small change
This commit is contained in:
parent
faf35c409e
commit
6648a15817
@ -1,16 +0,0 @@
|
||||
#!/bin/bash
|
||||
# map the data to features. For convenience we only use 7 original attributes and encode them as features in a trivial way
|
||||
python mapfeat.py
|
||||
# split train and test
|
||||
python mknfold.py machine.txt 1
|
||||
# training and output the models
|
||||
../../xgboost machine.conf
|
||||
# output predictions of test data
|
||||
../../xgboost machine.conf task=pred model_in=0002.model
|
||||
# print the boosters of 0002.model in dump.raw.txt
|
||||
../../xgboost machine.conf task=dump model_in=0002.model name_dump=dump.raw.txt
|
||||
# print the boosters of 0002.model in dump.nice.txt with feature map
|
||||
../../xgboost machine.conf task=dump model_in=0002.model fmap=featmap.txt name_dump=dump.nice.txt
|
||||
|
||||
# cat the result
|
||||
cat dump.nice.txt
|
||||
35
demo/rank/toy.conf
Normal file
35
demo/rank/toy.conf
Normal file
@ -0,0 +1,35 @@
|
||||
# General Parameters, see comment for each definition
|
||||
# choose the tree booster, 0: tree, 1: linear
|
||||
booster_type = 0
|
||||
# this is the only difference with classification, use 0: linear regression
|
||||
# when labels are in [0,1] we can also use 1: logistic regression
|
||||
loss_type = 0
|
||||
|
||||
objective="rank:pairwise"
|
||||
#objective="rank:softmax"
|
||||
#objective="lambdarank:map"
|
||||
#objective="lambdarank:ndcg"
|
||||
|
||||
# Tree Booster Parameters
|
||||
# step size shrinkage
|
||||
bst:eta = 1.0
|
||||
# minimum loss reduction required to make a further partition
|
||||
bst:gamma = 1.0
|
||||
# minimum sum of instance weight(hessian) needed in a child
|
||||
bst:min_child_weight = 1
|
||||
# maximum depth of a tree
|
||||
bst:max_depth = 3
|
||||
|
||||
# Task parameters
|
||||
# the number of round to do boosting
|
||||
num_round = 2
|
||||
# 0 means do not save any model except the final round model
|
||||
save_period = 0
|
||||
# The path of training data
|
||||
data = "toy.train"
|
||||
# The path of validation data, used to monitor training process, here [test] sets name of the validation set
|
||||
eval[test] = "toy.eval"
|
||||
# The path of test data
|
||||
test:data = "toy.test"
|
||||
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user