coding style update (#2752)
* coding style update Current coding style varies(for example: the mixed use of single quote and double quote), and it will be confusing, especially for new users. This PR will try to follow proposal of PEP8, make the documents more readable. * minor fix
This commit is contained in:
parent
4cb2f7598b
commit
6e378452f2
@ -37,9 +37,9 @@ dtest = xgb.DMatrix('test.svm.buffer')
|
||||
```
|
||||
* To load a numpy array into ```DMatrix```:
|
||||
```python
|
||||
data = np.random.rand(5,10) # 5 entities, each contains 10 features
|
||||
label = np.random.randint(2, size=5) # binary target
|
||||
dtrain = xgb.DMatrix( data, label=label)
|
||||
data = np.random.rand(5, 10) # 5 entities, each contains 10 features
|
||||
label = np.random.randint(2, size=5) # binary target
|
||||
dtrain = xgb.DMatrix(data, label=label)
|
||||
```
|
||||
* To load a scpiy.sparse array into ```DMatrix```:
|
||||
```python
|
||||
@ -49,16 +49,16 @@ dtrain = xgb.DMatrix(csr)
|
||||
* Saving ```DMatrix``` into a XGBoost binary file will make loading faster:
|
||||
```python
|
||||
dtrain = xgb.DMatrix('train.svm.txt')
|
||||
dtrain.save_binary("train.buffer")
|
||||
dtrain.save_binary('train.buffer')
|
||||
```
|
||||
* Missing values can be replaced by a default value in the ```DMatrix``` constructor:
|
||||
```python
|
||||
dtrain = xgb.DMatrix(data, label=label, missing = -999.0)
|
||||
dtrain = xgb.DMatrix(data, label=label, missing=-999.0)
|
||||
```
|
||||
* Weights can be set when needed:
|
||||
```python
|
||||
w = np.random.rand(5, 1)
|
||||
dtrain = xgb.DMatrix(data, label=label, missing = -999.0, weight=w)
|
||||
dtrain = xgb.DMatrix(data, label=label, missing=-999.0, weight=w)
|
||||
```
|
||||
|
||||
Setting Parameters
|
||||
@ -66,7 +66,7 @@ Setting Parameters
|
||||
XGBoost can use either a list of pairs or a dictionary to set [parameters](../parameter.md). For instance:
|
||||
* Booster parameters
|
||||
```python
|
||||
param = {'max_depth':2, 'eta':1, 'silent':1, 'objective':'binary:logistic' }
|
||||
param = {'max_depth': 2, 'eta': 1, 'silent': 1, 'objective': 'binary:logistic'}
|
||||
param['nthread'] = 4
|
||||
param['eval_metric'] = 'auc'
|
||||
```
|
||||
@ -81,7 +81,7 @@ param['eval_metric'] = ['auc', 'ams@0']
|
||||
|
||||
* Specify validations set to watch performance
|
||||
```python
|
||||
evallist = [(dtest,'eval'), (dtrain,'train')]
|
||||
evallist = [(dtest, 'eval'), (dtrain, 'train')]
|
||||
```
|
||||
|
||||
Training
|
||||
@ -90,7 +90,7 @@ Training
|
||||
Training a model requires a parameter list and data set.
|
||||
```python
|
||||
num_round = 10
|
||||
bst = xgb.train( plst, dtrain, num_round, evallist )
|
||||
bst = xgb.train(plst, dtrain, num_round, evallist)
|
||||
```
|
||||
After training, the model can be saved.
|
||||
```python
|
||||
@ -101,12 +101,12 @@ The model and its feature map can also be dumped to a text file.
|
||||
# dump model
|
||||
bst.dump_model('dump.raw.txt')
|
||||
# dump model with feature map
|
||||
bst.dump_model('dump.raw.txt','featmap.txt')
|
||||
bst.dump_model('dump.raw.txt', 'featmap.txt')
|
||||
```
|
||||
A saved model can be loaded as follows:
|
||||
```python
|
||||
bst = xgb.Booster({'nthread':4}) #init model
|
||||
bst.load_model("model.bin") # load data
|
||||
bst = xgb.Booster({'nthread': 4}) # init model
|
||||
bst.load_model('model.bin') # load data
|
||||
```
|
||||
|
||||
Early Stopping
|
||||
@ -134,7 +134,7 @@ ypred = bst.predict(dtest)
|
||||
|
||||
If early stopping is enabled during training, you can get predictions from the best iteration with `bst.best_ntree_limit`:
|
||||
```python
|
||||
ypred = bst.predict(dtest,ntree_limit=bst.best_ntree_limit)
|
||||
ypred = bst.predict(dtest, ntree_limit=bst.best_ntree_limit)
|
||||
```
|
||||
|
||||
Plotting
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user