* Remove duplicated code, which fixes typo `evals_result` -> `evals_result_`.
This commit is contained in:
parent
8e321adac8
commit
6a29afb480
@ -4,6 +4,7 @@
|
||||
import copy
|
||||
import warnings
|
||||
import json
|
||||
from typing import Optional
|
||||
import numpy as np
|
||||
from .core import Booster, DMatrix, XGBoostError, _deprecate_positional_args
|
||||
from .training import train
|
||||
@ -494,6 +495,13 @@ class XGBModel(XGBModelBase):
|
||||
# Delete the attribute after load
|
||||
self.get_booster().set_attr(scikit_learn=None)
|
||||
|
||||
def _set_evaluation_result(self, evals_result: Optional[dict]) -> None:
|
||||
if evals_result:
|
||||
for val in evals_result.items():
|
||||
evals_result_key = list(val[1].keys())[0]
|
||||
evals_result[val[0]][evals_result_key] = val[1][evals_result_key]
|
||||
self.evals_result_ = evals_result
|
||||
|
||||
@_deprecate_positional_args
|
||||
def fit(self, X, y, *, sample_weight=None, base_margin=None,
|
||||
eval_set=None, eval_metric=None, early_stopping_rounds=None,
|
||||
@ -601,12 +609,7 @@ class XGBModel(XGBModelBase):
|
||||
verbose_eval=verbose, xgb_model=xgb_model,
|
||||
callbacks=callbacks)
|
||||
|
||||
if evals_result:
|
||||
for val in evals_result.items():
|
||||
evals_result_key = list(val[1].keys())[0]
|
||||
evals_result[val[0]][evals_result_key] = val[1][
|
||||
evals_result_key]
|
||||
self.evals_result_ = evals_result
|
||||
self._set_evaluation_result(evals_result)
|
||||
|
||||
if early_stopping_rounds is not None:
|
||||
self.best_score = self._Booster.best_score
|
||||
@ -919,12 +922,7 @@ class XGBClassifier(XGBModel, XGBClassifierBase):
|
||||
callbacks=callbacks)
|
||||
|
||||
self.objective = xgb_options["objective"]
|
||||
if evals_result:
|
||||
for val in evals_result.items():
|
||||
evals_result_key = list(val[1].keys())[0]
|
||||
evals_result[val[0]][
|
||||
evals_result_key] = val[1][evals_result_key]
|
||||
self.evals_result_ = evals_result
|
||||
self._set_evaluation_result(evals_result)
|
||||
|
||||
if early_stopping_rounds is not None:
|
||||
self.best_score = self._Booster.best_score
|
||||
@ -1328,12 +1326,7 @@ class XGBRanker(XGBModel):
|
||||
|
||||
self.objective = params["objective"]
|
||||
|
||||
if evals_result:
|
||||
for val in evals_result.items():
|
||||
evals_result_key = list(val[1].keys())[0]
|
||||
evals_result[val[0]][evals_result_key] = val[1][evals_result_key]
|
||||
self.evals_result = evals_result
|
||||
|
||||
self._set_evaluation_result(evals_result)
|
||||
if early_stopping_rounds is not None:
|
||||
self.best_score = self._Booster.best_score
|
||||
self.best_iteration = self._Booster.best_iteration
|
||||
|
||||
@ -122,6 +122,8 @@ def test_ranking():
|
||||
model = xgb.sklearn.XGBRanker(**params)
|
||||
model.fit(x_train, y_train, group=train_group,
|
||||
eval_set=[(x_valid, y_valid)], eval_group=[valid_group])
|
||||
assert model.evals_result()
|
||||
|
||||
pred = model.predict(x_test)
|
||||
|
||||
train_data = xgb.DMatrix(x_train, y_train)
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user