GBRT Train and Test Phase added

This commit is contained in:
kalenhaha 2014-02-12 23:30:32 +08:00
parent d6261c25f2
commit 4dfc4491c2
4 changed files with 240 additions and 0 deletions

View File

@ -0,0 +1,14 @@
#include"xgbooost_reg_train.h"
#include"xgboost_reg_test.h"
using namespace xgboost::regression;
int main(int argc, char *argv[]){
// char* config_path = argv[1];
// bool silent = ( atoi(argv[2]) == 1 );
char* config_path = "c:\\cygwin64\\home\\chen\\github\\gboost\\demo\\regression\\reg.conf";
bool silent = false;
RegBoostTrain train;
RegBoostTest test;
train.train(config_path,false);
test.test(config_path,false);
}

View File

@ -0,0 +1,87 @@
#ifndef _XGBOOST_REG_TEST_H_
#define _XGBOOST_REG_TEST_H_
#include<iostream>
#include<string>
#include<fstream>
#include"../utils/xgboost_config.h"
#include"xgboost_reg.h"
#include"xgboost_regdata.h"
#include"../utils/xgboost_string.h"
using namespace xgboost::utils;
namespace xgboost{
namespace regression{
class RegBoostTest{
public:
void test(char* config_path,bool silent = false){
reg_boost_learner = new xgboost::regression::RegBoostLearner(silent);
ConfigIterator config_itr(config_path);
//Get the training data and validation data paths, config the Learner
while (config_itr.Next()){
reg_boost_learner->SetParam(config_itr.name(),config_itr.val());
test_param.SetParam(config_itr.name(),config_itr.val());
}
Assert(test_param.test_paths.size() == test_param.test_names.size(),
"The number of test data set paths is not the same as the number of test data set data set names");
//begin testing
reg_boost_learner->InitModel();
char model_path[256];
std::vector<float> preds;
for(int i = 0; i < test_param.test_paths.size(); i++){
xgboost::regression::DMatrix test_data;
test_data.LoadText(test_param.test_paths[i].c_str());
sscanf(model_path,"%s/final.model",test_param.model_dir_path);
FileStream fin(fopen(model_path,"r"));
reg_boost_learner->LoadModel(fin);
fin.Close();
reg_boost_learner->Predict(preds,test_data);
}
}
private:
struct TestParam{
/* \brief upperbound of the number of boosters */
int boost_iterations;
/* \brief the period to save the model, -1 means only save the final round model */
int save_period;
/* \brief the path of directory containing the saved models */
const char* model_dir_path;
/* \brief the path of directory containing the output prediction results */
const char* pred_dir_path;
/* \brief the paths of test data sets */
std::vector<std::string> test_paths;
/* \brief the names of the test data sets */
std::vector<std::string> test_names;
/*!
* \brief set parameters from outside
* \param name name of the parameter
* \param val value of the parameter
*/
inline void SetParam(const char *name,const char *val ){
if( !strcmp("model_dir_path", name ) ) model_dir_path = val;
if( !strcmp("pred_dir_path", name ) ) model_dir_path = val;
if( !strcmp("test_paths", name) ) {
test_paths = StringProcessing::split(val,';');
}
if( !strcmp("test_names", name) ) {
test_names = StringProcessing::split(val,';');
}
}
};
TestParam test_param;
xgboost::regression::RegBoostLearner* reg_boost_learner;
};
}
}
#endif

View File

@ -0,0 +1,108 @@
#ifndef _XGBOOST_REG_TRAIN_H_
#define _XGBOOST_REG_TRAIN_H_
#include<iostream>
#include<string>
#include<fstream>
#include"../utils/xgboost_config.h"
#include"xgboost_reg.h"
#include"xgboost_regdata.h"
#include"../utils/xgboost_string.h"
using namespace xgboost::utils;
namespace xgboost{
namespace regression{
class RegBoostTrain{
public:
void train(char* config_path,bool silent = false){
reg_boost_learner = new xgboost::regression::RegBoostLearner(silent);
ConfigIterator config_itr(config_path);
//Get the training data and validation data paths, config the Learner
while (config_itr.Next()){
reg_boost_learner->SetParam(config_itr.name(),config_itr.val());
train_param.SetParam(config_itr.name(),config_itr.val());
}
Assert(train_param.validation_data_paths.size() == train_param.validation_data_names.size(),
"The number of validation paths is not the same as the number of validation data set names");
//Load Data
xgboost::regression::DMatrix train;
train.LoadText(train_param.train_path);
std::vector<const xgboost::regression::DMatrix*> evals;
for(int i = 0; i < train_param.validation_data_paths.size(); i++){
xgboost::regression::DMatrix eval;
eval.LoadText(train_param.validation_data_paths[i].c_str());
evals.push_back(&eval);
}
reg_boost_learner->SetData(&train,evals,train_param.validation_data_names);
//begin training
reg_boost_learner->InitTrainer();
char model_path[256];
for(int i = 1; i <= train_param.boost_iterations; i++){
reg_boost_learner->UpdateOneIter(i);
//save the models during the iterations
if(train_param.save_period != 0 && i % train_param.save_period == 0){
sscanf(model_path,"%s/%d.model",train_param.model_dir_path,i);
FILE* file = fopen(model_path,"w");
FileStream fin(file);
reg_boost_learner->SaveModel(fin);
fin.Close();
}
}
//save the final model
sscanf(model_path,"%s/final.model",train_param.model_dir_path);
FILE* file = fopen(model_path,"w");
FileStream fin(file);
reg_boost_learner->SaveModel(fin);
fin.Close();
}
private:
struct TrainParam{
/* \brief upperbound of the number of boosters */
int boost_iterations;
/* \brief the period to save the model, -1 means only save the final round model */
int save_period;
/* \brief the path of training data set */
const char* train_path;
/* \brief the path of directory containing the saved models */
const char* model_dir_path;
/* \brief the paths of validation data sets */
std::vector<std::string> validation_data_paths;
/* \brief the names of the validation data sets */
std::vector<std::string> validation_data_names;
/*!
* \brief set parameters from outside
* \param name name of the parameter
* \param val value of the parameter
*/
inline void SetParam(const char *name,const char *val ){
if( !strcmp("boost_iterations", name ) ) boost_iterations = (float)atof( val );
if( !strcmp("save_period", name ) ) save_period = atoi( val );
if( !strcmp("train_path", name ) ) train_path = val;
if( !strcmp("model_dir_path", name ) ) model_dir_path = val;
if( !strcmp("validation_paths", name) ) {
validation_data_paths = StringProcessing::split(val,';');
}
if( !strcmp("validation_names", name) ) {
validation_data_names = StringProcessing::split(val,';');
}
}
};
TrainParam train_param;
xgboost::regression::RegBoostLearner* reg_boost_learner;
};
}
}
#endif

31
utils/xgboost_string.h Normal file
View File

@ -0,0 +1,31 @@
#ifndef _XGBOOST_STRING_H_
#define _XGBOOST_STRING_H_
#include<vector>
#include<sstream>
namespace xgboost{
namespace utils{
class StringProcessing{
public:
static std::vector<std::string> &split(const std::string &s, char delim, std::vector<std::string> &elems) {
std::stringstream ss(s);
std::string item;
while (std::getline(ss, item, delim)) {
elems.push_back(item);
}
return elems;
}
static std::vector<std::string> split(const std::string &s, char delim) {
std::vector<std::string> elems;
split(s, delim, elems);
return elems;
}
};
}
}
#endif