4),
|
||||
magrittr (>= 1.5),
|
||||
stringr (>= 0.6.2),
|
||||
DiagrammeR (>= 0.4),
|
||||
ggplot2 (>= 1.0.0),
|
||||
Ckmeans.1d.dp (>= 3.3.1),
|
||||
vcd (>= 1.3)
|
||||
stringr (>= 0.6.2)
|
||||
|
||||
@ -21,8 +21,6 @@ exportMethods(predict)
|
||||
import(methods)
|
||||
importClassesFrom(Matrix,dgCMatrix)
|
||||
importClassesFrom(Matrix,dgeMatrix)
|
||||
importFrom(Ckmeans.1d.dp,Ckmeans.1d.dp)
|
||||
importFrom(DiagrammeR,mermaid)
|
||||
importFrom(Matrix,cBind)
|
||||
importFrom(Matrix,colSums)
|
||||
importFrom(Matrix,sparseVector)
|
||||
@ -34,16 +32,6 @@ importFrom(data.table,fread)
|
||||
importFrom(data.table,rbindlist)
|
||||
importFrom(data.table,set)
|
||||
importFrom(data.table,setnames)
|
||||
importFrom(ggplot2,aes)
|
||||
importFrom(ggplot2,coord_flip)
|
||||
importFrom(ggplot2,element_blank)
|
||||
importFrom(ggplot2,element_text)
|
||||
importFrom(ggplot2,geom_bar)
|
||||
importFrom(ggplot2,ggplot)
|
||||
importFrom(ggplot2,ggtitle)
|
||||
importFrom(ggplot2,theme)
|
||||
importFrom(ggplot2,xlab)
|
||||
importFrom(ggplot2,ylab)
|
||||
importFrom(magrittr,"%>%")
|
||||
importFrom(magrittr,add)
|
||||
importFrom(magrittr,not)
|
||||
|
||||
@ -2,17 +2,6 @@
|
||||
#'
|
||||
#' Read a data.table containing feature importance details and plot it.
|
||||
#'
|
||||
#' @importFrom ggplot2 ggplot
|
||||
#' @importFrom ggplot2 aes
|
||||
#' @importFrom ggplot2 geom_bar
|
||||
#' @importFrom ggplot2 coord_flip
|
||||
#' @importFrom ggplot2 xlab
|
||||
#' @importFrom ggplot2 ylab
|
||||
#' @importFrom ggplot2 ggtitle
|
||||
#' @importFrom ggplot2 theme
|
||||
#' @importFrom ggplot2 element_text
|
||||
#' @importFrom ggplot2 element_blank
|
||||
#' @importFrom Ckmeans.1d.dp Ckmeans.1d.dp
|
||||
#' @importFrom magrittr %>%
|
||||
#' @param importance_matrix a \code{data.table} returned by the \code{xgb.importance} function.
|
||||
#' @param numberOfClusters a \code{numeric} vector containing the min and the max range of the possible number of clusters of bars.
|
||||
@ -44,11 +33,17 @@ xgb.plot.importance <- function(importance_matrix = NULL, numberOfClusters = c(1
|
||||
if (!"data.table" %in% class(importance_matrix)) {
|
||||
stop("importance_matrix: Should be a data.table.")
|
||||
}
|
||||
|
||||
if (!require(ggplot2, quietly = TRUE)) {
|
||||
stop("ggplot2 package is required for plotting the importance", call. = FALSE)
|
||||
}
|
||||
if (!requireNamespace("Ckmeans.1d.dp", quietly = TRUE)) {
|
||||
stop("Ckmeans.1d.dp package is required for plotting the importance", call. = FALSE)
|
||||
}
|
||||
|
||||
# To avoid issues in clustering when co-occurences are used
|
||||
importance_matrix <- importance_matrix[, .(Gain = sum(Gain)), by = Feature]
|
||||
|
||||
clusters <- suppressWarnings(Ckmeans.1d.dp(importance_matrix[,Gain], numberOfClusters))
|
||||
clusters <- suppressWarnings(Ckmeans.1d.dp::Ckmeans.1d.dp(importance_matrix[,Gain], numberOfClusters))
|
||||
importance_matrix[,"Cluster":=clusters$cluster %>% as.character]
|
||||
|
||||
plot <- ggplot(importance_matrix, aes(x=reorder(Feature, Gain), y = Gain, width= 0.05), environment = environment())+ geom_bar(aes(fill=Cluster), stat="identity", position="identity") + coord_flip() + xlab("Features") + ylab("Gain") + ggtitle("Feature importance") + theme(plot.title = element_text(lineheight=.9, face="bold"), panel.grid.major.y = element_blank() )
|
||||
|
||||
@ -15,7 +15,6 @@
|
||||
#' @importFrom stringr str_split
|
||||
#' @importFrom stringr str_extract
|
||||
#' @importFrom stringr str_trim
|
||||
#' @importFrom DiagrammeR mermaid
|
||||
#' @param feature_names names of each feature as a character vector. Can be extracted from a sparse matrix (see example). If model dump already contains feature names, this argument should be \code{NULL}.
|
||||
#' @param filename_dump the path to the text file storing the model. Model dump must include the gain per feature and per tree (parameter \code{with.stats = T} in function \code{xgb.dump}). Possible to provide a model directly (see \code{model} argument).
|
||||
#' @param model generated by the \code{xgb.train} function. Avoid the creation of a dump file.
|
||||
@ -64,7 +63,11 @@ xgb.plot.tree <- function(feature_names = NULL, filename_dump = NULL, model = NU
|
||||
if (!class(model) %in% c("xgb.Booster", "NULL")) {
|
||||
stop("model: Has to be an object of class xgb.Booster model generaged by the xgb.train function.")
|
||||
}
|
||||
|
||||
|
||||
if (!requireNamespace("DiagrammeR", quietly = TRUE)) {
|
||||
stop("DiagrammeR package is required for xgb.plot.tree", call. = FALSE)
|
||||
}
|
||||
|
||||
if(is.null(model)){
|
||||
allTrees <- xgb.model.dt.tree(feature_names = feature_names, filename_dump = filename_dump, n_first_tree = n_first_tree)
|
||||
} else {
|
||||
@ -85,7 +88,7 @@ xgb.plot.tree <- function(feature_names = NULL, filename_dump = NULL, model = NU
|
||||
no <- allTrees[Feature!="Leaf", c(No)] %>% paste(collapse = ",") %>% paste("class ", ., " redNode", sep = "")
|
||||
|
||||
path <- allTrees[Feature!="Leaf", c(yesPath, noPath)] %>% .[order(.)] %>% paste(sep = "", collapse = ";") %>% paste("graph LR", .,collapse = "", sep = ";") %>% paste(CSSstyle, yes, no, sep = ";")
|
||||
mermaid(path, width, height)
|
||||
DiagrammeR::mermaid(path, width, height)
|
||||
}
|
||||
|
||||
# Avoid error messages during CRAN check.
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user