xgboost/R-package/R/xgb.cv.R
2015-01-20 15:51:42 -08:00

134 lines
5.6 KiB
R

#' Cross Validation
#'
#' The cross valudation function of xgboost
#'
#' @importFrom data.table data.table
#' @importFrom data.table as.data.table
#' @importFrom magrittr %>%
#' @importFrom data.table :=
#' @importFrom data.table rbindlist
#' @importFrom stringr str_extract_all
#' @importFrom stringr str_extract
#' @importFrom stringr str_split
#' @importFrom stringr str_replace
#' @importFrom stringr str_match
#'
#' @param params the list of parameters. Commonly used ones are:
#' \itemize{
#' \item \code{objective} objective function, common ones are
#' \itemize{
#' \item \code{reg:linear} linear regression
#' \item \code{binary:logistic} logistic regression for classification
#' }
#' \item \code{eta} step size of each boosting step
#' \item \code{max.depth} maximum depth of the tree
#' \item \code{nthread} number of thread used in training, if not set, all threads are used
#' }
#'
#' See \url{https://github.com/tqchen/xgboost/wiki/Parameters} for
#' further details. See also demo/ for walkthrough example in R.
#' @param data takes an \code{xgb.DMatrix} as the input.
#' @param nrounds the max number of iterations
#' @param nfold number of folds used
#' @param label option field, when data is Matrix
#' @param missing Missing is only used when input is dense matrix, pick a float
#' value that represents missing value. Sometime a data use 0 or other extreme value to represents missing values.
#' @param prediction A logical value indicating whether to return the prediction vector.
#' @param showsd \code{boolean}, whether show standard deviation of cross validation
#' @param metrics, list of evaluation metrics to be used in corss validation,
#' when it is not specified, the evaluation metric is chosen according to objective function.
#' Possible options are:
#' \itemize{
#' \item \code{error} binary classification error rate
#' \item \code{rmse} Rooted mean square error
#' \item \code{logloss} negative log-likelihood function
#' \item \code{auc} Area under curve
#' \item \code{merror} Exact matching error, used to evaluate multi-class classification
#' }
#' @param obj customized objective function. Returns gradient and second order
#' gradient with given prediction and dtrain,
#' @param feval custimized evaluation function. Returns
#' \code{list(metric='metric-name', value='metric-value')} with given
#' prediction and dtrain,
#' @param missing Missing is only used when input is dense matrix, pick a float
# value that represents missing value. Sometime a data use 0 or other extreme value to represents missing values.
#' @param verbose \code{boolean}, print the statistics during the process.
#' @param ... other parameters to pass to \code{params}.
#'
#' @return A \code{data.table} with each mean and standard deviation stat for training set and test set.
#'
#' @details
#' This is the cross validation function for xgboost
#'
#' Parallelization is automatically enabled if OpenMP is present.
#' Number of threads can also be manually specified via "nthread" parameter.
#'
#' This function only accepts an \code{xgb.DMatrix} object as the input.
#'
#' @examples
#' data(agaricus.train, package='xgboost')
#' dtrain <- xgb.DMatrix(agaricus.train$data, label = agaricus.train$label)
#' history <- xgb.cv(data = dtrain, nround=3, nfold = 5, metrics=list("rmse","auc"),
#' "max.depth"=3, "eta"=1, "objective"="binary:logistic")
#' print(history)
#' @export
#'
xgb.cv <- function(params=list(), data, nrounds, nfold, label = NULL, missing = NULL,
prediction = FALSE, showsd = TRUE, metrics=list(),
obj = NULL, feval = NULL, verbose = T,...) {
if (typeof(params) != "list") {
stop("xgb.cv: first argument params must be list")
}
if (nfold <= 1) {
stop("nfold must be bigger than 1")
}
if (is.null(missing)) {
dtrain <- xgb.get.DMatrix(data, label)
} else {
dtrain <- xgb.get.DMatrix(data, label, missing)
}
params <- append(params, list(...))
params <- append(params, list(silent=1))
for (mc in metrics) {
params <- append(params, list("eval_metric"=mc))
}
folds <- xgb.cv.mknfold(dtrain, nfold, params)
predictValues <- rep(0,xgb.numrow(dtrain))
history <- c()
for (i in 1:nrounds) {
msg <- list()
for (k in 1:nfold) {
fd <- folds[[k]]
succ <- xgb.iter.update(fd$booster, fd$dtrain, i - 1, obj)
if (!prediction){
msg[[k]] <- xgb.iter.eval(fd$booster, fd$watchlist, i - 1, feval) %>% str_split("\t") %>% .[[1]]
} else {
res <- xgb.iter.eval(fd$booster, fd$watchlist, i - 1, feval, prediction)
predictValues[fd$index] <- res[[2]]
msg[[k]] <- res[[1]] %>% str_split("\t") %>% .[[1]]
}
}
ret <- xgb.cv.aggcv(msg, showsd)
history <- c(history, ret)
if(verbose) paste(ret, "\n", sep="") %>% cat
}
colnames <- str_split(string = history[1], pattern = "\t")[[1]] %>% .[2:length(.)] %>% str_extract(".*:") %>% str_replace(":","") %>% str_replace("-", ".")
colnamesMean <- paste(colnames, "mean")
colnamesStd <- paste(colnames, "std")
colnames <- c()
for(i in 1:length(colnamesMean)) colnames <- c(colnames, colnamesMean[i], colnamesStd[i])
type <- rep(x = "numeric", times = length(colnames))
dt <- read.table(text = "", colClasses = type, col.names = colnames) %>% as.data.table
split <- str_split(string = history, pattern = "\t")
for(line in split) dt <- line[2:length(line)] %>% str_extract_all(pattern = "\\d*\\.+\\d*") %>% unlist %>% as.list %>% {vec <- .; rbindlist(list(dt, vec), use.names = F, fill = F)}
if (prediction) {
return(list(dt = dt,pred = predictValues))
}
return(dt)
}