resolving not-CRAN issues

This commit is contained in:
hetong007 2015-01-20 15:51:42 -08:00
parent eb01acfad8
commit 6901e90730
11 changed files with 15 additions and 12 deletions

View File

@ -25,5 +25,4 @@ Imports:
data.table (>= 1.9),
magrittr (>= 1.5),
stringr,
DiagrammeR,
vcd
DiagrammeR

View File

@ -11,10 +11,10 @@ setClass("xgb.Booster")
#' value of sum of functions, when outputmargin=TRUE, the prediction is
#' untransformed margin value. In logistic regression, outputmargin=T will
#' output value before logistic transformation.
#' @param predleaf whether predict leaf index instead. If set to TRUE, the output will be a matrix object.
#' @param ntreelimit limit number of trees used in prediction, this parameter is
#' only valid for gbtree, but not for gblinear. set it to be value bigger
#' than 0. It will use all trees by default.
#' @param predleaf whether predict leaf index instead. If set to TRUE, the output will be a matrix object.
#' @examples
#' data(agaricus.train, package='xgboost')
#' data(agaricus.test, package='xgboost')

View File

@ -32,7 +32,7 @@
#' @param nfold number of folds used
#' @param label option field, when data is Matrix
#' @param missing Missing is only used when input is dense matrix, pick a float
# value that represents missing value. Sometime a data use 0 or other extreme value to represents missing values.
#' value that represents missing value. Sometime a data use 0 or other extreme value to represents missing values.
#' @param prediction A logical value indicating whether to return the prediction vector.
#' @param showsd \code{boolean}, whether show standard deviation of cross validation
#' @param metrics, list of evaluation metrics to be used in corss validation,

View File

@ -29,7 +29,7 @@
#' bst <- xgboost(data = train$data, label = train$label, max.depth = 2,
#' eta = 1, nround = 2,objective = "binary:logistic")
#' # save the model in file 'xgb.model.dump'
#' xgb.dump(bst, 'xgb.model.dump', with.stats = T)
#' xgb.dump(bst, 'xgb.model.dump', with.stats = TRUE)
#'
#' # print the model without saving it to a file
#' print(xgb.dump(bst))

View File

@ -32,7 +32,8 @@
#' data(agaricus.train, package='xgboost')
#' data(agaricus.test, package='xgboost')
#'
#' #Both dataset are list with two items, a sparse matrix and labels (labels = outcome column which will be learned).
#' #Both dataset are list with two items, a sparse matrix and labels
#' (labels = outcome column which will be learned).
#' #Each column of the sparse Matrix is a feature in one hot encoding format.
#' train <- agaricus.train
#' test <- agaricus.test

View File

@ -42,7 +42,8 @@
#' @examples
#' data(agaricus.train, package='xgboost')
#'
#' #Both dataset are list with two items, a sparse matrix and labels (labels = outcome column which will be learned).
#' #Both dataset are list with two items, a sparse matrix and labels
#' (labels = outcome column which will be learned).
#' #Each column of the sparse Matrix is a feature in one hot encoding format.
#' train <- agaricus.train
#'

View File

@ -42,7 +42,8 @@
#' @examples
#' data(agaricus.train, package='xgboost')
#'
#' #Both dataset are list with two items, a sparse matrix and labels (labels = outcome column which will be learned).
#' #Both dataset are list with two items, a sparse matrix and labels
#' (labels = outcome column which will be learned).
#' #Each column of the sparse Matrix is a feature in one hot encoding format.
#' train <- agaricus.train
#'

Binary file not shown.

Binary file not shown.

View File

@ -4,4 +4,5 @@ boost_from_prediction Boosting from existing prediction
predict_first_ntree Predicting using first n trees
generalized_linear_model Generalized Linear Model
cross_validation Cross validation
create_sparse_matrix
create_sparse_matrix Create Sparse Matrix
predict_leaf_indices Predicting the corresponding leaves

View File

@ -1,7 +1,7 @@
require(xgboost)
require(Matrix)
require(data.table)
require(vcd) #Available in Cran. Used for its dataset with categorical values.
if (!require(vcd)) install.packages('vcd') #Available in Cran. Used for its dataset with categorical values.
# According to its documentation, Xgboost works only on numbers.
# Sometimes the dataset we have to work on have categorical data.