support for multiclass output prob
This commit is contained in:
parent
8b4f7d7fa2
commit
662733db31
@ -39,4 +39,11 @@ pred = bst.predict( xg_test );
|
||||
|
||||
print ('predicting, classification error=%f' % (sum( int(pred[i]) != test_Y[i] for i in range(len(test_Y))) / float(len(test_Y)) ))
|
||||
|
||||
# do the same thing again, but output probabilities
|
||||
param['objective'] = 'multi:softprob'
|
||||
bst = xgb.train(param, xg_train, num_round, watchlist );
|
||||
# get prediction, this is in 1D array, need reshape to (nclass, ndata)
|
||||
yprob = bst.predict( xg_test ).reshape( 6, test_Y.shape[0] )
|
||||
ylabel = np.argmax( yprob, axis=0)
|
||||
|
||||
print ('predicting, classification error=%f' % (sum( int(ylabel[i]) != test_Y[i] for i in range(len(test_Y))) / float(len(test_Y)) ))
|
||||
|
||||
@ -103,7 +103,7 @@ namespace xgboost{
|
||||
*/
|
||||
inline void InitTrainer(void){
|
||||
if( mparam.num_class != 0 ){
|
||||
if( name_obj_ != "multi:softmax" ){
|
||||
if( name_obj_ != "multi:softmax" && name_obj_ != "multi:softprob"){
|
||||
name_obj_ = "multi:softmax";
|
||||
printf("auto select objective=softmax to support multi-class classification\n" );
|
||||
}
|
||||
@ -206,7 +206,7 @@ namespace xgboost{
|
||||
fprintf(fo, "[%d]", iter);
|
||||
for (size_t i = 0; i < evals.size(); ++i){
|
||||
this->PredictRaw(preds_, *evals[i]);
|
||||
obj_->PredTransform(preds_);
|
||||
obj_->EvalTransform(preds_);
|
||||
evaluator_.Eval(fo, evname[i].c_str(), preds_, evals[i]->info);
|
||||
}
|
||||
fprintf(fo, "\n");
|
||||
|
||||
@ -41,6 +41,11 @@ namespace xgboost{
|
||||
* \param preds prediction values, saves to this vector as well
|
||||
*/
|
||||
virtual void PredTransform(std::vector<float> &preds){}
|
||||
/*!
|
||||
* \brief transform prediction values, this is only called when Eval is called, usually it redirect to PredTransform
|
||||
* \param preds prediction values, saves to this vector as well
|
||||
*/
|
||||
virtual void EvalTransform(std::vector<float> &preds){ this->PredTransform(preds); }
|
||||
};
|
||||
};
|
||||
|
||||
@ -114,8 +119,8 @@ namespace xgboost{
|
||||
if( !strcmp("reg:logistic", name ) ) return new RegressionObj( LossType::kLogisticNeglik );
|
||||
if( !strcmp("binary:logistic", name ) ) return new RegressionObj( LossType::kLogisticClassify );
|
||||
if( !strcmp("binary:logitraw", name ) ) return new RegressionObj( LossType::kLogisticRaw );
|
||||
if( !strcmp("multi:softmax", name ) ) return new SoftmaxMultiClassObj();
|
||||
if( !strcmp("rank:pairwise", name ) ) return new PairwiseRankObj();
|
||||
if( !strcmp("multi:softmax", name ) ) return new SoftmaxMultiClassObj(0);
|
||||
if( !strcmp("multi:softprob", name ) ) return new SoftmaxMultiClassObj(1);
|
||||
if( !strcmp("rank:pairwise", name ) ) return new PairwiseRankObj();
|
||||
if( !strcmp("rank:softmax", name ) ) return new SoftmaxRankObj();
|
||||
utils::Error("unknown objective function type");
|
||||
|
||||
@ -112,7 +112,7 @@ namespace xgboost{
|
||||
// simple softmax multi-class classification
|
||||
class SoftmaxMultiClassObj : public IObjFunction{
|
||||
public:
|
||||
SoftmaxMultiClassObj(void){
|
||||
SoftmaxMultiClassObj(int output_prob):output_prob(output_prob){
|
||||
nclass = 0;
|
||||
}
|
||||
virtual ~SoftmaxMultiClassObj(){}
|
||||
@ -156,6 +156,13 @@ namespace xgboost{
|
||||
}
|
||||
}
|
||||
virtual void PredTransform(std::vector<float> &preds){
|
||||
this->Transform(preds, output_prob);
|
||||
}
|
||||
virtual void EvalTransform(std::vector<float> &preds){
|
||||
this->Transform(preds, 0);
|
||||
}
|
||||
private:
|
||||
inline void Transform(std::vector<float> &preds, int prob){
|
||||
utils::Assert( nclass != 0, "must set num_class to use softmax" );
|
||||
utils::Assert( preds.size() % nclass == 0, "SoftmaxMultiClassObj: label size and pred size does not match" );
|
||||
const unsigned ndata = static_cast<unsigned>(preds.size()/nclass);
|
||||
@ -168,16 +175,26 @@ namespace xgboost{
|
||||
for( int k = 0; k < nclass; ++ k ){
|
||||
rec[k] = preds[j + k * ndata];
|
||||
}
|
||||
preds[j] = FindMaxIndex( rec );
|
||||
if( prob == 0 ){
|
||||
preds[j] = FindMaxIndex( rec );
|
||||
}else{
|
||||
Softmax( rec );
|
||||
for( int k = 0; k < nclass; ++ k ){
|
||||
preds[j + k * ndata] = rec[k];
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
preds.resize( ndata );
|
||||
if( prob == 0 ){
|
||||
preds.resize( ndata );
|
||||
}
|
||||
}
|
||||
virtual const char* DefaultEvalMetric(void) {
|
||||
return "merror";
|
||||
}
|
||||
private:
|
||||
int nclass;
|
||||
int output_prob;
|
||||
};
|
||||
};
|
||||
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user