Write ELLPACK pages to disk (#4879)

* add ellpack source
* add batch param
* extract function to parse cache info
* construct ellpack info separately
* push batch to ellpack page
* write ellpack page.
* make sparse page source reusable
This commit is contained in:
Rong Ou 2019-10-22 20:44:32 -07:00 committed by Jiaming Yuan
parent 310fe60b35
commit 5b1715d97c
25 changed files with 935 additions and 408 deletions

View File

@ -40,7 +40,6 @@
#if DMLC_ENABLE_STD_THREAD
#include "../src/data/sparse_page_dmatrix.cc"
#include "../src/data/sparse_page_writer.cc"
#endif
// tress

View File

@ -156,6 +156,18 @@ struct Entry {
}
};
/*!
* \brief Parameters for constructing batches.
*/
struct BatchParam {
/*! \brief The GPU device to use. */
int gpu_id;
/*! \brief Maximum number of bins per feature for histograms. */
int max_bin;
/*! \brief Number of rows in a GPU batch, used for finding quantiles on GPU. */
int gpu_batch_nrows;
};
/*!
* \brief In-memory storage unit of sparse batch, stored in CSR format.
*/
@ -191,14 +203,17 @@ class SparsePage {
SparsePage() {
this->Clear();
}
/*! \return number of instance in the page */
/*! \return Number of instances in the page. */
inline size_t Size() const {
return offset.Size() - 1;
}
/*! \return estimation of memory cost of this page */
inline size_t MemCostBytes() const {
return offset.Size() * sizeof(size_t) + data.Size() * sizeof(Entry);
}
/*! \brief clear the page */
inline void Clear() {
base_rowid = 0;
@ -208,6 +223,11 @@ class SparsePage {
data.HostVector().clear();
}
/*! \brief Set the base row id for this page. */
inline void SetBaseRowId(size_t row_id) {
base_rowid = row_id;
}
SparsePage GetTranspose(int num_columns) const;
void SortRows() {
@ -238,13 +258,6 @@ class SparsePage {
* \param batch The row batch to be pushed
*/
void PushCSC(const SparsePage& batch);
/*!
* \brief Push one instance into page
* \param inst an instance row
*/
void Push(const Inst &inst);
size_t Size() { return offset.Size() - 1; }
};
class CSCPage: public SparsePage {
@ -268,9 +281,31 @@ class EllpackPageImpl;
*/
class EllpackPage {
public:
explicit EllpackPage(DMatrix* dmat);
/*!
* \brief Default constructor.
*
* This is used in the external memory case. An empty ELLPACK page is constructed with its content
* set later by the reader.
*/
EllpackPage();
/*!
* \brief Constructor from an existing DMatrix.
*
* This is used in the in-memory case. The ELLPACK page is constructed from an existing DMatrix
* in CSR format.
*/
explicit EllpackPage(DMatrix* dmat, const BatchParam& param);
/*! \brief Destructor. */
~EllpackPage();
/*! \return Number of instances in the page. */
size_t Size() const;
/*! \brief Set the base row id for this page. */
void SetBaseRowId(size_t row_id);
const EllpackPageImpl* Impl() const { return impl_.get(); }
EllpackPageImpl* Impl() { return impl_.get(); }
@ -356,7 +391,8 @@ class DataSource : public dmlc::DataIter<T> {
* There are two ways to create a customized DMatrix that reads in user defined-format.
*
* - Provide a dmlc::Parser and pass into the DMatrix::Create
* - Alternatively, if data can be represented by an URL, define a new dmlc::Parser and register by DMLC_REGISTER_DATA_PARSER;
* - Alternatively, if data can be represented by an URL, define a new dmlc::Parser and register by
* DMLC_REGISTER_DATA_PARSER;
* - This works best for user defined data input source, such as data-base, filesystem.
* - Provide a DataSource, that can be passed to DMatrix::Create
* This can be used to re-use inmemory data structure into DMatrix.
@ -373,7 +409,7 @@ class DMatrix {
* \brief Gets batches. Use range based for loop over BatchSet to access individual batches.
*/
template<typename T>
BatchSet<T> GetBatches();
BatchSet<T> GetBatches(const BatchParam& param = {});
// the following are column meta data, should be able to answer them fast.
/*! \return Whether the data columns single column block. */
virtual bool SingleColBlock() const = 0;
@ -389,6 +425,12 @@ class DMatrix {
* \return The created DMatrix.
*/
virtual void SaveToLocalFile(const std::string& fname);
/*! \brief Whether the matrix is dense. */
bool IsDense() const {
return Info().num_nonzero_ == Info().num_row_ * Info().num_col_;
}
/*!
* \brief Load DMatrix from URI.
* \param uri The URI of input.
@ -438,27 +480,27 @@ class DMatrix {
virtual BatchSet<SparsePage> GetRowBatches() = 0;
virtual BatchSet<CSCPage> GetColumnBatches() = 0;
virtual BatchSet<SortedCSCPage> GetSortedColumnBatches() = 0;
virtual BatchSet<EllpackPage> GetEllpackBatches() = 0;
virtual BatchSet<EllpackPage> GetEllpackBatches(const BatchParam& param) = 0;
};
template<>
inline BatchSet<SparsePage> DMatrix::GetBatches() {
inline BatchSet<SparsePage> DMatrix::GetBatches(const BatchParam&) {
return GetRowBatches();
}
template<>
inline BatchSet<CSCPage> DMatrix::GetBatches() {
inline BatchSet<CSCPage> DMatrix::GetBatches(const BatchParam&) {
return GetColumnBatches();
}
template<>
inline BatchSet<SortedCSCPage> DMatrix::GetBatches() {
inline BatchSet<SortedCSCPage> DMatrix::GetBatches(const BatchParam&) {
return GetSortedColumnBatches();
}
template<>
inline BatchSet<EllpackPage> DMatrix::GetBatches() {
return GetEllpackBatches();
inline BatchSet<EllpackPage> DMatrix::GetBatches(const BatchParam& param) {
return GetEllpackBatches(param);
}
} // namespace xgboost

View File

@ -540,16 +540,21 @@ class BulkAllocator {
}
public:
BulkAllocator() = default;
BulkAllocator() = default;
// prevent accidental copying, moving or assignment of this object
BulkAllocator(const BulkAllocator&) = delete;
BulkAllocator(BulkAllocator&&) = delete;
void operator=(const BulkAllocator&) = delete;
void operator=(BulkAllocator&&) = delete;
~BulkAllocator() {
for (size_t i = 0; i < d_ptr_.size(); i++) {
if (!(d_ptr_[i] == nullptr)) {
/*!
* \brief Clear the bulk allocator.
*
* This frees the GPU memory managed by this allocator.
*/
void Clear() {
for (size_t i = 0; i < d_ptr_.size(); i++) { // NOLINT(modernize-loop-convert)
if (d_ptr_[i] != nullptr) {
safe_cuda(cudaSetDevice(device_idx_[i]));
XGBDeviceAllocator<char> allocator;
allocator.deallocate(thrust::device_ptr<char>(d_ptr_[i]), size_[i]);
@ -558,6 +563,10 @@ class BulkAllocator {
}
}
~BulkAllocator() {
Clear();
}
// returns sum of bytes for all allocations
size_t Size() {
return std::accumulate(size_.begin(), size_.end(), static_cast<size_t>(0));

View File

@ -21,7 +21,10 @@
#endif // DMLC_ENABLE_STD_THREAD
namespace dmlc {
DMLC_REGISTRY_ENABLE(::xgboost::data::SparsePageFormatReg);
DMLC_REGISTRY_ENABLE(::xgboost::data::SparsePageFormatReg<::xgboost::SparsePage>);
DMLC_REGISTRY_ENABLE(::xgboost::data::SparsePageFormatReg<::xgboost::CSCPage>);
DMLC_REGISTRY_ENABLE(::xgboost::data::SparsePageFormatReg<::xgboost::SortedCSCPage>);
DMLC_REGISTRY_ENABLE(::xgboost::data::SparsePageFormatReg<::xgboost::EllpackPage>);
} // namespace dmlc
namespace xgboost {
@ -329,31 +332,6 @@ DMatrix* DMatrix::Create(std::unique_ptr<DataSource<SparsePage>>&& source,
} // namespace xgboost
namespace xgboost {
data::SparsePageFormat* data::SparsePageFormat::Create(const std::string& name) {
auto *e = ::dmlc::Registry< ::xgboost::data::SparsePageFormatReg>::Get()->Find(name);
if (e == nullptr) {
LOG(FATAL) << "Unknown format type " << name;
}
return (e->body)();
}
std::pair<std::string, std::string>
data::SparsePageFormat::DecideFormat(const std::string& cache_prefix) {
size_t pos = cache_prefix.rfind(".fmt-");
if (pos != std::string::npos) {
std::string fmt = cache_prefix.substr(pos + 5, cache_prefix.length());
size_t cpos = fmt.rfind('-');
if (cpos != std::string::npos) {
return std::make_pair(fmt.substr(0, cpos), fmt.substr(cpos + 1, fmt.length()));
} else {
return std::make_pair(fmt, fmt);
}
} else {
std::string raw = "raw";
return std::make_pair(raw, raw);
}
}
SparsePage SparsePage::GetTranspose(int num_columns) const {
SparsePage transpose;
common::ParallelGroupBuilder<Entry> builder(&transpose.offset.HostVector(),
@ -476,18 +454,6 @@ void SparsePage::PushCSC(const SparsePage &batch) {
self_offset = std::move(offset);
}
void SparsePage::Push(const Inst &inst) {
auto& data_vec = data.HostVector();
auto& offset_vec = offset.HostVector();
offset_vec.push_back(offset_vec.back() + inst.size());
size_t begin = data_vec.size();
data_vec.resize(begin + inst.size());
if (inst.size() != 0) {
std::memcpy(dmlc::BeginPtr(data_vec) + begin, inst.data(),
sizeof(Entry) * inst.size());
}
}
namespace data {
// List of files that will be force linked in static links.
DMLC_REGISTRY_LINK_TAG(sparse_page_raw_format);

View File

@ -1,18 +1,16 @@
/*!
* Copyright 2019 XGBoost contributors
*
* \file ellpack_page.cc
*/
#ifndef XGBOOST_USE_CUDA
#include <xgboost/data.h>
// dummy implementation of ELlpackPage in case CUDA is not used
// dummy implementation of EllpackPage in case CUDA is not used
namespace xgboost {
class EllpackPageImpl {};
EllpackPage::EllpackPage(DMatrix* dmat) {
EllpackPage::EllpackPage(DMatrix* dmat, const BatchParam& param) {
LOG(FATAL) << "Internal Error: XGBoost is not compiled with CUDA but EllpackPage is required";
}

View File

@ -1,7 +1,5 @@
/*!
* Copyright 2019 XGBoost contributors
*
* \file ellpack_page.cu
*/
#include <xgboost/data.h>
@ -12,14 +10,22 @@
namespace xgboost {
EllpackPage::EllpackPage(DMatrix* dmat) : impl_{new EllpackPageImpl(dmat)} {}
EllpackPage::EllpackPage() : impl_{new EllpackPageImpl()} {}
EllpackPage::EllpackPage(DMatrix* dmat, const BatchParam& param)
: impl_{new EllpackPageImpl(dmat, param)} {}
EllpackPage::~EllpackPage() = default;
EllpackPageImpl::EllpackPageImpl(DMatrix* dmat) : dmat_{dmat} {}
size_t EllpackPage::Size() const {
return impl_->Size();
}
void EllpackPage::SetBaseRowId(size_t row_id) {
impl_->SetBaseRowId(row_id);
}
// Bin each input data entry, store the bin indices in compressed form.
template<typename std::enable_if<true, int>::type = 0>
__global__ void CompressBinEllpackKernel(
common::CompressedBufferWriter wr,
common::CompressedByteT* __restrict__ buffer, // gidx_buffer
@ -43,7 +49,7 @@ __global__ void CompressBinEllpackKernel(
int feature = entry.index;
float fvalue = entry.fvalue;
// {feature_cuts, ncuts} forms the array of cuts of `feature'.
const float *feature_cuts = &cuts[cut_rows[feature]];
const float* feature_cuts = &cuts[cut_rows[feature]];
int ncuts = cut_rows[feature + 1] - cut_rows[feature];
// Assigning the bin in current entry.
// S.t.: fvalue < feature_cuts[bin]
@ -58,87 +64,90 @@ __global__ void CompressBinEllpackKernel(
wr.AtomicWriteSymbol(buffer, bin, (irow + base_row) * row_stride + ifeature);
}
void EllpackPageImpl::Init(int device, int max_bin, int gpu_batch_nrows) {
if (initialised_) return;
// Construct an ELLPACK matrix in memory.
EllpackPageImpl::EllpackPageImpl(DMatrix* dmat, const BatchParam& param) {
monitor_.Init("ellpack_page");
dh::safe_cuda(cudaSetDevice(device));
dh::safe_cuda(cudaSetDevice(param.gpu_id));
monitor_.StartCuda("Quantiles");
// Create the quantile sketches for the dmatrix and initialize HistogramCuts.
common::HistogramCuts hmat;
size_t row_stride = common::DeviceSketch(device, max_bin, gpu_batch_nrows, dmat_, &hmat);
size_t row_stride =
common::DeviceSketch(param.gpu_id, param.max_bin, param.gpu_batch_nrows, dmat, &hmat);
monitor_.StopCuda("Quantiles");
const auto& info = dmat_->Info();
auto is_dense = info.num_nonzero_ == info.num_row_ * info.num_col_;
monitor_.StartCuda("InitEllpackInfo");
InitInfo(param.gpu_id, dmat->IsDense(), row_stride, hmat);
monitor_.StopCuda("InitEllpackInfo");
// Init global data
monitor_.StartCuda("InitCompressedData");
InitCompressedData(device, hmat, row_stride, is_dense);
InitCompressedData(param.gpu_id, dmat->Info().num_row_);
monitor_.StopCuda("InitCompressedData");
monitor_.StartCuda("BinningCompression");
DeviceHistogramBuilderState hist_builder_row_state(info.num_row_);
for (const auto& batch : dmat_->GetBatches<SparsePage>()) {
DeviceHistogramBuilderState hist_builder_row_state(dmat->Info().num_row_);
for (const auto& batch : dmat->GetBatches<SparsePage>()) {
hist_builder_row_state.BeginBatch(batch);
CreateHistIndices(device, batch, hist_builder_row_state.GetRowStateOnDevice());
CreateHistIndices(param.gpu_id, batch, hist_builder_row_state.GetRowStateOnDevice());
hist_builder_row_state.EndBatch();
}
monitor_.StopCuda("BinningCompression");
initialised_ = true;
}
void EllpackPageImpl::InitCompressedData(int device,
const common::HistogramCuts& hmat,
size_t row_stride,
bool is_dense) {
n_bins = hmat.Ptrs().back();
int null_gidx_value = hmat.Ptrs().back();
int num_symbols = n_bins + 1;
// minimum value for each feature.
common::Span<bst_float> min_fvalue;
// Required buffer size for storing data matrix in ELLPack format.
size_t compressed_size_bytes = common::CompressedBufferWriter::CalculateBufferSize(
row_stride * dmat_->Info().num_row_, num_symbols);
// Construct an EllpackInfo based on histogram cuts of features.
EllpackInfo::EllpackInfo(int device,
bool is_dense,
size_t row_stride,
const common::HistogramCuts& hmat,
dh::BulkAllocator& ba)
: is_dense(is_dense), row_stride(row_stride), n_bins(hmat.Ptrs().back()) {
ba.Allocate(device,
&feature_segments, hmat.Ptrs().size(),
&gidx_fvalue_map, hmat.Values().size(),
&min_fvalue, hmat.MinValues().size(),
&gidx_buffer, compressed_size_bytes);
&min_fvalue, hmat.MinValues().size());
dh::CopyVectorToDeviceSpan(gidx_fvalue_map, hmat.Values());
dh::CopyVectorToDeviceSpan(min_fvalue, hmat.MinValues());
dh::CopyVectorToDeviceSpan(feature_segments, hmat.Ptrs());
}
// Initialize the EllpackInfo for this page.
void EllpackPageImpl::InitInfo(int device,
bool is_dense,
size_t row_stride,
const common::HistogramCuts& hmat) {
matrix.info = EllpackInfo(device, is_dense, row_stride, hmat, ba_);
}
// Initialize the buffer to stored compressed features.
void EllpackPageImpl::InitCompressedData(int device, size_t num_rows) {
int num_symbols = matrix.info.n_bins + 1;
// Required buffer size for storing data matrix in ELLPack format.
size_t compressed_size_bytes = common::CompressedBufferWriter::CalculateBufferSize(
matrix.info.row_stride * num_rows, num_symbols);
ba_.Allocate(device, &gidx_buffer, compressed_size_bytes);
thrust::fill(
thrust::device_pointer_cast(gidx_buffer.data()),
thrust::device_pointer_cast(gidx_buffer.data() + gidx_buffer.size()), 0);
ellpack_matrix.Init(feature_segments,
min_fvalue,
gidx_fvalue_map,
row_stride,
common::CompressedIterator<uint32_t>(gidx_buffer.data(), num_symbols),
is_dense,
null_gidx_value);
matrix.gidx_iter = common::CompressedIterator<uint32_t>(gidx_buffer.data(), num_symbols);
}
// Compress a CSR page into ELLPACK.
void EllpackPageImpl::CreateHistIndices(int device,
const SparsePage& row_batch,
const RowStateOnDevice& device_row_state) {
// Has any been allocated for me in this batch?
if (!device_row_state.rows_to_process_from_batch) return;
unsigned int null_gidx_value = n_bins;
size_t row_stride = this->ellpack_matrix.row_stride;
unsigned int null_gidx_value = matrix.info.n_bins;
size_t row_stride = matrix.info.row_stride;
const auto &offset_vec = row_batch.offset.ConstHostVector();
const auto& offset_vec = row_batch.offset.ConstHostVector();
int num_symbols = n_bins + 1;
int num_symbols = matrix.info.n_bins + 1;
// bin and compress entries in batches of rows
size_t gpu_batch_nrows = std::min(
dh::TotalMemory(device) / (16 * row_stride * sizeof(Entry)),
@ -162,7 +171,7 @@ void EllpackPageImpl::CreateHistIndices(int device,
offset_vec[device_row_state.row_offset_in_current_batch + batch_row_end];
/*! \brief row offset in SparsePage (the input data). */
dh::device_vector<size_t> row_ptrs(batch_nrows+1);
dh::device_vector<size_t> row_ptrs(batch_nrows + 1);
thrust::copy(
offset_vec.data() + device_row_state.row_offset_in_current_batch + batch_row_begin,
offset_vec.data() + device_row_state.row_offset_in_current_batch + batch_row_end + 1,
@ -185,8 +194,8 @@ void EllpackPageImpl::CreateHistIndices(int device,
gidx_buffer.data(),
row_ptrs.data().get(),
entries_d.data().get(),
gidx_fvalue_map.data(),
feature_segments.data(),
matrix.info.gidx_fvalue_map.data(),
matrix.info.feature_segments.data(),
device_row_state.total_rows_processed + batch_row_begin,
batch_nrows,
row_stride,
@ -194,4 +203,73 @@ void EllpackPageImpl::CreateHistIndices(int device,
}
}
// Return the number of rows contained in this page.
size_t EllpackPageImpl::Size() const {
return n_rows;
}
// Clear the current page.
void EllpackPageImpl::Clear() {
ba_.Clear();
gidx_buffer = {};
idx_buffer.clear();
n_rows = 0;
}
// Push a CSR page to the current page.
//
// First compress the CSR page into ELLPACK, then the compressed buffer is copied to host and
// appended to the existing host vector.
void EllpackPageImpl::Push(int device, const SparsePage& batch) {
monitor_.StartCuda("InitCompressedData");
InitCompressedData(device, batch.Size());
monitor_.StopCuda("InitCompressedData");
monitor_.StartCuda("BinningCompression");
DeviceHistogramBuilderState hist_builder_row_state(batch.Size());
hist_builder_row_state.BeginBatch(batch);
CreateHistIndices(device, batch, hist_builder_row_state.GetRowStateOnDevice());
hist_builder_row_state.EndBatch();
monitor_.StopCuda("BinningCompression");
monitor_.StartCuda("CopyDeviceToHost");
std::vector<common::CompressedByteT> buffer(gidx_buffer.size());
dh::CopyDeviceSpanToVector(&buffer, gidx_buffer);
int offset = 0;
if (!idx_buffer.empty()) {
offset = ::xgboost::common::detail::kPadding;
}
idx_buffer.reserve(idx_buffer.size() + buffer.size() - offset);
idx_buffer.insert(idx_buffer.end(), buffer.begin() + offset, buffer.end());
ba_.Clear();
gidx_buffer = {};
monitor_.StopCuda("CopyDeviceToHost");
n_rows += batch.Size();
}
// Return the memory cost for storing the compressed features.
size_t EllpackPageImpl::MemCostBytes() const {
return idx_buffer.size() * sizeof(common::CompressedByteT);
}
// Copy the compressed features to GPU.
void EllpackPageImpl::InitDevice(int device, EllpackInfo info) {
if (device_initialized_) return;
monitor_.StartCuda("CopyPageToDevice");
dh::safe_cuda(cudaSetDevice(device));
gidx_buffer = {};
ba_.Allocate(device, &gidx_buffer, idx_buffer.size());
dh::CopyVectorToDeviceSpan(gidx_buffer, idx_buffer);
matrix.info = info;
matrix.gidx_iter = common::CompressedIterator<uint32_t>(gidx_buffer.data(), info.n_bins + 1);
monitor_.StopCuda("CopyPageToDevice");
device_initialized_ = true;
}
} // namespace xgboost

View File

@ -1,7 +1,5 @@
/*!
* Copyright 2019 by XGBoost Contributors
*
* \file ellpack_page.cuh
*/
#ifndef XGBOOST_DATA_ELLPACK_PAGE_H_
@ -42,56 +40,68 @@ __forceinline__ __device__ int BinarySearchRow(
return -1;
}
/** \brief Meta information about the ELLPACK matrix. */
struct EllpackInfo {
/*! \brief Whether or not if the matrix is dense. */
bool is_dense;
/*! \brief Row length for ELLPack, equal to number of features. */
size_t row_stride;
/*! \brief Total number of bins, also used as the null index value, . */
size_t n_bins;
/*! \brief Minimum value for each feature. Size equals to number of features. */
common::Span<bst_float> min_fvalue;
/*! \brief Histogram cut pointers. Size equals to (number of features + 1). */
common::Span<uint32_t> feature_segments;
/*! \brief Histogram cut values. Size equals to (bins per feature * number of features). */
common::Span<bst_float> gidx_fvalue_map;
EllpackInfo() = default;
/*!
* \brief Constructor.
*
* @param device The GPU device to use.
* @param is_dense Whether the matrix is dense.
* @param row_stride The number of features between starts of consecutive rows.
* @param hmat The histogram cuts of all the features.
* @param ba The BulkAllocator that owns the GPU memory.
*/
explicit EllpackInfo(int device,
bool is_dense,
size_t row_stride,
const common::HistogramCuts& hmat,
dh::BulkAllocator& ba);
};
/** \brief Struct for accessing and manipulating an ellpack matrix on the
* device. Does not own underlying memory and may be trivially copied into
* kernels.*/
struct ELLPackMatrix {
common::Span<uint32_t> feature_segments;
/*! \brief minimum value for each feature. */
common::Span<bst_float> min_fvalue;
/*! \brief Cut. */
common::Span<bst_float> gidx_fvalue_map;
/*! \brief row length for ELLPack. */
size_t row_stride{0};
struct EllpackMatrix {
EllpackInfo info;
common::CompressedIterator<uint32_t> gidx_iter;
int null_gidx_value;
XGBOOST_DEVICE size_t BinCount() const { return gidx_fvalue_map.size(); }
XGBOOST_DEVICE size_t BinCount() const { return info.gidx_fvalue_map.size(); }
// Get a matrix element, uses binary search for look up Return NaN if missing
// Given a row index and a feature index, returns the corresponding cut value
__device__ bst_float GetElement(size_t ridx, size_t fidx) const {
auto row_begin = row_stride * ridx;
auto row_end = row_begin + row_stride;
auto row_begin = info.row_stride * ridx;
auto row_end = row_begin + info.row_stride;
auto gidx = -1;
if (is_dense) {
if (info.is_dense) {
gidx = gidx_iter[row_begin + fidx];
} else {
gidx =
BinarySearchRow(row_begin, row_end, gidx_iter, feature_segments[fidx],
feature_segments[fidx + 1]);
gidx = BinarySearchRow(row_begin,
row_end,
gidx_iter,
info.feature_segments[fidx],
info.feature_segments[fidx + 1]);
}
if (gidx == -1) {
return nan("");
}
return gidx_fvalue_map[gidx];
return info.gidx_fvalue_map[gidx];
}
void Init(common::Span<uint32_t> feature_segments,
common::Span<bst_float> min_fvalue,
common::Span<bst_float> gidx_fvalue_map, size_t row_stride,
common::CompressedIterator<uint32_t> gidx_iter, bool is_dense,
int null_gidx_value) {
this->feature_segments = feature_segments;
this->min_fvalue = min_fvalue;
this->gidx_fvalue_map = gidx_fvalue_map;
this->row_stride = row_stride;
this->gidx_iter = gidx_iter;
this->is_dense = is_dense;
this->null_gidx_value = null_gidx_value;
}
private:
bool is_dense;
};
// Instances of this type are created while creating the histogram bins for the
@ -171,31 +181,93 @@ class DeviceHistogramBuilderState {
class EllpackPageImpl {
public:
ELLPackMatrix ellpack_matrix;
int n_bins{};
EllpackMatrix matrix;
/*! \brief global index of histogram, which is stored in ELLPack format. */
common::Span<common::CompressedByteT> gidx_buffer;
std::vector<common::CompressedByteT> idx_buffer;
size_t n_rows{};
explicit EllpackPageImpl(DMatrix* dmat);
void Init(int device, int max_bin, int gpu_batch_nrows);
void InitCompressedData(int device,
const common::HistogramCuts& hmat,
size_t row_stride,
bool is_dense);
/*!
* \brief Default constructor.
*
* This is used in the external memory case. An empty ELLPACK page is constructed with its content
* set later by the reader.
*/
EllpackPageImpl() = default;
/*!
* \brief Constructor from an existing DMatrix.
*
* This is used in the in-memory case. The ELLPACK page is constructed from an existing DMatrix
* in CSR format.
*/
explicit EllpackPageImpl(DMatrix* dmat, const BatchParam& parm);
/*!
* \brief Initialize the EllpackInfo contained in the EllpackMatrix.
*
* This is used in the in-memory case. The current page owns the BulkAllocator, which in turn owns
* the GPU memory used by the EllpackInfo.
*
* @param device The GPU device to use.
* @param is_dense Whether the matrix is dense.
* @param row_stride The number of features between starts of consecutive rows.
* @param hmat The histogram cuts of all the features.
*/
void InitInfo(int device, bool is_dense, size_t row_stride, const common::HistogramCuts& hmat);
/*!
* \brief Initialize the buffer to store compressed features.
*
* @param device The GPU device to use.
* @param num_rows The number of rows we are storing in the buffer.
*/
void InitCompressedData(int device, size_t num_rows);
/*!
* \brief Compress a single page of CSR data into ELLPACK.
*
* @param device The GPU device to use.
* @param row_batch The CSR page.
* @param device_row_state On-device data for maintaining state.
*/
void CreateHistIndices(int device,
const SparsePage& row_batch,
const RowStateOnDevice& device_row_state);
private:
bool initialised_{false};
DMatrix* dmat_;
common::Monitor monitor_;
dh::BulkAllocator ba;
/*! \return Number of instances in the page. */
size_t Size() const;
/*! \brief Cut. */
common::Span<bst_float> gidx_fvalue_map;
/*! \brief row_ptr form HistogramCuts. */
common::Span<uint32_t> feature_segments;
/*! \brief Set the base row id for this page. */
inline void SetBaseRowId(size_t row_id) {
base_rowid_ = row_id;
}
/*! \brief clear the page. */
void Clear();
/*!
* \brief Push a sparse page.
* \param batch The row page.
*/
void Push(int device, const SparsePage& batch);
/*! \return Estimation of memory cost of this page. */
size_t MemCostBytes() const;
/*!
* \brief Copy the ELLPACK matrix to GPU.
*
* @param device The GPU device to use.
* @param info The EllpackInfo for the matrix.
*/
void InitDevice(int device, EllpackInfo info);
private:
common::Monitor monitor_;
dh::BulkAllocator ba_;
size_t base_rowid_{};
bool device_initialized_{false};
};
} // namespace xgboost

View File

@ -0,0 +1,48 @@
/*!
* Copyright 2019 XGBoost contributors
*/
#include <xgboost/data.h>
#include <dmlc/registry.h>
#include "./ellpack_page.cuh"
#include "./sparse_page_writer.h"
namespace xgboost {
namespace data {
DMLC_REGISTRY_FILE_TAG(ellpack_page_raw_format);
class EllpackPageRawFormat : public SparsePageFormat<EllpackPage> {
public:
bool Read(EllpackPage* page, dmlc::SeekStream* fi) override {
auto* impl = page->Impl();
if (!fi->Read(&impl->n_rows)) return false;
return fi->Read(&impl->idx_buffer);
}
bool Read(EllpackPage* page,
dmlc::SeekStream* fi,
const std::vector<bst_uint>& sorted_index_set) override {
auto* impl = page->Impl();
if (!fi->Read(&impl->n_rows)) return false;
return fi->Read(&page->Impl()->idx_buffer);
}
void Write(const EllpackPage& page, dmlc::Stream* fo) override {
auto* impl = page.Impl();
fo->Write(impl->n_rows);
auto buffer = impl->idx_buffer;
CHECK(!buffer.empty());
fo->Write(buffer);
}
};
XGBOOST_REGISTER_ELLPACK_PAGE_FORMAT(raw)
.describe("Raw ELLPACK binary data format.")
.set_body([]() {
return new EllpackPageRawFormat();
});
} // namespace data
} // namespace xgboost

View File

@ -0,0 +1,46 @@
/*!
* Copyright 2019 XGBoost contributors
*/
#ifndef XGBOOST_USE_CUDA
#include "ellpack_page_source.h"
namespace xgboost {
namespace data {
EllpackPageSource::EllpackPageSource(DMatrix* dmat,
const std::string& cache_info,
const BatchParam& param) noexcept(false) {
LOG(FATAL) << "Internal Error: "
"XGBoost is not compiled with CUDA but EllpackPageSource is required";
}
void EllpackPageSource::BeforeFirst() {
LOG(FATAL) << "Internal Error: "
"XGBoost is not compiled with CUDA but EllpackPageSource is required";
}
bool EllpackPageSource::Next() {
LOG(FATAL) << "Internal Error: "
"XGBoost is not compiled with CUDA but EllpackPageSource is required";
return false;
}
EllpackPage& EllpackPageSource::Value() {
LOG(FATAL) << "Internal Error: "
"XGBoost is not compiled with CUDA but EllpackPageSource is required";
EllpackPage* page;
return *page;
}
const EllpackPage& EllpackPageSource::Value() const {
LOG(FATAL) << "Internal Error: "
"XGBoost is not compiled with CUDA but EllpackPageSource is required";
EllpackPage* page;
return *page;
}
} // namespace data
} // namespace xgboost
#endif // XGBOOST_USE_CUDA

View File

@ -0,0 +1,155 @@
/*!
* Copyright 2019 XGBoost contributors
*/
#include "ellpack_page_source.h"
#include <memory>
#include <utility>
#include <vector>
#include "../common/hist_util.h"
#include "ellpack_page.cuh"
namespace xgboost {
namespace data {
class EllpackPageSourceImpl : public DataSource<EllpackPage> {
public:
/*!
* \brief Create source from cache files the cache_prefix.
* \param cache_prefix The prefix of cache we want to solve.
*/
explicit EllpackPageSourceImpl(DMatrix* dmat,
const std::string& cache_info,
const BatchParam& param) noexcept(false);
/*! \brief destructor */
~EllpackPageSourceImpl() override = default;
void BeforeFirst() override;
bool Next() override;
EllpackPage& Value();
const EllpackPage& Value() const override;
private:
/*! \brief Write Ellpack pages after accumulating them in memory. */
void WriteEllpackPages(DMatrix* dmat, const std::string& cache_info) const;
/*! \brief The page type string for ELLPACK. */
const std::string kPageType_{".ellpack.page"};
int device_{-1};
common::Monitor monitor_;
dh::BulkAllocator ba_;
/*! \brief The EllpackInfo, with the underlying GPU memory shared by all pages. */
EllpackInfo ellpack_info_;
std::unique_ptr<SparsePageSource<EllpackPage>> source_;
};
EllpackPageSource::EllpackPageSource(DMatrix* dmat,
const std::string& cache_info,
const BatchParam& param) noexcept(false)
: impl_{new EllpackPageSourceImpl(dmat, cache_info, param)} {}
void EllpackPageSource::BeforeFirst() {
impl_->BeforeFirst();
}
bool EllpackPageSource::Next() {
return impl_->Next();
}
EllpackPage& EllpackPageSource::Value() {
return impl_->Value();
}
const EllpackPage& EllpackPageSource::Value() const {
return impl_->Value();
}
// Build the quantile sketch across the whole input data, then use the histogram cuts to compress
// each CSR page, and write the accumulated ELLPACK pages to disk.
EllpackPageSourceImpl::EllpackPageSourceImpl(DMatrix* dmat,
const std::string& cache_info,
const BatchParam& param) noexcept(false) {
device_ = param.gpu_id;
monitor_.Init("ellpack_page_source");
dh::safe_cuda(cudaSetDevice(device_));
monitor_.StartCuda("Quantiles");
common::HistogramCuts hmat;
size_t row_stride =
common::DeviceSketch(device_, param.max_bin, param.gpu_batch_nrows, dmat, &hmat);
monitor_.StopCuda("Quantiles");
monitor_.StartCuda("CreateEllpackInfo");
ellpack_info_ = EllpackInfo(device_, dmat->IsDense(), row_stride, hmat, ba_);
monitor_.StopCuda("CreateEllpackInfo");
monitor_.StartCuda("WriteEllpackPages");
WriteEllpackPages(dmat, cache_info);
monitor_.StopCuda("WriteEllpackPages");
source_.reset(new SparsePageSource<EllpackPage>(cache_info, kPageType_));
}
void EllpackPageSourceImpl::BeforeFirst() {
source_->BeforeFirst();
}
bool EllpackPageSourceImpl::Next() {
return source_->Next();
}
EllpackPage& EllpackPageSourceImpl::Value() {
EllpackPage& page = source_->Value();
page.Impl()->InitDevice(device_, ellpack_info_);
return page;
}
const EllpackPage& EllpackPageSourceImpl::Value() const {
EllpackPage& page = source_->Value();
page.Impl()->InitDevice(device_, ellpack_info_);
return page;
}
// Compress each CSR page to ELLPACK, and write the accumulated pages to disk.
void EllpackPageSourceImpl::WriteEllpackPages(DMatrix* dmat, const std::string& cache_info) const {
auto cinfo = ParseCacheInfo(cache_info, kPageType_);
const size_t extra_buffer_capacity = 6;
SparsePageWriter<EllpackPage> writer(
cinfo.name_shards, cinfo.format_shards, extra_buffer_capacity);
std::shared_ptr<EllpackPage> page;
writer.Alloc(&page);
auto* impl = page->Impl();
impl->matrix.info = ellpack_info_;
impl->Clear();
const MetaInfo& info = dmat->Info();
size_t bytes_write = 0;
double tstart = dmlc::GetTime();
for (const auto& batch : dmat->GetBatches<SparsePage>()) {
impl->Push(device_, batch);
if (impl->MemCostBytes() >= DMatrix::kPageSize) {
bytes_write += impl->MemCostBytes();
writer.PushWrite(std::move(page));
writer.Alloc(&page);
impl = page->Impl();
impl->matrix.info = ellpack_info_;
impl->Clear();
double tdiff = dmlc::GetTime() - tstart;
LOG(INFO) << "Writing to " << cache_info << " in "
<< ((bytes_write >> 20UL) / tdiff) << " MB/s, "
<< (bytes_write >> 20UL) << " written";
}
}
if (impl->Size() != 0) {
writer.PushWrite(std::move(page));
}
}
} // namespace data
} // namespace xgboost

View File

@ -0,0 +1,54 @@
/*!
* Copyright 2019 by XGBoost Contributors
*/
#ifndef XGBOOST_DATA_ELLPACK_PAGE_SOURCE_H_
#define XGBOOST_DATA_ELLPACK_PAGE_SOURCE_H_
#include <xgboost/data.h>
#include <memory>
#include <string>
#include "sparse_page_source.h"
#include "../common/timer.h"
namespace xgboost {
namespace data {
class EllpackPageSourceImpl;
/*!
* \brief External memory data source for ELLPACK format.
*
* This class uses the PImpl idiom (https://en.cppreference.com/w/cpp/language/pimpl) to avoid
* including CUDA-specific implementation details in the header.
*/
class EllpackPageSource : public DataSource<EllpackPage> {
public:
/*!
* \brief Create source from cache files the cache_prefix.
* \param cache_prefix The prefix of cache we want to solve.
*/
explicit EllpackPageSource(DMatrix* dmat,
const std::string& cache_info,
const BatchParam& param) noexcept(false);
/*! \brief destructor */
~EllpackPageSource() override = default;
void BeforeFirst() override;
bool Next() override;
EllpackPage& Value();
const EllpackPage& Value() const override;
const EllpackPageSourceImpl* Impl() const { return impl_.get(); }
EllpackPageSourceImpl* Impl() { return impl_.get(); }
private:
std::shared_ptr<EllpackPageSourceImpl> impl_;
};
} // namespace data
} // namespace xgboost
#endif // XGBOOST_DATA_ELLPACK_PAGE_SOURCE_H_

View File

@ -62,10 +62,12 @@ BatchSet<SortedCSCPage> SimpleDMatrix::GetSortedColumnBatches() {
return BatchSet<SortedCSCPage>(begin_iter);
}
BatchSet<EllpackPage> SimpleDMatrix::GetEllpackBatches() {
BatchSet<EllpackPage> SimpleDMatrix::GetEllpackBatches(const BatchParam& param) {
CHECK_GE(param.gpu_id, 0);
CHECK_GE(param.max_bin, 2);
// ELLPACK page doesn't exist, generate it
if (!ellpack_page_) {
ellpack_page_.reset(new EllpackPage(this));
ellpack_page_.reset(new EllpackPage(this, param));
}
auto begin_iter =
BatchIterator<EllpackPage>(new SimpleBatchIteratorImpl<EllpackPage>(ellpack_page_.get()));

View File

@ -38,7 +38,7 @@ class SimpleDMatrix : public DMatrix {
BatchSet<SparsePage> GetRowBatches() override;
BatchSet<CSCPage> GetColumnBatches() override;
BatchSet<SortedCSCPage> GetSortedColumnBatches() override;
BatchSet<EllpackPage> GetEllpackBatches() override;
BatchSet<EllpackPage> GetEllpackBatches(const BatchParam& param) override;
// source data pointer.
std::unique_ptr<DataSource<SparsePage>> source_;

View File

@ -23,10 +23,10 @@ const MetaInfo& SparsePageDMatrix::Info() const {
return row_source_->info;
}
template<typename T>
template<typename S, typename T>
class SparseBatchIteratorImpl : public BatchIteratorImpl<T> {
public:
explicit SparseBatchIteratorImpl(SparsePageSource<T>* source) : source_(source) {
explicit SparseBatchIteratorImpl(S* source) : source_(source) {
CHECK(source_ != nullptr);
}
T& operator*() override { return source_->Value(); }
@ -35,7 +35,7 @@ class SparseBatchIteratorImpl : public BatchIteratorImpl<T> {
bool AtEnd() const override { return at_end_; }
private:
SparsePageSource<T>* source_{nullptr};
S* source_{nullptr};
bool at_end_{ false };
};
@ -43,7 +43,8 @@ BatchSet<SparsePage> SparsePageDMatrix::GetRowBatches() {
auto cast = dynamic_cast<SparsePageSource<SparsePage>*>(row_source_.get());
cast->BeforeFirst();
cast->Next();
auto begin_iter = BatchIterator<SparsePage>(new SparseBatchIteratorImpl<SparsePage>(cast));
auto begin_iter = BatchIterator<SparsePage>(
new SparseBatchIteratorImpl<SparsePageSource<SparsePage>, SparsePage>(cast));
return BatchSet<SparsePage>(begin_iter);
}
@ -55,8 +56,8 @@ BatchSet<CSCPage> SparsePageDMatrix::GetColumnBatches() {
}
column_source_->BeforeFirst();
column_source_->Next();
auto begin_iter =
BatchIterator<CSCPage>(new SparseBatchIteratorImpl<CSCPage>(column_source_.get()));
auto begin_iter = BatchIterator<CSCPage>(
new SparseBatchIteratorImpl<SparsePageSource<CSCPage>, CSCPage>(column_source_.get()));
return BatchSet<CSCPage>(begin_iter);
}
@ -70,17 +71,26 @@ BatchSet<SortedCSCPage> SparsePageDMatrix::GetSortedColumnBatches() {
sorted_column_source_->BeforeFirst();
sorted_column_source_->Next();
auto begin_iter = BatchIterator<SortedCSCPage>(
new SparseBatchIteratorImpl<SortedCSCPage>(sorted_column_source_.get()));
new SparseBatchIteratorImpl<SparsePageSource<SortedCSCPage>, SortedCSCPage>(
sorted_column_source_.get()));
return BatchSet<SortedCSCPage>(begin_iter);
}
BatchSet<EllpackPage> SparsePageDMatrix::GetEllpackBatches() {
// ELLPACK page doesn't exist, generate it
if (!ellpack_page_) {
ellpack_page_.reset(new EllpackPage(this));
BatchSet<EllpackPage> SparsePageDMatrix::GetEllpackBatches(const BatchParam& param) {
CHECK_GE(param.gpu_id, 0);
CHECK_GE(param.max_bin, 2);
// Lazily instantiate
if (!ellpack_source_ ||
batch_param_.gpu_id != param.gpu_id ||
batch_param_.max_bin != param.max_bin ||
batch_param_.gpu_batch_nrows != param.gpu_batch_nrows) {
ellpack_source_.reset(new EllpackPageSource(this, cache_info_, param));
batch_param_ = param;
}
auto begin_iter =
BatchIterator<EllpackPage>(new SimpleBatchIteratorImpl<EllpackPage>(ellpack_page_.get()));
ellpack_source_->BeforeFirst();
ellpack_source_->Next();
auto begin_iter = BatchIterator<EllpackPage>(
new SparseBatchIteratorImpl<EllpackPageSource, EllpackPage>(ellpack_source_.get()));
return BatchSet<EllpackPage>(begin_iter);
}

View File

@ -14,6 +14,7 @@
#include <utility>
#include <vector>
#include "ellpack_page_source.h"
#include "sparse_page_source.h"
namespace xgboost {
@ -38,13 +39,15 @@ class SparsePageDMatrix : public DMatrix {
BatchSet<SparsePage> GetRowBatches() override;
BatchSet<CSCPage> GetColumnBatches() override;
BatchSet<SortedCSCPage> GetSortedColumnBatches() override;
BatchSet<EllpackPage> GetEllpackBatches() override;
BatchSet<EllpackPage> GetEllpackBatches(const BatchParam& param) override;
// source data pointers.
std::unique_ptr<DataSource<SparsePage>> row_source_;
std::unique_ptr<SparsePageSource<CSCPage>> column_source_;
std::unique_ptr<SparsePageSource<SortedCSCPage>> sorted_column_source_;
std::unique_ptr<EllpackPage> ellpack_page_;
std::unique_ptr<EllpackPageSource> ellpack_source_;
// saved batch param
BatchParam batch_param_;
// the cache prefix
std::string cache_info_;
// Store column densities to avoid recalculating

View File

@ -12,9 +12,10 @@ namespace data {
DMLC_REGISTRY_FILE_TAG(sparse_page_raw_format);
class SparsePageRawFormat : public SparsePageFormat {
template<typename T>
class SparsePageRawFormat : public SparsePageFormat<T> {
public:
bool Read(SparsePage* page, dmlc::SeekStream* fi) override {
bool Read(T* page, dmlc::SeekStream* fi) override {
auto& offset_vec = page->offset.HostVector();
if (!fi->Read(&offset_vec)) return false;
auto& data_vec = page->data.HostVector();
@ -29,7 +30,7 @@ class SparsePageRawFormat : public SparsePageFormat {
return true;
}
bool Read(SparsePage* page,
bool Read(T* page,
dmlc::SeekStream* fi,
const std::vector<bst_uint>& sorted_index_set) override {
if (!fi->Read(&disk_offset_)) return false;
@ -79,7 +80,7 @@ class SparsePageRawFormat : public SparsePageFormat {
return true;
}
void Write(const SparsePage& page, dmlc::Stream* fo) override {
void Write(const T& page, dmlc::Stream* fo) override {
const auto& offset_vec = page.offset.HostVector();
const auto& data_vec = page.data.HostVector();
CHECK(page.offset.Size() != 0 && offset_vec[0] == 0);
@ -98,7 +99,20 @@ class SparsePageRawFormat : public SparsePageFormat {
XGBOOST_REGISTER_SPARSE_PAGE_FORMAT(raw)
.describe("Raw binary data format.")
.set_body([]() {
return new SparsePageRawFormat();
return new SparsePageRawFormat<SparsePage>();
});
XGBOOST_REGISTER_CSC_PAGE_FORMAT(raw)
.describe("Raw binary data format.")
.set_body([]() {
return new SparsePageRawFormat<CSCPage>();
});
XGBOOST_REGISTER_SORTED_CSC_PAGE_FORMAT(raw)
.describe("Raw binary data format.")
.set_body([]() {
return new SparsePageRawFormat<SortedCSCPage>();
});
} // namespace data
} // namespace xgboost

View File

@ -46,6 +46,47 @@ GetCacheShards(const std::string& cache_info) {
namespace xgboost {
namespace data {
/*!
* \brief decide the format from cache prefix.
* \return pair of row format, column format type of the cache prefix.
*/
inline std::pair<std::string, std::string> DecideFormat(const std::string& cache_prefix) {
size_t pos = cache_prefix.rfind(".fmt-");
if (pos != std::string::npos) {
std::string fmt = cache_prefix.substr(pos + 5, cache_prefix.length());
size_t cpos = fmt.rfind('-');
if (cpos != std::string::npos) {
return std::make_pair(fmt.substr(0, cpos), fmt.substr(cpos + 1, fmt.length()));
} else {
return std::make_pair(fmt, fmt);
}
} else {
std::string raw = "raw";
return std::make_pair(raw, raw);
}
}
struct CacheInfo {
std::string name_info;
std::vector<std::string> format_shards;
std::vector<std::string> name_shards;
};
inline CacheInfo ParseCacheInfo(const std::string& cache_info, const std::string& page_type) {
CacheInfo info;
std::vector<std::string> cache_shards = GetCacheShards(cache_info);
CHECK_NE(cache_shards.size(), 0U);
// read in the info files.
info.name_info = cache_shards[0];
for (const std::string& prefix : cache_shards) {
info.name_shards.push_back(prefix + page_type);
info.format_shards.push_back(DecideFormat(prefix).first);
}
return info;
}
/*!
* \brief External memory data source.
* \code
@ -72,6 +113,7 @@ class SparsePageSource : public DataSource<T> {
std::unique_ptr<dmlc::Stream> finfo(dmlc::Stream::Create(name_info.c_str(), "r"));
int tmagic;
CHECK_EQ(finfo->Read(&tmagic, sizeof(tmagic)), sizeof(tmagic));
CHECK_EQ(tmagic, kMagic) << "invalid format, magic number mismatch";
this->info.LoadBinary(finfo.get());
}
files_.resize(cache_shards.size());
@ -85,8 +127,8 @@ class SparsePageSource : public DataSource<T> {
std::unique_ptr<dmlc::SeekStream>& fi = files_[i];
std::string format;
CHECK(fi->Read(&format)) << "Invalid page format";
formats_[i].reset(SparsePageFormat::Create(format));
std::unique_ptr<SparsePageFormat>& fmt = formats_[i];
formats_[i].reset(CreatePageFormat<T>(format));
std::unique_ptr<SparsePageFormat<T>>& fmt = formats_[i];
size_t fbegin = fi->Tell();
prefetchers_[i].reset(new dmlc::ThreadedIter<T>(4));
prefetchers_[i]->Init([&fi, &fmt] (T** dptr) {
@ -111,7 +153,7 @@ class SparsePageSource : public DataSource<T> {
prefetchers_[(clock_ptr_ + n - 1) % n]->Recycle(&page_);
}
if (prefetchers_[clock_ptr_]->Next(&page_)) {
page_->base_rowid = base_rowid_;
page_->SetBaseRowId(base_rowid_);
base_rowid_ += page_->Size();
// advance clock
clock_ptr_ = (clock_ptr_ + 1) % prefetchers_.size();
@ -149,17 +191,9 @@ class SparsePageSource : public DataSource<T> {
const std::string& cache_info,
const size_t page_size = DMatrix::kPageSize) {
const std::string page_type = ".row.page";
std::vector<std::string> cache_shards = GetCacheShards(cache_info);
CHECK_NE(cache_shards.size(), 0U);
// read in the info files.
std::string name_info = cache_shards[0];
std::vector<std::string> name_shards, format_shards;
for (const std::string& prefix : cache_shards) {
name_shards.push_back(prefix + page_type);
format_shards.push_back(SparsePageFormat::DecideFormat(prefix).first);
}
auto cinfo = ParseCacheInfo(cache_info, page_type);
{
SparsePageWriter writer(name_shards, format_shards, 6);
SparsePageWriter<SparsePage> writer(cinfo.name_shards, cinfo.format_shards, 6);
std::shared_ptr<SparsePage> page;
writer.Alloc(&page); page->Clear();
@ -230,30 +264,19 @@ class SparsePageSource : public DataSource<T> {
writer.PushWrite(std::move(page));
}
std::unique_ptr<dmlc::Stream> fo(
dmlc::Stream::Create(name_info.c_str(), "w"));
std::unique_ptr<dmlc::Stream> fo(dmlc::Stream::Create(cinfo.name_info.c_str(), "w"));
int tmagic = kMagic;
fo->Write(&tmagic, sizeof(tmagic));
// Either every row has query ID or none at all
CHECK(qids.empty() || qids.size() == info.num_row_);
info.SaveBinary(fo.get());
}
LOG(INFO) << "SparsePageSource::CreateRowPage Finished writing to "
<< name_info;
LOG(INFO) << "SparsePageSource::CreateRowPage Finished writing to " << cinfo.name_info;
}
/*!
* \brief Create source cache by copy content from DMatrix.
* \param cache_info The cache_info of cache file location.
*/
static void CreateRowPage(DMatrix* src,
const std::string& cache_info) {
const std::string page_type = ".row.page";
CreatePageFromDMatrix(src, cache_info, page_type);
}
/*!
* \brief Create source cache by copy content from DMatrix. Creates transposed column page, may be sorted or not.
* Creates transposed column page, may be sorted or not.
* \param cache_info The cache_info of cache file location.
* \param sorted Whether columns should be pre-sorted
*/
@ -293,17 +316,9 @@ class SparsePageSource : public DataSource<T> {
static void CreatePageFromDMatrix(DMatrix* src, const std::string& cache_info,
const std::string& page_type,
const size_t page_size = DMatrix::kPageSize) {
std::vector<std::string> cache_shards = GetCacheShards(cache_info);
CHECK_NE(cache_shards.size(), 0U);
// read in the info files.
std::string name_info = cache_shards[0];
std::vector<std::string> name_shards, format_shards;
for (const std::string& prefix : cache_shards) {
name_shards.push_back(prefix + page_type);
format_shards.push_back(SparsePageFormat::DecideFormat(prefix).first);
}
auto cinfo = ParseCacheInfo(cache_info, page_type);
{
SparsePageWriter writer(name_shards, format_shards, 6);
SparsePageWriter<SparsePage> writer(cinfo.name_shards, cinfo.format_shards, 6);
std::shared_ptr<SparsePage> page;
writer.Alloc(&page);
page->Clear();
@ -312,9 +327,7 @@ class SparsePageSource : public DataSource<T> {
size_t bytes_write = 0;
double tstart = dmlc::GetTime();
for (auto& batch : src->GetBatches<SparsePage>()) {
if (page_type == ".row.page") {
page->Push(batch);
} else if (page_type == ".col.page") {
if (page_type == ".col.page") {
page->PushCSC(batch.GetTranspose(src->Info().num_col_));
} else if (page_type == ".sorted.col.page") {
SparsePage tmp = batch.GetTranspose(src->Info().num_col_);
@ -338,28 +351,22 @@ class SparsePageSource : public DataSource<T> {
if (page->data.Size() != 0) {
writer.PushWrite(std::move(page));
}
std::unique_ptr<dmlc::Stream> fo(
dmlc::Stream::Create(name_info.c_str(), "w"));
int tmagic = kMagic;
fo->Write(&tmagic, sizeof(tmagic));
info.SaveBinary(fo.get());
}
LOG(INFO) << "SparsePageSource: Finished writing to " << name_info;
LOG(INFO) << "SparsePageSource: Finished writing to " << cinfo.name_info;
}
/*! \brief number of rows */
size_t base_rowid_;
/*! \brief page currently on hold. */
T *page_;
T* page_;
/*! \brief internal clock ptr */
size_t clock_ptr_;
/*! \brief file pointer to the row blob file. */
std::vector<std::unique_ptr<dmlc::SeekStream> > files_;
std::vector<std::unique_ptr<dmlc::SeekStream>> files_;
/*! \brief Sparse page format file. */
std::vector<std::unique_ptr<SparsePageFormat> > formats_;
std::vector<std::unique_ptr<SparsePageFormat<T>>> formats_;
/*! \brief internal prefetcher. */
std::vector<std::unique_ptr<dmlc::ThreadedIter<T> > > prefetchers_;
std::vector<std::unique_ptr<dmlc::ThreadedIter<T>>> prefetchers_;
};
} // namespace data
} // namespace xgboost

View File

@ -1,75 +0,0 @@
/*!
* Copyright (c) 2015 by Contributors
* \file sparse_batch_writer.cc
* \param Writer class sparse page.
*/
#include <xgboost/base.h>
#include <xgboost/logging.h>
#include "./sparse_page_writer.h"
#if DMLC_ENABLE_STD_THREAD
namespace xgboost {
namespace data {
SparsePageWriter::SparsePageWriter(
const std::vector<std::string>& name_shards,
const std::vector<std::string>& format_shards,
size_t extra_buffer_capacity)
: num_free_buffer_(extra_buffer_capacity + name_shards.size()),
clock_ptr_(0),
workers_(name_shards.size()),
qworkers_(name_shards.size()) {
CHECK_EQ(name_shards.size(), format_shards.size());
// start writer threads
for (size_t i = 0; i < name_shards.size(); ++i) {
std::string name_shard = name_shards[i];
std::string format_shard = format_shards[i];
auto* wqueue = &qworkers_[i];
workers_[i].reset(new std::thread(
[this, name_shard, format_shard, wqueue] () {
std::unique_ptr<dmlc::Stream> fo(
dmlc::Stream::Create(name_shard.c_str(), "w"));
std::unique_ptr<SparsePageFormat> fmt(
SparsePageFormat::Create(format_shard));
fo->Write(format_shard);
std::shared_ptr<SparsePage> page;
while (wqueue->Pop(&page)) {
if (page == nullptr) break;
fmt->Write(*page, fo.get());
qrecycle_.Push(std::move(page));
}
fo.reset(nullptr);
LOG(INFO) << "SparsePage::Writer Finished writing to " << name_shard;
}));
}
}
SparsePageWriter::~SparsePageWriter() {
for (auto& queue : qworkers_) {
// use nullptr to signal termination.
std::shared_ptr<SparsePage> sig(nullptr);
queue.Push(std::move(sig));
}
for (auto& thread : workers_) {
thread->join();
}
}
void SparsePageWriter::PushWrite(std::shared_ptr<SparsePage>&& page) {
qworkers_[clock_ptr_].Push(std::move(page));
clock_ptr_ = (clock_ptr_ + 1) % workers_.size();
}
void SparsePageWriter::Alloc(std::shared_ptr<SparsePage>* out_page) {
CHECK(*out_page == nullptr);
if (num_free_buffer_ != 0) {
out_page->reset(new SparsePage());
--num_free_buffer_;
} else {
CHECK(qrecycle_.Pop(out_page));
}
}
} // namespace data
} // namespace xgboost
#endif // DMLC_ENABLE_STD_THREAD

View File

@ -23,9 +23,14 @@
namespace xgboost {
namespace data {
template<typename T>
struct SparsePageFormatReg;
/*!
* \brief Format specification of SparsePage.
*/
template<typename T>
class SparsePageFormat {
public:
/*! \brief virtual destructor */
@ -36,7 +41,8 @@ class SparsePageFormat {
* \param fi the input stream of the file
* \return true of the loading as successful, false if end of file was reached
*/
virtual bool Read(SparsePage* page, dmlc::SeekStream* fi) = 0;
virtual bool Read(T* page, dmlc::SeekStream* fi) = 0;
/*!
* \brief read only the segments we are interested in, advance fi to end of the block.
* \param page The page to load the data into.
@ -44,30 +50,35 @@ class SparsePageFormat {
* \param sorted_index_set sorted index of segments we are interested in
* \return true of the loading as successful, false if end of file was reached
*/
virtual bool Read(SparsePage* page,
virtual bool Read(T* page,
dmlc::SeekStream* fi,
const std::vector<bst_uint>& sorted_index_set) = 0;
/*!
* \brief save the data to fo, when a page was written.
* \param fo output stream
*/
virtual void Write(const SparsePage& page, dmlc::Stream* fo) = 0;
/*!
* \brief Create sparse page of format.
* \return The created format functors.
*/
static SparsePageFormat* Create(const std::string& name);
/*!
* \brief decide the format from cache prefix.
* \return pair of row format, column format type of the cache prefix.
*/
static std::pair<std::string, std::string> DecideFormat(const std::string& cache_prefix);
virtual void Write(const T& page, dmlc::Stream* fo) = 0;
};
/*!
* \brief Create sparse page of format.
* \return The created format functors.
*/
template<typename T>
inline SparsePageFormat<T>* CreatePageFormat(const std::string& name) {
auto *e = ::dmlc::Registry<SparsePageFormatReg<T>>::Get()->Find(name);
if (e == nullptr) {
LOG(FATAL) << "Unknown format type " << name;
}
return (e->body)();
}
#if DMLC_ENABLE_STD_THREAD
/*!
* \brief A threaded writer to write sparse batch page to sharded files.
* @tparam T Type of the page.
*/
template<typename T>
class SparsePageWriter {
public:
/*!
@ -76,26 +87,74 @@ class SparsePageWriter {
* \param format_shards format of each shard.
* \param extra_buffer_capacity Extra buffer capacity before block.
*/
explicit SparsePageWriter(
const std::vector<std::string>& name_shards,
const std::vector<std::string>& format_shards,
size_t extra_buffer_capacity);
explicit SparsePageWriter(const std::vector<std::string>& name_shards,
const std::vector<std::string>& format_shards,
size_t extra_buffer_capacity)
: num_free_buffer_(extra_buffer_capacity + name_shards.size()),
clock_ptr_(0),
workers_(name_shards.size()),
qworkers_(name_shards.size()) {
CHECK_EQ(name_shards.size(), format_shards.size());
// start writer threads
for (size_t i = 0; i < name_shards.size(); ++i) {
std::string name_shard = name_shards[i];
std::string format_shard = format_shards[i];
auto* wqueue = &qworkers_[i];
workers_[i].reset(new std::thread(
[this, name_shard, format_shard, wqueue]() {
std::unique_ptr<dmlc::Stream> fo(dmlc::Stream::Create(name_shard.c_str(), "w"));
std::unique_ptr<SparsePageFormat<T>> fmt(CreatePageFormat<T>(format_shard));
fo->Write(format_shard);
std::shared_ptr<T> page;
while (wqueue->Pop(&page)) {
if (page == nullptr) break;
fmt->Write(*page, fo.get());
qrecycle_.Push(std::move(page));
}
fo.reset(nullptr);
LOG(INFO) << "SparsePageWriter Finished writing to " << name_shard;
}));
}
}
/*! \brief destructor, will close the files automatically */
~SparsePageWriter();
~SparsePageWriter() {
for (auto& queue : qworkers_) {
// use nullptr to signal termination.
std::shared_ptr<T> sig(nullptr);
queue.Push(std::move(sig));
}
for (auto& thread : workers_) {
thread->join();
}
}
/*!
* \brief Push a write job to the writer.
* This function won't block,
* writing is done by another thread inside writer.
* \param page The page to be written
*/
void PushWrite(std::shared_ptr<SparsePage>&& page);
void PushWrite(std::shared_ptr<T>&& page) {
qworkers_[clock_ptr_].Push(std::move(page));
clock_ptr_ = (clock_ptr_ + 1) % workers_.size();
}
/*!
* \brief Allocate a page to store results.
* This function can block when the writer is too slow and buffer pages
* have not yet been recycled.
* \param out_page Used to store the allocated pages.
*/
void Alloc(std::shared_ptr<SparsePage>* out_page);
void Alloc(std::shared_ptr<T>* out_page) {
CHECK(*out_page == nullptr);
if (num_free_buffer_ != 0) {
out_page->reset(new T());
--num_free_buffer_;
} else {
CHECK(qrecycle_.Pop(out_page));
}
}
private:
/*! \brief number of allocated pages */
@ -103,20 +162,21 @@ class SparsePageWriter {
/*! \brief clock_pointer */
size_t clock_ptr_;
/*! \brief writer threads */
std::vector<std::unique_ptr<std::thread> > workers_;
std::vector<std::unique_ptr<std::thread>> workers_;
/*! \brief recycler queue */
dmlc::ConcurrentBlockingQueue<std::shared_ptr<SparsePage> > qrecycle_;
dmlc::ConcurrentBlockingQueue<std::shared_ptr<T>> qrecycle_;
/*! \brief worker threads */
std::vector<dmlc::ConcurrentBlockingQueue<std::shared_ptr<SparsePage> > > qworkers_;
std::vector<dmlc::ConcurrentBlockingQueue<std::shared_ptr<T>>> qworkers_;
};
#endif // DMLC_ENABLE_STD_THREAD
/*!
* \brief Registry entry for sparse page format.
*/
template<typename T>
struct SparsePageFormatReg
: public dmlc::FunctionRegEntryBase<SparsePageFormatReg,
std::function<SparsePageFormat* ()> > {
: public dmlc::FunctionRegEntryBase<SparsePageFormatReg<T>,
std::function<SparsePageFormat<T>* ()>> {
};
/*!
@ -131,8 +191,21 @@ struct SparsePageFormatReg
* });
* \endcode
*/
#define SparsePageFmt SparsePageFormat<SparsePage>
#define XGBOOST_REGISTER_SPARSE_PAGE_FORMAT(Name) \
DMLC_REGISTRY_REGISTER(::xgboost::data::SparsePageFormatReg, SparsePageFormat, Name)
DMLC_REGISTRY_REGISTER(SparsePageFormatReg<SparsePage>, SparsePageFmt, Name)
#define CSCPageFmt SparsePageFormat<CSCPage>
#define XGBOOST_REGISTER_CSC_PAGE_FORMAT(Name) \
DMLC_REGISTRY_REGISTER(SparsePageFormatReg<CSCPage>, CSCPageFmt, Name)
#define SortedCSCPageFmt SparsePageFormat<SortedCSCPage>
#define XGBOOST_REGISTER_SORTED_CSC_PAGE_FORMAT(Name) \
DMLC_REGISTRY_REGISTER(SparsePageFormatReg<SortedCSCPage>, SortedCSCPageFmt, Name)
#define EllpackPageFmt SparsePageFormat<EllpackPage>
#define XGBOOST_REGISTER_ELLPACK_PAGE_FORMAT(Name) \
DMLC_REGISTRY_REGISTER(SparsePageFormatReg<EllpackPage>, EllpackPageFm, Name)
} // namespace data
} // namespace xgboost

View File

@ -174,16 +174,15 @@ template <int BLOCK_THREADS, typename ReduceT, typename ScanT,
typename MaxReduceT, typename TempStorageT, typename GradientSumT>
__device__ void EvaluateFeature(
int fidx, common::Span<const GradientSumT> node_histogram,
const xgboost::ELLPackMatrix& matrix,
const xgboost::EllpackMatrix& matrix,
DeviceSplitCandidate* best_split, // shared memory storing best split
const DeviceNodeStats& node, const GPUTrainingParam& param,
TempStorageT* temp_storage, // temp memory for cub operations
int constraint, // monotonic_constraints
const ValueConstraint& value_constraint) {
// Use pointer from cut to indicate begin and end of bins for each feature.
uint32_t gidx_begin = matrix.feature_segments[fidx]; // begining bin
uint32_t gidx_end =
matrix.feature_segments[fidx + 1]; // end bin for i^th feature
uint32_t gidx_begin = matrix.info.feature_segments[fidx]; // begining bin
uint32_t gidx_end = matrix.info.feature_segments[fidx + 1]; // end bin for i^th feature
// Sum histogram bins for current feature
GradientSumT const feature_sum = ReduceFeature<BLOCK_THREADS, ReduceT>(
@ -231,9 +230,9 @@ __device__ void EvaluateFeature(
int split_gidx = (scan_begin + threadIdx.x) - 1;
float fvalue;
if (split_gidx < static_cast<int>(gidx_begin)) {
fvalue = matrix.min_fvalue[fidx];
fvalue = matrix.info.min_fvalue[fidx];
} else {
fvalue = matrix.gidx_fvalue_map[split_gidx];
fvalue = matrix.info.gidx_fvalue_map[split_gidx];
}
GradientSumT left = missing_left ? bin + missing : bin;
GradientSumT right = parent_sum - left;
@ -249,7 +248,7 @@ __global__ void EvaluateSplitKernel(
common::Span<const GradientSumT> node_histogram, // histogram for gradients
common::Span<const int> feature_set, // Selected features
DeviceNodeStats node,
xgboost::ELLPackMatrix matrix,
xgboost::EllpackMatrix matrix,
GPUTrainingParam gpu_param,
common::Span<DeviceSplitCandidate> split_candidates, // resulting split
ValueConstraint value_constraint,
@ -401,7 +400,7 @@ struct CalcWeightTrainParam {
};
template <typename GradientSumT>
__global__ void SharedMemHistKernel(xgboost::ELLPackMatrix matrix,
__global__ void SharedMemHistKernel(xgboost::EllpackMatrix matrix,
common::Span<const RowPartitioner::RowIndexT> d_ridx,
GradientSumT* d_node_hist,
const GradientPair* d_gpair, size_t n_elements,
@ -413,10 +412,10 @@ __global__ void SharedMemHistKernel(xgboost::ELLPackMatrix matrix,
__syncthreads();
}
for (auto idx : dh::GridStrideRange(static_cast<size_t>(0), n_elements)) {
int ridx = d_ridx[idx / matrix.row_stride ];
int ridx = d_ridx[idx / matrix.info.row_stride ];
int gidx =
matrix.gidx_iter[ridx * matrix.row_stride + idx % matrix.row_stride];
if (gidx != matrix.null_gidx_value) {
matrix.gidx_iter[ridx * matrix.info.row_stride + idx % matrix.info.row_stride];
if (gidx != matrix.info.n_bins) {
// If we are not using shared memory, accumulate the values directly into
// global memory
GradientSumT* atomic_add_ptr =
@ -606,7 +605,7 @@ struct GPUHistMakerDevice {
int constexpr kBlockThreads = 256;
EvaluateSplitKernel<kBlockThreads, GradientSumT>
<<<uint32_t(d_feature_set.size()), kBlockThreads, 0, streams[i]>>>(
hist.GetNodeHistogram(nidx), d_feature_set, node, page->ellpack_matrix,
hist.GetNodeHistogram(nidx), d_feature_set, node, page->matrix,
gpu_param, d_split_candidates, node_value_constraints[nidx],
monotone_constraints);
@ -632,11 +631,11 @@ struct GPUHistMakerDevice {
auto d_ridx = row_partitioner->GetRows(nidx);
auto d_gpair = gpair.data();
auto n_elements = d_ridx.size() * page->ellpack_matrix.row_stride;
auto n_elements = d_ridx.size() * page->matrix.info.row_stride;
const size_t smem_size =
use_shared_memory_histograms
? sizeof(GradientSumT) * page->ellpack_matrix.BinCount()
? sizeof(GradientSumT) * page->matrix.BinCount()
: 0;
const int items_per_thread = 8;
const int block_threads = 256;
@ -646,7 +645,7 @@ struct GPUHistMakerDevice {
return;
}
SharedMemHistKernel<<<grid_size, block_threads, smem_size>>>(
page->ellpack_matrix, d_ridx, d_node_hist.data(), d_gpair, n_elements,
page->matrix, d_ridx, d_node_hist.data(), d_gpair, n_elements,
use_shared_memory_histograms);
}
@ -656,7 +655,7 @@ struct GPUHistMakerDevice {
auto d_node_hist_histogram = hist.GetNodeHistogram(nidx_histogram);
auto d_node_hist_subtraction = hist.GetNodeHistogram(nidx_subtraction);
dh::LaunchN(device_id, page->n_bins, [=] __device__(size_t idx) {
dh::LaunchN(device_id, page->matrix.info.n_bins, [=] __device__(size_t idx) {
d_node_hist_subtraction[idx] =
d_node_hist_parent[idx] - d_node_hist_histogram[idx];
});
@ -671,7 +670,7 @@ struct GPUHistMakerDevice {
}
void UpdatePosition(int nidx, RegTree::Node split_node) {
auto d_matrix = page->ellpack_matrix;
auto d_matrix = page->matrix;
row_partitioner->UpdatePosition(
nidx, split_node.LeftChild(), split_node.RightChild(),
@ -703,7 +702,7 @@ struct GPUHistMakerDevice {
dh::safe_cuda(cudaMemcpy(d_nodes.data(), p_tree->GetNodes().data(),
d_nodes.size() * sizeof(RegTree::Node),
cudaMemcpyHostToDevice));
auto d_matrix = page->ellpack_matrix;
auto d_matrix = page->matrix;
row_partitioner->FinalisePosition(
[=] __device__(bst_uint ridx, int position) {
auto node = d_nodes[position];
@ -766,8 +765,7 @@ struct GPUHistMakerDevice {
reducer->AllReduceSum(
reinterpret_cast<typename GradientSumT::ValueT*>(d_node_hist),
reinterpret_cast<typename GradientSumT::ValueT*>(d_node_hist),
page->ellpack_matrix.BinCount() *
(sizeof(GradientSumT) / sizeof(typename GradientSumT::ValueT)));
page->matrix.BinCount() * (sizeof(GradientSumT) / sizeof(typename GradientSumT::ValueT)));
reducer->Synchronize();
monitor.StopCuda("AllReduce");
@ -956,14 +954,14 @@ inline void GPUHistMakerDevice<GradientSumT>::InitHistogram() {
// check if we can use shared memory for building histograms
// (assuming atleast we need 2 CTAs per SM to maintain decent latency
// hiding)
auto histogram_size = sizeof(GradientSumT) * page->n_bins;
auto histogram_size = sizeof(GradientSumT) * page->matrix.info.n_bins;
auto max_smem = dh::MaxSharedMemory(device_id);
if (histogram_size <= max_smem) {
use_shared_memory_histograms = true;
}
// Init histogram
hist.Init(device_id, page->n_bins);
hist.Init(device_id, page->matrix.info.n_bins);
}
template <typename GradientSumT>
@ -1017,22 +1015,23 @@ class GPUHistMakerSpecialised {
// TODO(rongou): support multiple Ellpack pages.
EllpackPageImpl* page{};
for (auto& batch : dmat->GetBatches<EllpackPage>()) {
for (auto& batch : dmat->GetBatches<EllpackPage>({device_,
param_.max_bin,
hist_maker_param_.gpu_batch_nrows})) {
page = batch.Impl();
page->Init(device_, param_.max_bin, hist_maker_param_.gpu_batch_nrows);
}
dh::safe_cuda(cudaSetDevice(device_));
maker_.reset(new GPUHistMakerDevice<GradientSumT>(device_,
page,
info_->num_row_,
param_,
column_sampling_seed,
info_->num_col_));
maker.reset(new GPUHistMakerDevice<GradientSumT>(device_,
page,
info_->num_row_,
param_,
column_sampling_seed,
info_->num_col_));
monitor_.StartCuda("InitHistogram");
dh::safe_cuda(cudaSetDevice(device_));
maker_->InitHistogram();
maker->InitHistogram();
monitor_.StopCuda("InitHistogram");
p_last_fmat_ = dmat;
@ -1071,17 +1070,17 @@ class GPUHistMakerSpecialised {
monitor_.StopCuda("InitData");
gpair->SetDevice(device_);
maker_->UpdateTree(gpair, p_fmat, p_tree, &reducer_);
maker->UpdateTree(gpair, p_fmat, p_tree, &reducer_);
}
bool UpdatePredictionCache(
const DMatrix* data, HostDeviceVector<bst_float>* p_out_preds) {
if (maker_ == nullptr || p_last_fmat_ == nullptr || p_last_fmat_ != data) {
if (maker == nullptr || p_last_fmat_ == nullptr || p_last_fmat_ != data) {
return false;
}
monitor_.StartCuda("UpdatePredictionCache");
p_out_preds->SetDevice(device_);
maker_->UpdatePredictionCache(p_out_preds->DevicePointer());
maker->UpdatePredictionCache(p_out_preds->DevicePointer());
monitor_.StopCuda("UpdatePredictionCache");
return true;
}
@ -1089,7 +1088,7 @@ class GPUHistMakerSpecialised {
TrainParam param_; // NOLINT
MetaInfo* info_{}; // NOLINT
std::unique_ptr<GPUHistMakerDevice<GradientSumT>> maker_; // NOLINT
std::unique_ptr<GPUHistMakerDevice<GradientSumT>> maker; // NOLINT
private:
bool initialised_;

View File

@ -17,15 +17,13 @@ TEST(EllpackPage, EmptyDMatrix) {
constexpr int kNRows = 0, kNCols = 0, kMaxBin = 256, kGpuBatchNRows = 64;
constexpr float kSparsity = 0;
auto dmat = *CreateDMatrix(kNRows, kNCols, kSparsity);
auto& page = *dmat->GetBatches<EllpackPage>().begin();
auto& page = *dmat->GetBatches<EllpackPage>({0, kMaxBin, kGpuBatchNRows}).begin();
auto impl = page.Impl();
impl->Init(0, kMaxBin, kGpuBatchNRows);
ASSERT_EQ(impl->ellpack_matrix.feature_segments.size(), 1);
ASSERT_EQ(impl->ellpack_matrix.min_fvalue.size(), 0);
ASSERT_EQ(impl->ellpack_matrix.gidx_fvalue_map.size(), 0);
ASSERT_EQ(impl->ellpack_matrix.row_stride, 0);
ASSERT_EQ(impl->ellpack_matrix.null_gidx_value, 0);
ASSERT_EQ(impl->n_bins, 0);
ASSERT_EQ(impl->matrix.info.feature_segments.size(), 1);
ASSERT_EQ(impl->matrix.info.min_fvalue.size(), 0);
ASSERT_EQ(impl->matrix.info.gidx_fvalue_map.size(), 0);
ASSERT_EQ(impl->matrix.info.row_stride, 0);
ASSERT_EQ(impl->matrix.info.n_bins, 0);
ASSERT_EQ(impl->gidx_buffer.size(), 4);
}
@ -37,7 +35,7 @@ TEST(EllpackPage, BuildGidxDense) {
dh::CopyDeviceSpanToVector(&h_gidx_buffer, page->gidx_buffer);
common::CompressedIterator<uint32_t> gidx(h_gidx_buffer.data(), 25);
ASSERT_EQ(page->ellpack_matrix.row_stride, kNCols);
ASSERT_EQ(page->matrix.info.row_stride, kNCols);
std::vector<uint32_t> solution = {
0, 3, 8, 9, 14, 17, 20, 21,
@ -70,7 +68,7 @@ TEST(EllpackPage, BuildGidxSparse) {
dh::CopyDeviceSpanToVector(&h_gidx_buffer, page->gidx_buffer);
common::CompressedIterator<uint32_t> gidx(h_gidx_buffer.data(), 25);
ASSERT_LE(page->ellpack_matrix.row_stride, 3);
ASSERT_LE(page->matrix.info.row_stride, 3);
// row_stride = 3, 16 rows, 48 entries for ELLPack
std::vector<uint32_t> solution = {
@ -78,7 +76,7 @@ TEST(EllpackPage, BuildGidxSparse) {
24, 24, 24, 24, 24, 5, 24, 24, 0, 16, 24, 15, 24, 24, 24, 24,
24, 7, 14, 16, 4, 24, 24, 24, 24, 24, 9, 24, 24, 1, 24, 24
};
for (size_t i = 0; i < kNRows * page->ellpack_matrix.row_stride; ++i) {
for (size_t i = 0; i < kNRows * page->matrix.info.row_stride; ++i) {
ASSERT_EQ(solution[i], gidx[i]);
}
}

View File

@ -0,0 +1,26 @@
// Copyright by Contributors
#include <dmlc/filesystem.h>
#include "../helpers.h"
namespace xgboost {
TEST(GPUSparsePageDMatrix, EllpackPage) {
dmlc::TemporaryDirectory tempdir;
const std::string tmp_file = tempdir.path + "/simple.libsvm";
CreateSimpleTestData(tmp_file);
DMatrix* dmat = DMatrix::Load(tmp_file + "#" + tmp_file + ".cache", true, false);
// Loop over the batches and assert the data is as expected
for (const auto& batch : dmat->GetBatches<EllpackPage>({0, 256, 64})) {
EXPECT_EQ(batch.Size(), dmat->Info().num_row_);
}
EXPECT_TRUE(FileExists(tmp_file + ".cache"));
EXPECT_TRUE(FileExists(tmp_file + ".cache.row.page"));
EXPECT_TRUE(FileExists(tmp_file + ".cache.ellpack.page"));
delete dmat;
}
} // namespace xgboost

View File

@ -192,14 +192,14 @@ std::unique_ptr<DMatrix> CreateSparsePageDMatrix(
return dmat;
}
std::unique_ptr<DMatrix> CreateSparsePageDMatrixWithRC(size_t n_rows, size_t n_cols,
size_t page_size, bool deterministic) {
std::unique_ptr<DMatrix> CreateSparsePageDMatrixWithRC(
size_t n_rows, size_t n_cols, size_t page_size, bool deterministic,
const dmlc::TemporaryDirectory& tempdir) {
if (!n_rows || !n_cols) {
return nullptr;
}
// Create the svm file in a temp dir
dmlc::TemporaryDirectory tempdir;
const std::string tmp_file = tempdir.path + "/big.libsvm";
std::ofstream fo(tmp_file.c_str());

View File

@ -14,6 +14,7 @@
#include <gtest/gtest.h>
#include <dmlc/filesystem.h>
#include <xgboost/base.h>
#include <xgboost/objective.h>
#include <xgboost/metric.h>
@ -199,8 +200,9 @@ std::unique_ptr<DMatrix> CreateSparsePageDMatrix(
*
* \return The new dmatrix.
*/
std::unique_ptr<DMatrix> CreateSparsePageDMatrixWithRC(size_t n_rows, size_t n_cols,
size_t page_size, bool deterministic);
std::unique_ptr<DMatrix> CreateSparsePageDMatrixWithRC(
size_t n_rows, size_t n_cols, size_t page_size, bool deterministic,
const dmlc::TemporaryDirectory& tempdir = dmlc::TemporaryDirectory());
gbm::GBTreeModel CreateTestModel();
@ -247,16 +249,15 @@ inline std::unique_ptr<EllpackPageImpl> BuildEllpackPage(
0.26f, 0.71f, 1.83f});
cmat.SetMins({0.1f, 0.2f, 0.3f, 0.1f, 0.2f, 0.3f, 0.2f, 0.2f});
auto is_dense = (*dmat)->Info().num_nonzero_ ==
(*dmat)->Info().num_row_ * (*dmat)->Info().num_col_;
size_t row_stride = 0;
const auto &offset_vec = batch.offset.ConstHostVector();
for (size_t i = 1; i < offset_vec.size(); ++i) {
row_stride = std::max(row_stride, offset_vec[i] - offset_vec[i-1]);
}
auto page = std::unique_ptr<EllpackPageImpl>(new EllpackPageImpl(dmat->get()));
page->InitCompressedData(0, cmat, row_stride, is_dense);
auto page = std::unique_ptr<EllpackPageImpl>(new EllpackPageImpl(dmat->get(), {0, 256, 0}));
page->InitInfo(0, (*dmat)->IsDense(), row_stride, cmat);
page->InitCompressedData(0, n_rows);
page->CreateHistIndices(0, batch, RowStateOnDevice(batch.Size(), batch.Size()));
delete dmat;

View File

@ -2,6 +2,7 @@
* Copyright 2017-2019 XGBoost contributors
*/
#include <thrust/device_vector.h>
#include <dmlc/filesystem.h>
#include <xgboost/base.h>
#include <random>
#include <string>
@ -207,14 +208,14 @@ TEST(GpuHist, EvaluateSplits) {
// Copy cut matrix to device.
maker.ba.Allocate(0,
&(page->ellpack_matrix.feature_segments), cmat.Ptrs().size(),
&(page->ellpack_matrix.min_fvalue), cmat.MinValues().size(),
&(page->ellpack_matrix.gidx_fvalue_map), 24,
&(page->matrix.info.feature_segments), cmat.Ptrs().size(),
&(page->matrix.info.min_fvalue), cmat.MinValues().size(),
&(page->matrix.info.gidx_fvalue_map), 24,
&(maker.monotone_constraints), kNCols);
dh::CopyVectorToDeviceSpan(page->ellpack_matrix.feature_segments, cmat.Ptrs());
dh::CopyVectorToDeviceSpan(page->ellpack_matrix.gidx_fvalue_map, cmat.Values());
dh::CopyVectorToDeviceSpan(page->matrix.info.feature_segments, cmat.Ptrs());
dh::CopyVectorToDeviceSpan(page->matrix.info.gidx_fvalue_map, cmat.Values());
dh::CopyVectorToDeviceSpan(maker.monotone_constraints, param.monotone_constraints);
dh::CopyVectorToDeviceSpan(page->ellpack_matrix.min_fvalue, cmat.MinValues());
dh::CopyVectorToDeviceSpan(page->matrix.info.min_fvalue, cmat.MinValues());
// Initialize GPUHistMakerDevice::hist
maker.hist.Init(0, (max_bins - 1) * kNCols);
@ -265,8 +266,10 @@ void TestHistogramIndexImpl() {
tree::GPUHistMakerSpecialised<GradientPairPrecise> hist_maker, hist_maker_ext;
std::unique_ptr<DMatrix> hist_maker_dmat(
CreateSparsePageDMatrixWithRC(kNRows, kNCols, 0, true));
dmlc::TemporaryDirectory tempdir;
std::unique_ptr<DMatrix> hist_maker_ext_dmat(
CreateSparsePageDMatrixWithRC(kNRows, kNCols, 128UL, true));
CreateSparsePageDMatrixWithRC(kNRows, kNCols, 128UL, true, tempdir));
std::vector<std::pair<std::string, std::string>> training_params = {
{"max_depth", "10"},
@ -275,22 +278,21 @@ void TestHistogramIndexImpl() {
GenericParameter generic_param(CreateEmptyGenericParam(0));
hist_maker.Configure(training_params, &generic_param);
hist_maker.InitDataOnce(hist_maker_dmat.get());
hist_maker_ext.Configure(training_params, &generic_param);
hist_maker_ext.InitDataOnce(hist_maker_ext_dmat.get());
// Extract the device maker from the histogram makers and from that its compressed
// histogram index
const auto &maker = hist_maker.maker_;
const auto &maker = hist_maker.maker;
std::vector<common::CompressedByteT> h_gidx_buffer(maker->page->gidx_buffer.size());
dh::CopyDeviceSpanToVector(&h_gidx_buffer, maker->page->gidx_buffer);
const auto &maker_ext = hist_maker_ext.maker_;
const auto &maker_ext = hist_maker_ext.maker;
std::vector<common::CompressedByteT> h_gidx_buffer_ext(maker_ext->page->gidx_buffer.size());
dh::CopyDeviceSpanToVector(&h_gidx_buffer_ext, maker_ext->page->gidx_buffer);
ASSERT_EQ(maker->page->n_bins, maker_ext->page->n_bins);
ASSERT_EQ(maker->page->matrix.info.n_bins, maker_ext->page->matrix.info.n_bins);
ASSERT_EQ(maker->page->gidx_buffer.size(), maker_ext->page->gidx_buffer.size());
ASSERT_EQ(h_gidx_buffer, h_gidx_buffer_ext);