This commit is contained in:
hetong 2014-09-05 23:04:00 -07:00
commit 4d00be84c3
6 changed files with 86 additions and 11 deletions

View File

@ -8,6 +8,7 @@ export(xgb.dump)
export(xgb.load)
export(xgb.save)
export(xgb.train)
export(xgb.cv)
export(xgboost)
exportMethods(predict)
import(methods)

View File

@ -103,6 +103,10 @@ xgb.get.DMatrix <- function(data, label = NULL) {
}
return (dtrain)
}
xgb.numrow <- function(dmat) {
nrow <- .Call("XGDMatrixNumRow_R", dmat, PACKAGE="xgboost")
return(nrow)
}
# iteratively update booster with customized statistics
xgb.iter.boost <- function(booster, dtrain, gpair) {
if (class(booster) != "xgb.Booster") {
@ -174,23 +178,51 @@ xgb.iter.eval <- function(booster, watchlist, iter, feval = NULL) {
}
} else {
msg <- ""
}
}
return(msg)
}
#------------------------------------------
# helper functions for cross validation
#
xgb.cv.mknfold <- function(dall, nfold, param, metrics=list(), fpreproc = NULL) {
xgb.cv.mknfold <- function(dall, nfold, param) {
randidx <- sample(1 : xgb.numrow(dall))
kstep <- length(randidx) / nfold
idset <- list()
for (i in 1:nfold) {
idset = append(idset, randidx[ ((i-1) * kstep + 1) : min(i * kstep, length(randidx)) ])
idset[[i]] <- randidx[ ((i-1) * kstep + 1) : min(i * kstep, length(randidx)) ]
}
ret <- list()
for (k in 1:nfold) {
dtest <- slice(dall, idset[[k]])
didx = c()
for (i in 1:nfold) {
if (i != k) {
didx <- append(didx, idset[[i]])
}
}
dtrain <- slice(dall, didx)
bst <- xgb.Booster(param, list(dtrain, dtest))
watchlist = list(train=dtrain, test=dtest)
ret[[k]] <- list(dtrain=dtrain, booster=bst, watchlist=watchlist)
}
return (ret)
}
xgb.cv.aggcv <- function(res, showsd = TRUE) {
header <- res[[1]]
ret <- header[1]
for (i in 2:length(header)) {
kv <- strsplit(header[i], ":")[[1]]
ret <- paste(ret, "\t", kv[1], ":", sep="")
stats <- c()
stats[1] <- as.numeric(kv[2])
for (j in 2:length(res)) {
tkv <- strsplit(res[[j]][i], ":")[[1]]
stats[j] <- as.numeric(tkv[2])
}
ret <- paste(ret, sprintf("%f", mean(stats)), sep="")
if (showsd) {
ret <- paste(ret, sprintf("+%f", sd(stats)), sep="")
}
}
return (ret)
}

View File

@ -18,6 +18,9 @@
#' further details. See also inst/examples/demo.R for walkthrough example in R.
#' @param data takes an \code{xgb.DMatrix} as the input.
#' @param nrounds the max number of iterations
#' @param nfold number of folds used
#' @param label option field, when data is Matrix
#' @param showd boolean, whether show standard deviation of cross validation
#' @param metrics, list of evaluation metrics to be used in corss validation,
#' when it is not specified, the evaluation metric is chosen according to objective function.
#' Possible options are:
@ -28,7 +31,6 @@
#' \item \code{auc} Area under curve
#' \item \code{merror} Exact matching error, used to evaluate multi-class classification
#' }
#'
#' @param obj customized objective function. Returns gradient and second order
#' gradient with given prediction and dtrain,
#' @param feval custimized evaluation function. Returns
@ -46,12 +48,33 @@
#'
#' @export
#'
xgb.cv <- function(params=list(), data, nrounds, metrics=list(), label = NULL,
obj = NULL, feval = NULL, ...) {
xgb.cv <- function(params=list(), data, nrounds, nfold, label = NULL,
showsd = TRUE, metrics=list(), obj = NULL, feval = NULL, ...) {
if (typeof(params) != "list") {
stop("xgb.cv: first argument params must be list")
}
if (nfold <= 1) {
stop("nfold must be bigger than 1")
}
dtrain <- xgb.get.DMatrix(data, label)
params = append(params, list(...))
params <- append(params, list(...))
params <- append(params, list(silent=1))
for (mc in metrics) {
params <- append(params, list("eval_metric"=mc))
}
folds <- xgb.cv.mknfold(dtrain, nfold, params)
history <- list()
for (i in 1:nrounds) {
msg <- list()
for (k in 1:nfold) {
fd <- folds[[k]]
succ <- xgb.iter.update(fd$booster, fd$dtrain, i - 1, obj)
msg[[k]] <- strsplit(xgb.iter.eval(fd$booster, fd$watchlist, i - 1, feval), "\t")[[1]]
}
ret <- xgb.cv.aggcv(msg, showsd)
history <- append(history, ret)
cat(paste(ret, "\n", sep=""))
}
return (history)
}

View File

@ -0,0 +1,10 @@
require(xgboost)
require(methods)
# Directly read in local file
dtrain <- xgb.DMatrix("agaricus.txt.train")
history <- xgb.cv( data = dtrain, nround=3, nfold = 5, metrics=list("rmse","auc"),
"max_depth"=3, "eta"=1,
"objective"="binary:logistic")

View File

@ -174,6 +174,10 @@ extern "C" {
_WrapperEnd();
return ret;
}
SEXP XGDMatrixNumRow_R(SEXP handle) {
bst_ulong nrow = XGDMatrixNumRow(R_ExternalPtrAddr(handle));
return ScalarInteger(static_cast<int>(nrow));
}
// functions related to booster
void _BoosterFinalizer(SEXP ext) {
if (R_ExternalPtrAddr(ext) == NULL) return;

View File

@ -65,6 +65,11 @@ extern "C" {
* \return info vector
*/
SEXP XGDMatrixGetInfo_R(SEXP handle, SEXP field);
/*!
* \brief return number of rows
* \param handle a instance of data matrix
*/
SEXP XGDMatrixNumRow_R(SEXP handle);
/*!
* \brief create xgboost learner
* \param dmats a list of dmatrix handles that will be cached