xgboost/toolkit/kmeans.cpp

164 lines
4.2 KiB
C++

// this is a test case to test whether rabit can recover model when
// facing an exception
#include <rabit.h>
#include <utils.h>
#include <cstdio>
#include <cstdlib>
#include <cmath>
#include <sstream>
#include <fstream>
#include <ctime>
#include <cfloat>
using namespace rabit;
class Model : public rabit::utils::ISerializable {
public:
std::vector<float> centroids;
// load from stream
virtual void Load(rabit::utils::IStream &fi) {
fi.Read(&centroids);
}
/*! \brief save the model to the stream */
virtual void Save(rabit::utils::IStream &fo) const {
fo.Write(centroids);
}
virtual void InitModel(int k, int d) {
centroids.resize(k * d, 0.0f);
}
};
/*!\brief computes a random number modulo the value */
inline int Random(int value) {
return rand() % value;
}
inline void KMeans(int ntrial, int iter, int k, int d, std::vector<std::vector<float> >& data, Model *model) {
int rank = rabit::GetRank();
int nproc = rabit::GetWorldSize();
utils::LogPrintf("[%d] Running KMeans iter=%d\n", rank, iter);
// compute ndata based on assignments
std::vector<float> ndata(k * d + k, 0.0f);
for (int i = 0; i < data.size(); ++i) {
float max_sim = FLT_MIN;
int cindex = -1;
for (int j = 0; j < k; ++j) {
float sim = 0.0f;
int cstart = j * d;
for (int y = 0, z = cstart; y < d; ++y, ++z) {
sim += model->centroids[z] * data[i][y];
}
if (sim > max_sim) {
cindex = j;
max_sim = sim;
}
}
int start = cindex * d + cindex;
int j = start;
for (int l = 0; l < d; ++j, ++l) {
ndata[j] += data[i][l];
}
// update count
ndata[j] += 1;
}
// do Allreduce
rabit::Allreduce<op::Sum>(&ndata[0], ndata.size());
for (int i = 0; i < k; ++i) {
int nstart = i * d + i;
int cstart = i * d;
int cend= cstart + d;
int count = ndata[nstart + d];
for (int j = nstart, l = cstart; l < cend; ++j, ++l) {
model->centroids[l] = ndata[j] / count;
}
}
}
inline void ReadData(char* data_dir, int d, std::vector<std::vector<float> >* data) {
int rank = rabit::GetRank();
std::stringstream ss;
ss << data_dir << rank;
const char* file = ss.str().c_str();
std::ifstream ifs(file);
utils::Check(ifs.good(), "[%d] File %s does not exist\n", rank, file);
float v = 0.0f;
while(!ifs.eof()) {
int i=0;
std::vector<float> vec;
while (i < d) {
ifs >> v;
vec.push_back(v);
i++;
}
utils::Check(vec.size() % d == 0, "[%d] Invalid data size. %d instead of %d\n", rank, vec.size(), d);
data->push_back(vec);
}
}
inline void InitCentroids(int k, int d, std::vector<std::vector<float> >& data, Model* model) {
int rank = rabit::GetRank();
int nproc = rabit::GetWorldSize();
std::vector<std::vector<float> > candidate_centroids;
candidate_centroids.resize(k, std::vector<float>(d));
int elements = data.size();
for (size_t i = 0; i < k; ++i) {
int index = Random(elements);
candidate_centroids[i] = data[index];
}
for (size_t i = 0; i < k; ++i) {
int proc = Random(nproc);
std::vector<float> tmp(d, 0.0f);
if (proc == rank) {
tmp = candidate_centroids[i];
rabit::Broadcast(&tmp, proc);
} else {
rabit::Broadcast(&tmp, proc);
}
int start = i * d;
int j = start;
for (int l = 0; l < d; ++j, ++l) {
model->centroids[j] = tmp[l];
}
}
}
int main(int argc, char *argv[]) {
if (argc < 4) {
printf("Usage: <k> <d> <itr> <data_dir>\n");
return 0;
}
int k = atoi(argv[1]);
int d = atoi(argv[2]);
int max_itr = atoi(argv[3]);
rabit::Init(argc, argv);
int rank = rabit::GetRank();
int nproc = rabit::GetWorldSize();
std::string name = rabit::GetProcessorName();
srand(0);
int ntrial = 0;
Model model;
std::vector<std::vector<float> > data;
int iter = rabit::LoadCheckPoint(&model);
if (iter == 0) {
ReadData(argv[4], d, &data);
model.InitModel(k, d);
InitCentroids(k, d, data, &model);
} else {
utils::LogPrintf("[%d] reload-trail=%d, init iter=%d\n", rank, ntrial, iter);
}
for (int r = iter; r < max_itr; ++r) {
KMeans(ntrial, r, k, d, data, &model);
rabit::CheckPoint(model);
}
rabit::Finalize();
return 0;
}