updating kmeans based on Tianqi feedback. More efficient now

This commit is contained in:
nachocano 2014-12-03 15:38:58 -08:00
parent 55c2a5dc83
commit 5c23b94069
2 changed files with 33 additions and 56 deletions

View File

@ -161,16 +161,6 @@ inline void Error(const char *fmt, ...) {
}
#endif
/*!\brief computes the dot product between two dense vectors */
inline float DotProduct(const std::vector<float>& v1, const std::vector<float>& v2) {
utils::Assert(v1.size() == v2.size(), "Arrays have different sizes");
float result = 0.0f;
for (int i = 0; i < v1.size(); ++i) {
result += v1[i] * v2[i];
}
return result;
}
/*! \brief replace fopen, report error when the file open fails */
inline std::FILE *FopenCheck(const char *fname, const char *flag) {
std::FILE *fp = fopen64(fname, flag);

View File

@ -14,80 +14,69 @@ using namespace rabit;
class Model : public rabit::utils::ISerializable {
public:
std::vector<float> data;
std::vector<float> centroids;
// load from stream
virtual void Load(rabit::utils::IStream &fi) {
fi.Read(&data);
fi.Read(&centroids);
}
/*! \brief save the model to the stream */
virtual void Save(rabit::utils::IStream &fo) const {
fo.Write(data);
fo.Write(centroids);
}
virtual void InitModel(int k, int d) {
data.resize(k * d + k, 0.0f);
centroids.resize(k * d, 0.0f);
}
};
/*!\brief computes a random number modulo the value */
inline int Random(int value) {
return rand() % value;
}
inline void KMeans(int ntrial, int iter, int k, int d, std::vector<std::vector<float> >& data, Model *model) {
int rank = rabit::GetRank();
int nproc = rabit::GetWorldSize();
utils::LogPrintf("[%d] Running KMeans iter=%d\n", rank, iter);
// compute centroids
std::vector<std::vector<float> > centroids;
centroids.resize(k, std::vector<float>(d));
for (int i = 0; i < k; ++i) {
std::vector<float> centroid(d);
int start = i * d + i;
int count = model->data[start + d];
//utils::LogPrintf("[%d] count=%d\n", rank, count);
for (int j = start, l = 0; l < d; ++j, ++l) {
centroid[l] = model->data[j] / count;
}
centroids[i] = centroid;
}
// compute assignments
int size = data.size();
std::vector<int> assignments(size, -1);
for (int i = 0; i < size; ++i) {
// compute ndata based on assignments
std::vector<float> ndata(k * d + k, 0.0f);
for (int i = 0; i < data.size(); ++i) {
float max_sim = FLT_MIN;
int cindex = -1;
for (int j = 0; j < k; ++j) {
float sim = utils::DotProduct(data[i], centroids[j]);
float sim = 0.0f;
int cstart = j * d;
for (int y = 0, z = cstart; y < d; ++y, ++z) {
sim += model->centroids[z] * data[i][y];
}
if (sim > max_sim) {
assignments[i] = j;
cindex = j;
max_sim = sim;
}
}
}
// add values and increment counts
std::vector<float> ndata(k * d + k, 0.0f);
for (int i=0; i < size; i++) {
int index = assignments[i];
int start = index * d + index;
int start = cindex * d + cindex;
int j = start;
for (int l = 0; l < d; ++j, ++l) {
ndata[j] += data[i][l];
}
// update count
ndata[j] += 1;
}
// reduce
// do Allreduce
rabit::Allreduce<op::Sum>(&ndata[0], ndata.size());
model->data = ndata;
/*
if (rank == 0) {
int counts = 0;
for (int i = 0; i < k; ++i) {
counts += model->data[i * d + i + d];
for (int i = 0; i < k; ++i) {
int nstart = i * d + i;
int cstart = i * d;
int cend= cstart + d;
int count = ndata[nstart + d];
for (int j = nstart, l = cstart; l < cend; ++j, ++l) {
model->centroids[l] = ndata[j] / count;
}
utils::LogPrintf("[%d] counts=%d\n", rank, counts);
}
*/
}
inline void ReadData(char* data_dir, int d, std::vector<std::vector<float> >* data) {
@ -118,12 +107,11 @@ inline void InitCentroids(int k, int d, std::vector<std::vector<float> >& data,
candidate_centroids.resize(k, std::vector<float>(d));
int elements = data.size();
for (size_t i = 0; i < k; ++i) {
int index = rand() % elements;
int index = Random(elements);
candidate_centroids[i] = data[index];
}
for (size_t i = 0; i < k; ++i) {
int proc = rand() % nproc;
//utils::LogPrintf("[%d] proc=%d\n", rank, proc);
int proc = Random(nproc);
std::vector<float> tmp(d, 0.0f);
if (proc == rank) {
tmp = candidate_centroids[i];
@ -131,12 +119,11 @@ inline void InitCentroids(int k, int d, std::vector<std::vector<float> >& data,
} else {
rabit::Broadcast(&tmp, proc);
}
int start = i * d + i;
int start = i * d;
int j = start;
for (int l = 0; l < d; ++j, ++l) {
model->data[j] = tmp[l];
model->centroids[j] = tmp[l];
}
model->data[j] = 1;
}
}