Minor cleanup (#2342)
* Clean up demo of multiclass classification * Remove extra space
This commit is contained in:
parent
f1dc82e3e1
commit
6776292951
@ -1,22 +1,25 @@
|
|||||||
#! /usr/bin/python
|
#!/usr/bin/python
|
||||||
|
|
||||||
|
from __future__ import division
|
||||||
|
|
||||||
import numpy as np
|
import numpy as np
|
||||||
import xgboost as xgb
|
import xgboost as xgb
|
||||||
|
|
||||||
# label need to be 0 to num_class -1
|
# label need to be 0 to num_class -1
|
||||||
data = np.loadtxt('./dermatology.data', delimiter=',',converters={33: lambda x:int(x == '?'), 34: lambda x:int(x)-1 } )
|
data = np.loadtxt('./dermatology.data', delimiter=',',
|
||||||
|
converters={33: lambda x:int(x == '?'), 34: lambda x:int(x)-1})
|
||||||
sz = data.shape
|
sz = data.shape
|
||||||
|
|
||||||
train = data[:int(sz[0] * 0.7), :]
|
train = data[:int(sz[0] * 0.7), :]
|
||||||
test = data[int(sz[0] * 0.7):, :]
|
test = data[int(sz[0] * 0.7):, :]
|
||||||
|
|
||||||
train_X = train[:,0:33]
|
train_X = train[:, :33]
|
||||||
train_Y = train[:, 34]
|
train_Y = train[:, 34]
|
||||||
|
|
||||||
|
test_X = test[:, :33]
|
||||||
test_X = test[:,0:33]
|
|
||||||
test_Y = test[:, 34]
|
test_Y = test[:, 34]
|
||||||
|
|
||||||
xg_train = xgb.DMatrix( train_X, label=train_Y)
|
xg_train = xgb.DMatrix(train_X, label=train_Y)
|
||||||
xg_test = xgb.DMatrix(test_X, label=test_Y)
|
xg_test = xgb.DMatrix(test_X, label=test_Y)
|
||||||
# setup parameters for xgboost
|
# setup parameters for xgboost
|
||||||
param = {}
|
param = {}
|
||||||
@ -29,20 +32,20 @@ param['silent'] = 1
|
|||||||
param['nthread'] = 4
|
param['nthread'] = 4
|
||||||
param['num_class'] = 6
|
param['num_class'] = 6
|
||||||
|
|
||||||
watchlist = [ (xg_train,'train'), (xg_test, 'test') ]
|
watchlist = [(xg_train, 'train'), (xg_test, 'test')]
|
||||||
num_round = 5
|
num_round = 5
|
||||||
bst = xgb.train(param, xg_train, num_round, watchlist );
|
bst = xgb.train(param, xg_train, num_round, watchlist)
|
||||||
# get prediction
|
# get prediction
|
||||||
pred = bst.predict( xg_test );
|
pred = bst.predict(xg_test)
|
||||||
|
error_rate = np.sum(pred != test_Y) / test_Y.shape[0]
|
||||||
print ('predicting, classification error=%f' % (sum( int(pred[i]) != test_Y[i] for i in range(len(test_Y))) / float(len(test_Y)) ))
|
print('Test error using softmax = {}'.format(error_rate))
|
||||||
|
|
||||||
# do the same thing again, but output probabilities
|
# do the same thing again, but output probabilities
|
||||||
param['objective'] = 'multi:softprob'
|
param['objective'] = 'multi:softprob'
|
||||||
bst = xgb.train(param, xg_train, num_round, watchlist );
|
bst = xgb.train(param, xg_train, num_round, watchlist)
|
||||||
# Note: this convention has been changed since xgboost-unity
|
# Note: this convention has been changed since xgboost-unity
|
||||||
# get prediction, this is in 1D array, need reshape to (ndata, nclass)
|
# get prediction, this is in 1D array, need reshape to (ndata, nclass)
|
||||||
yprob = bst.predict( xg_test ).reshape( test_Y.shape[0], 6 )
|
pred_prob = bst.predict(xg_test).reshape(test_Y.shape[0], 6)
|
||||||
ylabel = np.argmax(yprob, axis=1)
|
pred_label = np.argmax(pred_prob, axis=1)
|
||||||
|
error_rate = np.sum(pred != test_Y) / test_Y.shape[0]
|
||||||
print ('predicting, classification error=%f' % (sum( int(ylabel[i]) != test_Y[i] for i in range(len(test_Y))) / float(len(test_Y)) ))
|
print('Test error using softprob = {}'.format(error_rate))
|
||||||
|
|||||||
@ -848,7 +848,7 @@ class Booster(object):
|
|||||||
|
|
||||||
def eval_set(self, evals, iteration=0, feval=None):
|
def eval_set(self, evals, iteration=0, feval=None):
|
||||||
# pylint: disable=invalid-name
|
# pylint: disable=invalid-name
|
||||||
"""Evaluate a set of data.
|
"""Evaluate a set of data.
|
||||||
|
|
||||||
Parameters
|
Parameters
|
||||||
----------
|
----------
|
||||||
|
|||||||
Loading…
x
Reference in New Issue
Block a user