resolving not-CRAN issues
This commit is contained in:
parent
eb01acfad8
commit
6901e90730
@ -25,5 +25,4 @@ Imports:
|
||||
data.table (>= 1.9),
|
||||
magrittr (>= 1.5),
|
||||
stringr,
|
||||
DiagrammeR,
|
||||
vcd
|
||||
DiagrammeR
|
||||
|
||||
@ -11,10 +11,10 @@ setClass("xgb.Booster")
|
||||
#' value of sum of functions, when outputmargin=TRUE, the prediction is
|
||||
#' untransformed margin value. In logistic regression, outputmargin=T will
|
||||
#' output value before logistic transformation.
|
||||
#' @param predleaf whether predict leaf index instead. If set to TRUE, the output will be a matrix object.
|
||||
#' @param ntreelimit limit number of trees used in prediction, this parameter is
|
||||
#' only valid for gbtree, but not for gblinear. set it to be value bigger
|
||||
#' than 0. It will use all trees by default.
|
||||
#' @param predleaf whether predict leaf index instead. If set to TRUE, the output will be a matrix object.
|
||||
#' @examples
|
||||
#' data(agaricus.train, package='xgboost')
|
||||
#' data(agaricus.test, package='xgboost')
|
||||
|
||||
@ -32,7 +32,7 @@
|
||||
#' @param nfold number of folds used
|
||||
#' @param label option field, when data is Matrix
|
||||
#' @param missing Missing is only used when input is dense matrix, pick a float
|
||||
# value that represents missing value. Sometime a data use 0 or other extreme value to represents missing values.
|
||||
#' value that represents missing value. Sometime a data use 0 or other extreme value to represents missing values.
|
||||
#' @param prediction A logical value indicating whether to return the prediction vector.
|
||||
#' @param showsd \code{boolean}, whether show standard deviation of cross validation
|
||||
#' @param metrics, list of evaluation metrics to be used in corss validation,
|
||||
|
||||
@ -29,7 +29,7 @@
|
||||
#' bst <- xgboost(data = train$data, label = train$label, max.depth = 2,
|
||||
#' eta = 1, nround = 2,objective = "binary:logistic")
|
||||
#' # save the model in file 'xgb.model.dump'
|
||||
#' xgb.dump(bst, 'xgb.model.dump', with.stats = T)
|
||||
#' xgb.dump(bst, 'xgb.model.dump', with.stats = TRUE)
|
||||
#'
|
||||
#' # print the model without saving it to a file
|
||||
#' print(xgb.dump(bst))
|
||||
|
||||
@ -32,7 +32,8 @@
|
||||
#' data(agaricus.train, package='xgboost')
|
||||
#' data(agaricus.test, package='xgboost')
|
||||
#'
|
||||
#' #Both dataset are list with two items, a sparse matrix and labels (labels = outcome column which will be learned).
|
||||
#' #Both dataset are list with two items, a sparse matrix and labels
|
||||
#' (labels = outcome column which will be learned).
|
||||
#' #Each column of the sparse Matrix is a feature in one hot encoding format.
|
||||
#' train <- agaricus.train
|
||||
#' test <- agaricus.test
|
||||
|
||||
@ -42,7 +42,8 @@
|
||||
#' @examples
|
||||
#' data(agaricus.train, package='xgboost')
|
||||
#'
|
||||
#' #Both dataset are list with two items, a sparse matrix and labels (labels = outcome column which will be learned).
|
||||
#' #Both dataset are list with two items, a sparse matrix and labels
|
||||
#' (labels = outcome column which will be learned).
|
||||
#' #Each column of the sparse Matrix is a feature in one hot encoding format.
|
||||
#' train <- agaricus.train
|
||||
#'
|
||||
|
||||
@ -42,7 +42,8 @@
|
||||
#' @examples
|
||||
#' data(agaricus.train, package='xgboost')
|
||||
#'
|
||||
#' #Both dataset are list with two items, a sparse matrix and labels (labels = outcome column which will be learned).
|
||||
#' #Both dataset are list with two items, a sparse matrix and labels
|
||||
#' (labels = outcome column which will be learned).
|
||||
#' #Each column of the sparse Matrix is a feature in one hot encoding format.
|
||||
#' train <- agaricus.train
|
||||
#'
|
||||
|
||||
Binary file not shown.
Binary file not shown.
@ -4,4 +4,5 @@ boost_from_prediction Boosting from existing prediction
|
||||
predict_first_ntree Predicting using first n trees
|
||||
generalized_linear_model Generalized Linear Model
|
||||
cross_validation Cross validation
|
||||
create_sparse_matrix
|
||||
create_sparse_matrix Create Sparse Matrix
|
||||
predict_leaf_indices Predicting the corresponding leaves
|
||||
|
||||
@ -1,7 +1,7 @@
|
||||
require(xgboost)
|
||||
require(Matrix)
|
||||
require(data.table)
|
||||
require(vcd) #Available in Cran. Used for its dataset with categorical values.
|
||||
if (!require(vcd)) install.packages('vcd') #Available in Cran. Used for its dataset with categorical values.
|
||||
|
||||
# According to its documentation, Xgboost works only on numbers.
|
||||
# Sometimes the dataset we have to work on have categorical data.
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user