- Added test cases for the use of custom objective functions
- Made the indentation more consistent with pep8
This commit is contained in:
parent
07bd149b68
commit
6e27d7539f
@ -1,6 +1,6 @@
|
||||
import xgboost as xgb
|
||||
import numpy as np
|
||||
from sklearn.cross_validation import KFold, train_test_split
|
||||
from sklearn.cross_validation import KFold
|
||||
from sklearn.metrics import mean_squared_error
|
||||
from sklearn.grid_search import GridSearchCV
|
||||
from sklearn.datasets import load_iris, load_digits, load_boston
|
||||
@ -8,57 +8,125 @@ from sklearn.datasets import load_iris, load_digits, load_boston
|
||||
rng = np.random.RandomState(1994)
|
||||
|
||||
def test_binary_classification():
|
||||
digits = load_digits(2)
|
||||
y = digits['target']
|
||||
X = digits['data']
|
||||
kf = KFold(y.shape[0], n_folds=2, shuffle=True, random_state=rng)
|
||||
for train_index, test_index in kf:
|
||||
xgb_model = xgb.XGBClassifier().fit(X[train_index],y[train_index])
|
||||
preds = xgb_model.predict(X[test_index])
|
||||
labels = y[test_index]
|
||||
err = sum(1 for i in range(len(preds)) if int(preds[i]>0.5)!=labels[i]) / float(len(preds))
|
||||
assert err < 0.1
|
||||
digits = load_digits(2)
|
||||
y = digits['target']
|
||||
X = digits['data']
|
||||
kf = KFold(y.shape[0], n_folds=2, shuffle=True, random_state=rng)
|
||||
for train_index, test_index in kf:
|
||||
xgb_model = xgb.XGBClassifier().fit(X[train_index],y[train_index])
|
||||
preds = xgb_model.predict(X[test_index])
|
||||
labels = y[test_index]
|
||||
err = sum(1 for i in range(len(preds)) if int(preds[i]>0.5)!=labels[i]) / float(len(preds))
|
||||
assert err < 0.1
|
||||
|
||||
def test_multiclass_classification():
|
||||
iris = load_iris()
|
||||
y = iris['target']
|
||||
X = iris['data']
|
||||
kf = KFold(y.shape[0], n_folds=2, shuffle=True, random_state=rng)
|
||||
for train_index, test_index in kf:
|
||||
xgb_model = xgb.XGBClassifier().fit(X[train_index],y[train_index])
|
||||
preds = xgb_model.predict(X[test_index])
|
||||
# test other params in XGBClassifier().fit
|
||||
preds2 = xgb_model.predict(X[test_index], output_margin=True, ntree_limit=3)
|
||||
preds3 = xgb_model.predict(X[test_index], output_margin=True, ntree_limit=0)
|
||||
preds4 = xgb_model.predict(X[test_index], output_margin=False, ntree_limit=3)
|
||||
labels = y[test_index]
|
||||
err = sum(1 for i in range(len(preds)) if int(preds[i]>0.5)!=labels[i]) / float(len(preds))
|
||||
assert err < 0.4
|
||||
iris = load_iris()
|
||||
y = iris['target']
|
||||
X = iris['data']
|
||||
kf = KFold(y.shape[0], n_folds=2, shuffle=True, random_state=rng)
|
||||
for train_index, test_index in kf:
|
||||
xgb_model = xgb.XGBClassifier().fit(X[train_index],y[train_index])
|
||||
preds = xgb_model.predict(X[test_index])
|
||||
# test other params in XGBClassifier().fit
|
||||
preds2 = xgb_model.predict(X[test_index], output_margin=True, ntree_limit=3)
|
||||
preds3 = xgb_model.predict(X[test_index], output_margin=True, ntree_limit=0)
|
||||
preds4 = xgb_model.predict(X[test_index], output_margin=False, ntree_limit=3)
|
||||
labels = y[test_index]
|
||||
err = sum(1 for i in range(len(preds)) if int(preds[i]>0.5)!=labels[i]) / float(len(preds))
|
||||
assert err < 0.4
|
||||
|
||||
def test_boston_housing_regression():
|
||||
boston = load_boston()
|
||||
y = boston['target']
|
||||
X = boston['data']
|
||||
kf = KFold(y.shape[0], n_folds=2, shuffle=True, random_state=rng)
|
||||
for train_index, test_index in kf:
|
||||
xgb_model = xgb.XGBRegressor().fit(X[train_index],y[train_index])
|
||||
preds = xgb_model.predict(X[test_index])
|
||||
# test other params in XGBRegressor().fit
|
||||
preds2 = xgb_model.predict(X[test_index], output_margin=True, ntree_limit=3)
|
||||
preds3 = xgb_model.predict(X[test_index], output_margin=True, ntree_limit=0)
|
||||
preds4 = xgb_model.predict(X[test_index], output_margin=False, ntree_limit=3)
|
||||
labels = y[test_index]
|
||||
assert mean_squared_error(preds, labels) < 25
|
||||
boston = load_boston()
|
||||
y = boston['target']
|
||||
X = boston['data']
|
||||
kf = KFold(y.shape[0], n_folds=2, shuffle=True, random_state=rng)
|
||||
for train_index, test_index in kf:
|
||||
xgb_model = xgb.XGBRegressor().fit(X[train_index],y[train_index])
|
||||
preds = xgb_model.predict(X[test_index])
|
||||
# test other params in XGBRegressor().fit
|
||||
preds2 = xgb_model.predict(X[test_index], output_margin=True, ntree_limit=3)
|
||||
preds3 = xgb_model.predict(X[test_index], output_margin=True, ntree_limit=0)
|
||||
preds4 = xgb_model.predict(X[test_index], output_margin=False, ntree_limit=3)
|
||||
labels = y[test_index]
|
||||
assert mean_squared_error(preds, labels) < 25
|
||||
|
||||
def test_parameter_tuning():
|
||||
boston = load_boston()
|
||||
y = boston['target']
|
||||
X = boston['data']
|
||||
xgb_model = xgb.XGBRegressor()
|
||||
clf = GridSearchCV(xgb_model,
|
||||
{'max_depth': [2,4,6],
|
||||
'n_estimators': [50,100,200]}, verbose=1)
|
||||
clf.fit(X,y)
|
||||
assert clf.best_score_ < 0.7
|
||||
assert clf.best_params_ == {'n_estimators': 100, 'max_depth': 4}
|
||||
boston = load_boston()
|
||||
y = boston['target']
|
||||
X = boston['data']
|
||||
xgb_model = xgb.XGBRegressor()
|
||||
clf = GridSearchCV(xgb_model,
|
||||
{'max_depth': [2,4,6],
|
||||
'n_estimators': [50,100,200]}, verbose=1)
|
||||
clf.fit(X,y)
|
||||
assert clf.best_score_ < 0.7
|
||||
assert clf.best_params_ == {'n_estimators': 100, 'max_depth': 4}
|
||||
|
||||
def test_regression_with_custom_objective():
|
||||
def objective_ls(y_true, y_pred):
|
||||
grad = (y_pred - y_true)
|
||||
hess = np.ones(len(y_true))
|
||||
return grad, hess
|
||||
|
||||
boston = load_boston()
|
||||
y = boston['target']
|
||||
X = boston['data']
|
||||
kf = KFold(y.shape[0], n_folds=2, shuffle=True, random_state=rng)
|
||||
for train_index, test_index in kf:
|
||||
xgb_model = xgb.XGBRegressor(objective=objective_ls).fit(
|
||||
X[train_index], y[train_index]
|
||||
)
|
||||
preds = xgb_model.predict(X[test_index])
|
||||
labels = y[test_index]
|
||||
assert mean_squared_error(preds, labels) < 25
|
||||
|
||||
# Test that the custom objective function is actually used
|
||||
class XGBCustomObjectiveException(Exception):
|
||||
pass
|
||||
|
||||
def dummy_objective(y_true, y_pred):
|
||||
raise XGBCustomObjectiveException()
|
||||
|
||||
xgb_model = xgb.XGBRegressor(objective=dummy_objective)
|
||||
np.testing.assert_raises(
|
||||
XGBCustomObjectiveException,
|
||||
xgb_model.fit,
|
||||
X, y
|
||||
)
|
||||
|
||||
def test_classification_with_custom_objective():
|
||||
def logregobj(y_true, y_pred):
|
||||
y_pred = 1.0 / (1.0 + np.exp(-y_pred))
|
||||
grad = y_pred - y_true
|
||||
hess = y_pred * (1.0-y_pred)
|
||||
return grad, hess
|
||||
|
||||
digits = load_digits(2)
|
||||
y = digits['target']
|
||||
X = digits['data']
|
||||
kf = KFold(y.shape[0], n_folds=2, shuffle=True, random_state=rng)
|
||||
for train_index, test_index in kf:
|
||||
xgb_model = xgb.XGBClassifier(objective=logregobj).fit(
|
||||
X[train_index],y[train_index]
|
||||
)
|
||||
preds = xgb_model.predict(X[test_index])
|
||||
labels = y[test_index]
|
||||
err = sum(1 for i in range(len(preds))
|
||||
if int(preds[i]>0.5)!=labels[i]) / float(len(preds))
|
||||
assert err < 0.1
|
||||
|
||||
|
||||
# Test that the custom objective function is actually used
|
||||
class XGBCustomObjectiveException(Exception):
|
||||
pass
|
||||
|
||||
def dummy_objective(y_true, y_preds):
|
||||
raise XGBCustomObjectiveException()
|
||||
|
||||
xgb_model = xgb.XGBClassifier(objective=dummy_objective)
|
||||
np.testing.assert_raises(
|
||||
XGBCustomObjectiveException,
|
||||
xgb_model.fit,
|
||||
X, y
|
||||
)
|
||||
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user